
ME/CS 133(a): Final Exam
(Fall Quarter 2017/2018)

Instructions

1. Limit your total time to 5 hours. You can take a break in the middle of the exam if you
need to ask a question, or go to dinner, etc. That break time does not count toward
the total exam time, as long as you are not working on the exam during the break.

2. The time that it takes to read these instructions is not included in the 5 hour total.

3. You may use (1) your class notes, (2) the course textbook, (3) any material handed
out in class, or on the class web site. The internet is off-limits to solve these prob-
lems, except for material on the course web site. You may not discuss this final with
other class students or other people except the class instructor or the class Teaching
Assistants.

4. You may use Mathematica, MATLAB, or any software or computational tools to assist
you. However, if you find that your solution approach requires a lot of algebra or a lot
of computation, then you are probably taking a less than optimal approach.

5. The final is due by 5:00 p.m. on the last day of finals.

6. The point values are listed for each problem to assist you in the allocation of your
time.

7. Please put all of your work in a blue book, or carefully staple the pages of your solution
in the proper order.

8. You will receive one extra bonus point if you scan your solutions and email the scanned
document to the course Teaching Assistants: me133tas@robotics.caltech.edu. The time
that it takes to scan and mail your final exam does not count against the 5 hour total.
If you cannot scan your final, please turn in your exam to Sonya Lincoln, whose office
is located at room 250 of the Gates-Thomas building. We will scan your final, which
assists us with the grading process.
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Problem 1: (25 Points)

The Armatron was a toy robot distributed by the Radio Shak company for many years.
Figure 1 shows the first three
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Figure 1: Schematic of Armatron Manipulator Geometry

Part (a): (5 points) Determine the Denavit-Hartenberg parameters of this manipulator

Part (b): (10 points) Using either the Denavit-Hartenberg approach or the product-of-
exponentials approach, determine the forward kinematics.

Part (c): (10 points) Develop an expression for the spatial Jacobian matrix for this ma-
nipulator.

Problem 2: (15 Points)

We discovered numerous ways to represent and manipulate spatial displacements. Those
crazy kinematicians have yet another variation on the same theme using something called
“dual numbers.” A dual number, ã, takes the form:

ã = ar + ε ad

where ar is the “real” part of the dual number and ad is the “dual” or “pure” part of the
dual number. The bases for the dual numbers are 1 and ε, and they obey the rules:

1 · 1 = 1
1 · ε = ε · 1 = ε
ε2 = 0

Dual numbers have many interesting properties, though we will only explore one aspect of
their characteristics in this problem.
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Part (a): (10 points). We can represent spatial displacments as “dual rotation matrices.”
That is, if a spatial displacement has the form:

g =

[
R p

0
T

1

]
where R ∈ SO(3) and p ∈ R3, then the dual representation of the spatial displacement is:

g̃ = R + ε(p̂R)

1. Show that g̃ is an orthogonal matrix.

2. If g1 and g2 are spatial displacements, and g̃1 and g̃2 there dual equivalents, then show
that g1 g2 and g̃1 g̃2 are equivalent.

Hint: in some ways of solving this problem, it might be useful to recall that if A ∈ SO(3)

and v ∈ R3, then (̂Av) = Av̂AT ).

Part (b): (5 Points). We can also use dual numbers to represent twist coordinates. Let
ξ = [V , ω]T be a vector twist coordinates. Its dual representation is ξ̃ = ω + εV . Show that

1. if g is a spatial displacement, and ξ is a twist, then Adgξ is equivalent to g̃ξ̃.

2. If ξ1 and ξ2 are two twists, then the dual part of dual dot product ξ̃1 · ξ̃2 is equivalent
to the reciprocal product of ξ1 and ξ2. (Note, the real part of this product is called the
“Klein product.”).

Problem 3: (15 Points)

For the rotation matrix given below

R =

 0.833333 −0.186887 0.52022
0.52022 0.583333 −0.623773
−0.186887 0.79044 0.583333


Part (a): (5 points) Compute the axis of rotation and angle of rotation.

Part (b): (5 points) Determine the unit quaternion that is equivalent to this rotation.

Part (c): (5 points) What are the z-y-z Euler angles of this rotation?

Problem 4: (10 points) Assume that the orientation of a rigid body is described by z-y-z
Euler angles, where the angles of rotation are respectively ψ, φ, and γ. Further assume that
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the body is spinning with rotation rates of ψ̇, φ̇, and γ̇ about the respective z, y, and z axes.
Show that the spatial angular velocity of the body is:

ωs =

−φ̇ sinψ + γ̇ cosψ sinφ

φ̇ cosψ + γ̇ sinψ sinφ

ψ̇ + γ̇ cosφ


Note that the solution to this problem is useful for the study of gyroscopes.

Problem 5: (15 points)

Let g be a homogeneous transformation matrix representing the displacement of a planar
rigid body:

g =

[
R d

0
T

1

]
=

cos θ − sin θ dx
sin θ cos θ dy

0 0 1

 (1)

where R and d respectively represent the rotation (by angle θ) and translation of the moving
reference frame due to the displacement.

a. (5 points) Show that the pole of the displacement (in homogeneous coordinates) is an
eigenvector of g with eigenvalue 1.

b. (3 points) describe the other two eigenvectors of g.

c. (7 points) Every planar displacement is equivalent to a rotation about a “pole.” Let a
body-fixed reference frame attached to a planar rigid body be initially in coincidence
with the origin of a fixed reference observing frame. Let this body undergo a planar

displacement by rotation of angle φ about a pole located at a distance p =
[
px py

]T
from the origin of the reference frame. Compute the 3×3 homogeneous transformation
matrix that describes this displacment (in terms of φ, px, and py).

Extra Credit: (10 points)

Figure 2 shows a “PRR” robot. The first joint is prismatic, while the next two revolute
joints intersect each other. Find the inverse kinematics of this manipulator, given that the
goal is to place the origin of the tool frame at a particular point,

[
xD yD zD

]
.
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Figure 2: Schematic of a PRR manipulator
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