#### CS/EE/ME 75(a) Oct. 23, 2019

Today:

- Gitlab, Slack, Wiki,
- Group Meeting times
- Requirements/Specifications
- Generate/Evaluate Alternatives
- Homework: projects & general

#### Structured Design Method(s)



#### Structured Design Method(s)



## **Function Diagram**



What is an Architecture:

- A model/structure of the system
- Properties of the various elements involved in the system
- Relationships between the various elements
- Behaviors and Dynamics of the various elements
- Multiple Views of the system (from energy usage, information usage

Requirements for an Architecture:

The objects/elements of the system can be modeled (possibly as their own systems)



- System can be broken down into small systems (hierarchy)
  - · Can be considered at various levels of abstraction





- Interactions with environment and other systems • S Interfaces between components • interface Socio-Technical Aspects ٠
- Behaviors and Dynamics of the various elements
- Multiple Views of the system (from energy usage, information usage

• Multiple Views of the system (from energy usage, information usage



### Specifications/Requirements

- Specification = "to state explicitly, or in detail"
- Describe what component *should be,* not how to build it.
- Common types of specifications:
  - Functional Performance: speed, power, energy capacity,
  - Operating conditions: temp., humidity, pressure
  - Physical Attributes: mass, volume, max dimension
  - Reliability: Safety, MTBF
  - Life-cycle: maintenance, repair,
  - Constraints: cost, time to completion, standards
  - Manufacturing Issues: materials, processes, quantity
  - Human Factors: complexity of interface, user operation

### Specifications/Requirements

Why?

- Communicate between design/development teams.
- Limit frequent system changes and design updates.
- Avoid lack of compatibility in subsystems

How?

- Identify the stakeholders of your design/subsystem
  - Who will use your system?
  - What teams (design, develop, test, field) will be affected by your subsystem?
  - Who will maintain your system?
  - Who else will be affected by your system? (e.g., DARPA clean-up crews)
- *Requirements:* that must be satisfied by subsystem
- **Specifications:** quantify the limits or performance of your subsystem

#### **Example of Specifications**



#### **AIRBUS A380 – Specifications**

•

#### Specifications set by outside rules

| FAA Aircraft<br>Design Group | Aircraft Type                  | Minimum<br>Wingspan(ft) | Maximum<br>Wingspan(ft) |
|------------------------------|--------------------------------|-------------------------|-------------------------|
| I                            | Small Regional                 | 0                       | 49                      |
| II                           | Medium Regional                | 50                      | 79                      |
| III                          | Narrow body/<br>Large Regional | 80                      | 118                     |
| IV                           | Wide body                      | 119                     | 171                     |
| V                            | Jumbo                          | 172                     | 214                     |
| VI                           | Super Jumbo                    | 215                     | 262                     |

Specifications set by

performance



| Measurement                 | A380-800                                        |  |
|-----------------------------|-------------------------------------------------|--|
| Cockpit crew                | Тwo                                             |  |
| Seating canacity            | 525 (3-class), 644 (2-class),                   |  |
| Seating capacity            | 853 (1-class)                                   |  |
| Length                      | 73 m (239 ft 6 <u>in</u> )                      |  |
| Span                        | 79.8 m 261 ft 10 in)                            |  |
| Height                      | 24.1 m (79 ft 1 in)                             |  |
| Wheelbase                   | 30.4 m (99 ft 8 in)                             |  |
| Outside fuselage width      | 7.14 m (23 ft 6 in)                             |  |
| Cabin width, main deck      | 6.58 m (21 ft 7 in)                             |  |
| Cabin width, upper deck     | 5.92 m (19 ft 5 in)                             |  |
| Wing area                   | 845 m² (9,100 sq ft)                            |  |
| Operating empty weight      | 276,800 kg (610,200 <u>lb</u> )                 |  |
| Maximum take-off weight     | 560,000 kg (1,235,000 lb)                       |  |
| Cruising speed              | Mach 0.85                                       |  |
| Spece                       | (1041 km/h, 647 mph, 562 <u>knots</u> )         |  |
| Maximum cruising speed      | Mach 0.89                                       |  |
|                             | (1090 km/h, 677 mph, 588 knots)                 |  |
| Maximum speed               | Mach 0.96 <sup>[111]</sup>                      |  |
|                             | (1176 km/h, 731 mph, 635 knots)                 |  |
| Take off run at <u>MTOW</u> | 2,750 m (9,020 ft) <sup>187]</sup>              |  |
| Range at design load        | 15,200 km (8,200 <u>nmi</u> , 9,400 mi)         |  |
| Service ceiling             | 13,115 m (43,000 ft) <sup>[112]</sup>           |  |
| Maximum fuel capacity       | 310,000 L                                       |  |
| Maximum ruer capacity       | (81,890 <u>US gal</u> , 68,200 <u>imp gal</u> ) |  |
| Engines (4 x)               | <u>GP7270</u> (A380-861)                        |  |
| Thrust (4 x)                | 311 kN (70,000 lbf)                             |  |

#### **GP 7270 – Specifications**



Requirements for an Architecture:

The objects/elements of the system can be modeled (possibly as their own systems)



- System can be broken down into small systems (hierarchy)
  - · Can be considered at various levels of abstraction





- Interactions with environment and other systems • S Interfaces between components • interface Socio-Technical Aspects ٠
- Behaviors and Dynamics of the various elements
- Multiple Views of the system (from energy usage, information usage

• Multiple Views of the system (from energy usage, information usage



#### **System Architecture & Stakeholders**



#### Structured Design Method(s)



#### **Generate Solutions**

#### Goal:

- Create as many distinct solutions as possible.
- Create many possible alternative rearrangement of components
- Organize alternatives for future evaluations
- Classify alternatives

Morphology Chart (best for electromechanical design problems):

- Required functions/features along rows
- Different design alternatives and combinations along rows.
  - Phrases or sketches to capture the concept
- Sometimes other alternatives, such as concept diagrams or classification trees, are better suited to a given problem

#### **Morphological Chart**



sub functions



#### Ехнівіт 6-6

Some of the solutions to the subproblems of (1) storing or accepting energy and (2) delivering translational energy to a nail.



# Homework

Individual Tasks: If you haven't completed these tasks, please do it now!

- Get an account on GitLab: gitlab.robotics.caltech.edu.
- Get a slack account
  - Ask to join caltechcseeme75.slack.com
- Propose to Joel a separate 1-hour/week team meeting time

#### Team Tasks: (all unit levels)

- Create a Team project page on the course wiki
- List of specifications
- Function diagram

# Homework

Team Tasks: (6+ unit level)

- RC Car:
  - Meet with Jake/Anushri to learn how to drive the car
  - Add/move existing cad files to new GitLab project directory

#### • Drive-O-Copter:

- Meet with Arnon Lewinstein (lewinstein@gmail.com) to get CAD models/update.
- Make plans to build a prototype!
- Contact Drew Singletary (<u>asinglet@Caltech.edu</u>) and Anushri Dixit (<u>adixit@Caltech.edu</u>) to start learning about autonomy stack?
- When is our weekly meeting time?

#### • Extreme Localization:

- Contact Ben Morrel (<u>Benjamin.morrel@jpl.nasa.gov</u>) to learn about UWB efforts
- Contact Ed Terry (<u>eterry@Caltech.edu</u>) for Total Station Info