
Computing the Screw Parameters of a Rigid Body Displacement

Problem Statement:

We wish to determine the screw displacement parameters for a spatial displacement by
tracking the motion of three non-collinear points. These parameters consist of:

φ = the angle of rotation about the screw axis
d|| = the translation along the screw axis
~ω = A unit vector parallel to the screw axis
~ρ = a vector to a point on the screw axis

Assume that we have a rigid body which contains three non-colinear points: P, Q, R. Let
P0, Q0, and R0 denote the positions of the points in the body before displacement. Let P1,
Q1, and R1 the position of these points after a screw displacement.

The Solution:

Let’s first recall Rodriguez’ Displacement Equation. Consider a point P located at position
~x0 in a fixed reference frame. A rigid body containing that point then undergoes a screw
displacement (with screw displacement parameters φ, d||, ~ω, ~ρ). The point P is displaced
to some new location P

′
whose position (to the fixed observer) is ~x1. The coordinates of

the points and the screw displacement parameters are related by Rogdriguez’ displacement
equation:

~x1 − ~x0 = tan (
φ

2
)~ω × [~x1 + ~x0 − 2ρ] + d||~ω . (1)

To determine the screw parameters from the displacement of these three points, we will
solve the following three simulataneous copies of Rodriguez’ equation, which each equation
modeling the displacment of a separate point in the same rigid body. I.e., we will track the
displacements of three non-collinear points as they are affected by the screw displacements.

P1 − P0 = tan(
φ

2
) ~ω × (P1 + P0 − 2~ρ) + d||~ω (2)

Q1 −Q0 = tan(
φ

2
) ~ω × (Q1 +Q0 − 2~ρ) + d||~ω (3)

R1 −R0 = tan(
φ

2
) ~ω × (R1 +R0 − 2~ρ) + d||~ω (4)

where each equation is the Rodriguez displacement equation for the respective points
P, Q, and R.

Step #1: Subtract Equation (4) from Equations (2) and (3):

(P1 − P0)− (R1 −R0) = tan(
φ

2
) ~ω × [(P1 + P0)− (R1 +R0)] (5)
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(Q1 −Q0)− (R1 −R0) = tan(
φ

2
) ~ω × [(Q1 +Q0)− (R1 +R0)] (6)

Form the cross product of [(Q1 −Q0)− (R1 −R0)] with Equation (6):

[(Q1 −Q0) −(R1 −R0)]× [(P1 − P0)− (R1 −R0)]

= tan(φ
2
)[(Q1 −Q0)− (R1 −R0)]× {~ω × [(P1 + P0)− (R1 +R0)]}

(7)

Note: from Equation (6), we know that [(Q1−Q0)−(R1−R0)] is perpendicular to ~ω, since it
results from the cross produce of a vector with ~ω. Therefore, the right hand side of Equation
(7) will be a vector proportional to ~ω.

We can use the vector identity ~a× (~b× c) = (~a · ~c)~b− (~a ·~b)~c to simplify Equation (7):

[(Q1 −Q0)− (R1 −R0)] ×[(P1 − P0)− (R1 −R0)]

= tan(φ
2
)[(Q1 −Q0)− (R1 −R0)] · [(P1 + P0)− (R1 +R0)]~ω

(8)
We can solve Equation (8) for tan(φ

2
)~ω:

tan(
φ

2
)~ω =

[(Q1 −Q0)− (R1 −R0)]× [(P1 − P0)− (R1 −R0)]

[(Q1 −Q0)− (R1 −R0)] · [(P1 + P0)− (R1 +R0)]
(9)

Thus, the rotation angle, tan(φ
2
) can be computed as the norm to the vector in Equation

(9), while ~ω is the normalized vector of Equation (9).

Step #2: Now take the cross product of ~ω with equation (2) and use the aforementioned
vector cross product identity:

~ω × (P1 − P0) = ~ω × [tan(φ
2
) ~ω × (P1 + P0 − 2 ~rho) + d||~ω]

= tan(φ
2
) [[~ω · (P1 + P0)]~ω − (P0 + P1)− 2(~ω · ~ρ)~ω + 2ρ]

(10)

Note that ρ − (~ω · ~ρ)~ω = ~ρ⊥, where ~ρ⊥ is the component of ~ρ which is perpendicular to ~ω.
That is, while ~ρ is a vector from the origin of the reference frame to any point on the screw
axis, ~ρ⊥ is the shortest vector to the point on the screw axis closest to the origin of the
reference frame. Equation (10) can then be solved for ~ρ⊥:

~ρ⊥ =
1

2

[
~ω × (P1 − P0)

tan φ
2

− (~ω · (P1 + P0))~ω + P0 + P1

]
(11)

Step 3: Finally, we can use Equation (2), (3), or (4) to find d||:

d|| = ~ω · (P1 − P0) = ~ω · (Q1 −Q0) = ~ω · (R1 −R0) (12)
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