Computing the Screw Parameters of a Rigid Body Displacement

Problem Statement:

We wish to determine the screw displacement parameters for a spatial displacement by
tracking the motion of three non-collinear points. These parameters consist of:

¢ = the angle of rotation about the screw axis
dll = the translation along the screw axis

@ = A unit vector parallel to the screw axis

p = a vector to a point on the screw axis

Assume that we have a rigid body which contains three non-colinear points: P, ), R. Let
Py, Qo, and Ry denote the positions of the points in the body before displacement. Let P,
@1, and R; the position of these points after a screw displacement.

The Solution:

Let’s first recall Rodriguez’ Displacement Equation. Consider a point P located at position
Zp in a fixed reference frame. A rigid body containing that point then undergoes a screw
displacement (with screw displacement parameters ¢, d!!, &, §). The point P is displaced
to some new location P* whose position (to the fixed observer) is #;. The coordinates of
the points and the screw displacement parameters are related by Rogdriguez’ displacement
equation:

r1 — Ty = tan (i)& X [fl + f[) — 2p] + d”u_i . (].)

To determine the screw parameters from the displacement of these three points, we will
solve the following three simulataneous copies of Rodriguez’ equation, which each equation
modeling the displacment of a separate point in the same rigid body. IL.e., we will track the
displacements of three non-collinear points as they are affected by the screw displacements.
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where each equation is the Rodriguez displacement equation for the respective points
P, Q, and R.

Step #1: Subtract Equation (4) from Equations (2) and (3):
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(@1 = Qo) = (B1 — Ro) = tan(5)) & x [(Q1 + Qo) — (1 + Ro)] (6)

Form the cross product of [(Q1 — Qo) — (R1 — Ry)] with Equation (6):

(@1 = Qo) —(B1— Ro)] x [(PL = Fy) — (B — Ro)] (7)
= tan(£)[(Q1 — Qo) — (R1 — Ro)] x {& x [(Py + Ry) — (R + Ro)]}

Note: from Equation (6), we know that [(Q1 — Qo) — (R1 — Ro)] is perpendicular to &, since it
results from the cross produce of a vector with &. Therefore, the right hand side of Equation
(7) will be a vector proportional to @.
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We can use the vector identity @ x (b X ¢) = (@- &)b — (@ b)@ to simplify Equation (7):

[(Q1 — Qo) — (B1 — Ro)] x[(P1 — Fy) — (1 — Ro)]
= tan($)[(Q1 — Qo) — (R1 — Ro)] - [(P1 + Py) — (Ry + RO)]Q(S)

We can solve Equation (8) for tan(2)w:

) [(Q1 — Qo) — (R1 — Ro)] x [(P1 — PBy) — (1 — Ro)

) = Q@ (= o) [P ) — (R + o)

(9)

Thus, the rotation angle, tan(%) can be computed as the norm to the vector in Equation
(9), while & is the normalized vector of Equation (9).

Step #2: Now take the cross product of & with equation (2) and use the aforementioned
vector cross product identity:
Gx (P —Py) =& x [tan(2) & x (P, + Py — 2rho) + d&] (10)
[[@- (P + Po)ldd — (Po + P1) — 2(& - p)id + 2p]

Note that p — (J - p)&d = g1, where p) is the component of g which is perpendicular to .
That is, while p'is a vector from the origin of the reference frame to any point on the screw
axis, p is the shortest vector to the point on the screw axis closest to the origin of the
reference frame. Equation (10) can then be solved for g :

R _1 QX(Pl—Po)
PL=s tan%

— (W@ (PA+PR)d+ P+ P (11)

Step 3: Finally, we can use Equation (2), (3), or (4) to find dll:

dl'=G-(P,—=P)=&-(Q1 — Qo) =& - (R — Ry) (12)



