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1. INTRODUCTION

In this paper we extend Koopman operator theoretic framework
for analysis and decomposition of non-autonomous systems
with periodic/quasi-periodic time dependence. Koopman oper-
ator is a linear but an infinite-dimensional operator that governs
the time evolution of observables or outputs defined on the state
space of a dynamical system, see Mezić (2012) and Budisic
et al. (2012). Koopman operator being linear admits eigen-
values and eigenfunctions, and enables one to express time
evolution of observables as a linear superposition of Koopman
modes. This decomposition known as the Koopman Mode De-
composition (KMD), provides a powerful means for the analy-
sis of nonlinear dynamical systems. KMD can be thought of as
a generalized Fourier analysis, and offers several advantages
over Discrete Fourier Transform (Chen et al. (2012)). Each
Koopman mode represents only one frequency component,
and thus is expected to decouple dynamics at different time
scales more effectively than Proper Orthogonal Decomposition
(Susuki et al. (2011)). Recent advances in computing KMD us-
ing techniques such as Dynamic Mode Decomposition (DMD)
and it variants (see Tu et al. (2014), Williams et al. (2015a)
and references there in) has enabled many high dimensional
applications such as in: fluid mechanics (Rowley et al. (2009);
Chen et al. (2012); Mezić (2012)), building diagnostics (Eisen-
hower et al. (2010)), power system stability analysis (Susuki
and Mezić (2014)), data fusion (Williams et al. (2015b)), and
computer vision (Grosek and Kutz (2013); Surana (2015)), to
name a few.

The majority of work as discussed above assumes an au-
tonomous setting for application of Koopman operator/DMD
framework. A notable exception is recently proposed multi res-
olution DMD (mrDMD, see Kutz et al. (Unpublished)), which
considers non-stationarity in the data. The mrDMD approach
uses a standard DMD like procedure in a wavelet like fashion to
separate a complex system into a hierarchy of multi-resolution
time-scale components. While mrDMD provides an useful al-
gorithm for decomposing data with multiple time scales, it
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assumes a linear time dependent system as an underlying gener-
ative process for the data at different scales, and it is unclear un-
der what conditions it captures nonlinear behavior (as standard
DMD does, under appropriate conditions, see Tu et al. (2014)).

In this paper we propose a rigorous Koopman operator theoretic
framework for non-autonomous systems with periodic/quasi-
periodic time dependence. We begin by introducing a time
parametrized family of Koopman operators and associated time
dependent eigenvalues/eigenfunctions, and propose a general
form of time dependent KMD. We then develop the KMD
form explicitly for a time periodic linear system using concepts
from Floquet theory, and use the insights obtained to generalize
KMD for nonlinear periodic/quasi-periodic time dependent set-
ting. We also outline a numerical procedure for computing pro-
posed time dependent KMD by adapting standard techniques
such as DMD.

The paper is organized into seven sections. We start with a
review of Koopman operator theoretic framework in Section
2 including notion of autonomous KMD. We outline a notion
of KMD for general time dependent systems in Section 3, and
further develop it for time-periodic systems in Section 4 and
for quasi-periodic time dependence in Section 5. We describe
a numerical procedure for computing time-dependent KMD
in Section 6. Numerical examples are presented in Section 7,
and paper is concluded in Section 8 with directions for future
research.

2. KOOPMAN OPERATOR OVERVIEW

We start by reviewing, Koopman spectral decomposition as
developed in Mezić (2005, 2012) in context of autonomous
systems. Consider a flow Φ(t,x) : R×M → M on an arbitrary
set M ⊂ Rn which satisfies the group property Φ(0,x) = x,
and Φ(s,Φ(t,x)) = Φ(s+ t,x).

Let F be space of scalar complex valued observables θ :
M → C (where C is complex plane). We assume observables
are atleast continuously differentiable i.e. F ⊂ C1(M), see
Mauroy and Mezić (2013) and Mohr and Mezić (Unpublished)
for discussion on appropriate choice of F .
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1. INTRODUCTION

In this paper we extend Koopman operator theoretic framework
for analysis and decomposition of non-autonomous systems
with periodic/quasi-periodic time dependence. Koopman oper-
ator is a linear but an infinite-dimensional operator that governs
the time evolution of observables or outputs defined on the state
space of a dynamical system, see Mezić (2012) and Budisic
et al. (2012). Koopman operator being linear admits eigen-
values and eigenfunctions, and enables one to express time
evolution of observables as a linear superposition of Koopman
modes. This decomposition known as the Koopman Mode De-
composition (KMD), provides a powerful means for the analy-
sis of nonlinear dynamical systems. KMD can be thought of as
a generalized Fourier analysis, and offers several advantages
over Discrete Fourier Transform (Chen et al. (2012)). Each
Koopman mode represents only one frequency component,
and thus is expected to decouple dynamics at different time
scales more effectively than Proper Orthogonal Decomposition
(Susuki et al. (2011)). Recent advances in computing KMD us-
ing techniques such as Dynamic Mode Decomposition (DMD)
and it variants (see Tu et al. (2014), Williams et al. (2015a)
and references there in) has enabled many high dimensional
applications such as in: fluid mechanics (Rowley et al. (2009);
Chen et al. (2012); Mezić (2012)), building diagnostics (Eisen-
hower et al. (2010)), power system stability analysis (Susuki
and Mezić (2014)), data fusion (Williams et al. (2015b)), and
computer vision (Grosek and Kutz (2013); Surana (2015)), to
name a few.

The majority of work as discussed above assumes an au-
tonomous setting for application of Koopman operator/DMD
framework. A notable exception is recently proposed multi res-
olution DMD (mrDMD, see Kutz et al. (Unpublished)), which
considers non-stationarity in the data. The mrDMD approach
uses a standard DMD like procedure in a wavelet like fashion to
separate a complex system into a hierarchy of multi-resolution
time-scale components. While mrDMD provides an useful al-
gorithm for decomposing data with multiple time scales, it
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assumes a linear time dependent system as an underlying gener-
ative process for the data at different scales, and it is unclear un-
der what conditions it captures nonlinear behavior (as standard
DMD does, under appropriate conditions, see Tu et al. (2014)).

In this paper we propose a rigorous Koopman operator theoretic
framework for non-autonomous systems with periodic/quasi-
periodic time dependence. We begin by introducing a time
parametrized family of Koopman operators and associated time
dependent eigenvalues/eigenfunctions, and propose a general
form of time dependent KMD. We then develop the KMD
form explicitly for a time periodic linear system using concepts
from Floquet theory, and use the insights obtained to generalize
KMD for nonlinear periodic/quasi-periodic time dependent set-
ting. We also outline a numerical procedure for computing pro-
posed time dependent KMD by adapting standard techniques
such as DMD.

The paper is organized into seven sections. We start with a
review of Koopman operator theoretic framework in Section
2 including notion of autonomous KMD. We outline a notion
of KMD for general time dependent systems in Section 3, and
further develop it for time-periodic systems in Section 4 and
for quasi-periodic time dependence in Section 5. We describe
a numerical procedure for computing time-dependent KMD
in Section 6. Numerical examples are presented in Section 7,
and paper is concluded in Section 8 with directions for future
research.

2. KOOPMAN OPERATOR OVERVIEW

We start by reviewing, Koopman spectral decomposition as
developed in Mezić (2005, 2012) in context of autonomous
systems. Consider a flow Φ(t,x) : R×M → M on an arbitrary
set M ⊂ Rn which satisfies the group property Φ(0,x) = x,
and Φ(s,Φ(t,x)) = Φ(s+ t,x).

Let F be space of scalar complex valued observables θ :
M → C (where C is complex plane). We assume observables
are atleast continuously differentiable i.e. F ⊂ C1(M), see
Mauroy and Mezić (2013) and Mohr and Mezić (Unpublished)
for discussion on appropriate choice of F .
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The Koopman (semi)group of operators U t : F → F associ-
ated with the flow Φ is defined by

(U tθ)(x) = θ ◦ Φ(t,x), θ ∈ F . (1)
Consider the flow induced by an autonomous dynamical system

ẋ= f(x), (2)

then, Φ(t,x0) is solution of above ODE with initial condition
x0. If in addition θ and f are continuously differential, then
θ̃(t,x) = U tθ is the solution to PDE

∂θ̃

∂t
= f · ∇θ̃ (3)

with appropriate boundary conditions.

An eigenfunction of the Koopman operator (or in short Koop-
man eigenfunction (KEF) ) is an observable φ ∈ F that satis-
fies:

U tφ = eλtφ, (4)
where, λ ∈ C is corresponding Koopman eigenvalue (KE). It
follows from (3) that the KEF satisfy the eigenvalue equation

f .∇φ = λφ. (5)

Let φi be an eigenfunction for the Koopman operator corre-
sponding to the eigenvalue λi. Give a vector valued observable
g : M → Rm, the Koopman mode (KM), vi, corresponding
to λi is the vector of the coefficients of the projection of g onto
span{φi}.

Note that KE/KEFs (λ, φ) depend only on the flow map Φ
and the function space F , and not on a particular observable,
while the KMs v are specific to a given observable. We refer
to KE, KEF and KM tuple as (λ, φ,v) as the Koopman tuple.
Using the Koopman tuple, one can express time evolution of an
observable as a linear superposition of Koopman modes leading
to the notion of Koopman Mode Decomposition (KMD).

2.1 KMD for Autonomous Systems

To develop the intuition for KMD, consider a linear system
ẋ = Ax, (6)

and let λk be eigenvalues of A with vk and w∗
k as the corre-

sponding right and left eigenvectors, s.t. < vk,wk >= δij .
Then, λk are KE with vk being the KM, and φk(x) =<
x,wk > being the KEF. This follow from,

φ̇ =< ẋ,w >=< Ax,w >=< x, A∗w >= λφ (7)
and thus

φ̃(t,x0) = U tφ(x0) = eλtφ(x0). (8)
Assuming full set of eigenvectors with distinct eigenvalues, one
obtains

x=
n∑

k=1

< x,wk > vk =

n∑
k=1

φk(x)vk, (9)

U tx(x0) = x(t,x0) =

n∑
k=1

< x,wk > vk (10)

=
n∑

k=1

eλktφi(x0)vk. (11)

Next for a periodic orbit p(t) = p(t + T ) of (2), consider the
Fourier expansion

p(t) =
∞∑
j=1

eiωjtvj . (12)

Consider U t
S restricted to the invariant set S = {p(t) : t ∈

[0, T ]} and let Φp ≡ p(t) : [0, T ] → S. Then φj : S → C

φj(s) = eiωjΦ
−1
p (s) (13)

is KEF of U t
S with KE iωj , where note Φ−1

p (s) = t. Thus, vj

are the KMs, since

s =

∞∑
j=1

φj(Φ
−1
p (s))vj . (14)

An analogous result in discrete time was given in Rowley et al.
(2009).

The expansions (11) and (14) generalizes in some other cases.
Assuming, that the flow map Φ is measure µ preserving and
ergodic, then U t is unitary operator and the spectral decompo-
sition of any g(x) is given by Mezić (2005),

U tg(x) = v0 +

∞∑
k=1

eλktφk(x)vk

+

∫ 1

0

ei2παtdE(α)(g(x)) (15)

where,

v0 =

∫

M
g(x)dµ(x), (16)

and
vk =

∫

M
g(x)φk(x)dµ(x), (17)

are the KMs. We will refer to the expansion (15) as Koop-
man Mode Decomposition (KMD) following Susuki and Mezić
(2014), with vi being the Koopman modes associated with
eigenfunction φi and the observable g. The modes capture cor-
relations in the components of the observable, while the corre-
sponding eigenvalues define growth/decay rates and oscillation
frequencies for the mode.

Koopman operator in general could posses continuous (e.g as
seen above) and residual parts of spectrum in addition to the
point or singular spectrum. In whatever follows we will restrict
our attention to the singular part of spectrum of U t

s. Note that
one can write, the singular part as

U t
s ≡Pt

0 +

∞∑
k=1

eλitPt
λk
, (18)

where, Pt
0,Pt

λk
are projection operators

Pt
0g(x) = v0 (19)

Pt
λk
g(x) = φk(x)vk. (20)

3. TOWARDS KMD FOR NON-AUTONOMOUS
SYSTEMS

Generalization of KMD for general non-autonomous systems
remains an open problem. As a step forward, in this paper
we develop KMD framework for special cases of time peri-
odic/quasiperiodic non-autonomous systems. However, before
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we proceed to that, we outline a more general notion of non-
autonomous KMD, (full development is beyond scope of this
paper and will be treated elsewhere).

Consider a two parameter family of flow map Φt,t0 , such as
induced by a non-autonomous system

ẋ = f(x, t). (21)
The flow map now satisfies the cocycle property Φt+s,t0 =
Φt+s,s◦Φs,t0 . Let U t,t0 be a two parameter family of Koopman
operator parameterized by t, t0 with action

U t,t0θ(x) = θ ◦ Φt,t0(x). (22)
Analogous to (4), we define φt,t0(x) to be non-autonomous
Koopman eigenfunction, such that

U t,t0φt,t0(x) = eλ(t,t0)φt,t0(x). (23)
With this definition and considering only singular part of spec-
trum of U t,t0

s , we propose a non-autonomous KMD of an ob-
servable g(x) as

U t,t0
s g(x) ≡ Pt,t0

0 g(x) +

∞∑
k=1

eλk(t,t0)Pt,t0
λk(t,t0)

g(x), (24)

where, Pt,t0
0 ,Pt,t0

λk(t,t0)
are appropriate projection operators that

project any observable onto the eigenspace of the eigenfunc-
tion φt,t0

k (x) of the operator U t,t0 associated with eigenvalue
λk(t, t0). In next section we develop an exact form of (24) for
time periodic systems.

4. KMD FOR TIME PERIODIC SYSTEMS

4.1 Linear Time Periodic Systems

To develop intuition for KMD in the time periodic case, we first
start with a linear time periodic system

ẏ = A(t)y, (25)
where, A(t) = A(t+ T ). Let M(t) be the fundamental matrix
solution of (25). According to Floquet theory , there exists
P (t) and constant B s.t M(t) = P (t) exp(Bt), where P (t) is
invertible and T periodic. Under change of coordinate y(t) =
P (t)z(t),

ż = Bz. (26)
Assuming full set of eigenvalues µk of B with vk and w∗

k as
the corresponding right and left eigenvectors, and using (9), we
get

z=
n∑

k=1

φk(z)vk (27)

where, φk(z) =< z,wk >. Substituting z = P (t)−1y, we get

y=

n∑
k=1

(P (t)vk)φk(P
−1(t)y). (28)

In the above expansion, < P−1(t)y,wk(t) > and P (t)vk can
be interpreted as non autonomous versions of KEF and KMs,
respectively. Note the difference in the interpretation of the
KEF for linear systems ẏ = Ay and that for ẏ = A(t)y.
Namely, the KEFs/KMs in the latter case are functions of time!

To develop this interpretation further, consider the Fourier
expansion,

P (t)vk(t) =
∞∑
j=1

eiωjtvk,j , (29)

and substitute it in (28) to obtain

y=
n∑

k=1

∞∑
j=1

φk,j(y, t)vk,j , (30)

where,
φk,j(y, t) = eiωjtφk(P

−1(t)y). (31)
We next show that φk,j(y, t) can be interpreted as the KEF of
the suspended autonomous system

ẏ=A(s)y

ṡ= 1, (32)
with state space (y, s). Consider the time derivative

d

dt
φk,j(y, s) = iωje

iωjsφk(P
−1(s)y)

+ eiωjs <
d

ds
P−1(s)y,wk >

= (iωj + µk)e
iωjsφk(P

−1(s)y)

= (iωj + µk)φk,j(y, s) (33)

where, we used d
dsP

−1(s)y = BP−1(s)y, and

< BP−1(s)y,wk >=< P−1(s)y, B∗wk >

= µk < P−1(s)y,wk > .

Thus
φk,j(t;y0, s0) = U tφk,j(y0, s0) = eλk,jtφk,j(y0, s0), (34)

are KEFs for (32) with eigenvalues λk,j = iωj + µk, and

U ty(y0, s0) = y(t,y0, s0)

=
n∑

k=1

∞∑
j=1

U tφk,j(y0, s0)vk,j ,

=
n∑

k=1

∞∑
j=1

eλk,jtφk,j(y0, s0)vk,j . (35)

Setting set t0 = s0, the above expansion can be rewritten as

U t,t0y(y0) =

n∑
k=1

∞∑
j=1

eλk,jtφt0
k,j(y0)vk,j , (36)

and, thus can be reinterpreted as KMD of full state observable
for the time periodic linear system (25).

We next develop KMD like expansion (36) of a general observ-
able g(y, t) which is time periodic with same period T as the
underlying dynamics. In doing so, we first introduce notion of
principal Koopman eigenfunctions

z(y, s) = (z1(y, s), ..., zn(y, s))

which are defined by
z(y, s) = V −1P−1(s)y,

and where, V −1 is the diagonalizing matrix for B. Note that
zk(y, s) = φk(P

−1(t)y), k = 1, · · · , n which are terms which
appear in Eqn. (28). In the case when B is not diagonaliz-
able, one can use the same construction to obtain generalized
eigenfunctions of the Koopman operator. We have the following
theorem:
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we proceed to that, we outline a more general notion of non-
autonomous KMD, (full development is beyond scope of this
paper and will be treated elsewhere).

Consider a two parameter family of flow map Φt,t0 , such as
induced by a non-autonomous system

ẋ = f(x, t). (21)
The flow map now satisfies the cocycle property Φt+s,t0 =
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servable g(x) as

U t,t0
s g(x) ≡ Pt,t0

0 g(x) +

∞∑
k=1

eλk(t,t0)Pt,t0
λk(t,t0)

g(x), (24)

where, Pt,t0
0 ,Pt,t0

λk(t,t0)
are appropriate projection operators that

project any observable onto the eigenspace of the eigenfunc-
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k (x) of the operator U t,t0 associated with eigenvalue
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invertible and T periodic. Under change of coordinate y(t) =
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k as
the corresponding right and left eigenvectors, and using (9), we
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z=
n∑

k=1

φk(z)vk (27)
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y=

n∑
k=1

(P (t)vk)φk(P
−1(t)y). (28)
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∞∑
j=1
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y=
n∑

k=1

∞∑
j=1

φk,j(y, t)vk,j , (30)
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−1(t)y). (31)
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d

dt
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iωjsφk(P
−1(s)y)

+ eiωjs <
d

ds
P−1(s)y,wk >
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iωjsφk(P

−1(s)y)
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dsP
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and, thus can be reinterpreted as KMD of full state observable
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We next develop KMD like expansion (36) of a general observ-
able g(y, t) which is time periodic with same period T as the
underlying dynamics. In doing so, we first introduce notion of
principal Koopman eigenfunctions

z(y, s) = (z1(y, s), ..., zn(y, s))

which are defined by
z(y, s) = V −1P−1(s)y,

and where, V −1 is the diagonalizing matrix for B. Note that
zk(y, s) = φk(P

−1(t)y), k = 1, · · · , n which are terms which
appear in Eqn. (28). In the case when B is not diagonaliz-
able, one can use the same construction to obtain generalized
eigenfunctions of the Koopman operator. We have the following
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Theorem 4.1. Let Floquet exponents µ = (µ1, ·, µn) of (eigen-
values of the Floquet matrix B) be distinct. Any vector-valued
function g(y, s) that is analytic in y and L2 in s can be ex-
panded into eigenfunctions of the Koopman operator associated
with (32) as follows:

g(y, s) =
∑

m∈Nn,k∈Z
amkz

m(y, s)eiks, (37)

where amk are constant Koopman modes, m = (m1, ...,mn),
zm(y, s) = zm1

1 (y, s) · ... · zmn
n (y, s)

and zm(y, s)eiks is an eigenfunction of the Koopman operator
corresponding to the eigenvalue e(m·µ+ik)t.

Proof : First, expand in Taylor series to obtain

g(y, s) =
∑

m∈Nn

bm(s)ym (38)

=
∑

m∈Nn

bm(s)(P (s)V z)m

=
∑

m∈Nn

ām(s)zm,

where ām(s) are T periodic functions. Fourier expansion of
these L2 coefficients and the relationship (34), completes the
proof

4.2 Nonlinear Time Periodic Systems

Consider a nonlinear time periodic system,
ẋ = f(x, t) = A(t)x+ v(x, t), (39)

where, f(x, t) = f(x, t + T ) is time periodic and v(x, t) ∼
O(x2) is a C2-function, such that the linear system

ẏ = A(t)y, (40)
is stable. Under these assumption, to develop KMD of observ-
ables defined on (39), we take the following steps:

1) Linearization of time-dependent flow: Transform (39) to
(40) in the basin of attraction of x = 0 using a C1−
diffeomorphism y = h(x, t).

2) Use KMD (37) for linear time periodic systems in the
transformed space y and conjugacy in Step 1 to construct
KMD expression for (39).

The system (40) with y = 0 as a globally stable fixed point
can be thought of as a system with a globally stable limit cycle
given by y = 0, s ∈ [0, T ). The first step then follows by
reducing (39) close to its limit cycle to a form that is periodic
in time with period T , and linear in variable transverse to the
limit cycle. Since time can always be rescaled by τ = 2πt/T ,
the dynamics close to the limit cycle can be considered periodic
with period 2π.
Theorem 4.2. Consider a 2π-periodic system (39). If the asso-
ciated linear system (40) is stable, then x = 0 is stable for
(39). Furthermore the system (39) is linearizable in basin of
attraction x = 0 to (40) by a C1-diffeomorphism h(x, t).

Proof

i) According to Floquet’s theory (see Section 4.1), the solu-
tion of the linear system ẏ = A(t)y can be written as

y(t) = P (t)eBty(0) ,

where, as before P (t) = P (t + 2π) is a C1-matrix with
P (0) = I . B is a constant matrix which determines the

stability of the system. By assumption the origin is stable
and thus all eigenvalues (Floquet exponents) of B have
negative real parts.

ii) Define a linear Poincaré map by the 2π-time evolution of
the linear system:

ym+1 = e2πBym . (41)
The corresponding Poincaré map for (39) at section t = 0
can be written as

xm+1 = T (xm) = e2πBxm + u(xm) ,

where u(x) ∼ O(x2) is a C2-function. The origin xm = 0
is a stable fixed point and its basin of attraction B coin-
cides with that of vector field (39). The map T (xm) is a
C2-diffeomorphism defined on Rn since it is induced by
the vector field (39). According to linearization results
for maps in Lan and Mezić (2013), there exists a C1-
diffeomorphism y(x) = h̃(x) defined on B, such that
T (xm) is linearized into form (41). We denote the inverse
diffeomorphism by x(y) = k̃(y). In the y-space the corre-
sponding basin of attraction of the stable fixed point y = 0
is denoted as B′ ⊆ Rn.

iii) Consider the extended phase space Rn × S1, where S1

represents a circle of length 2π parameterizing the time
variable. We build a diffeomorphism between B × S1 and
B′ × S1 as follows. First, note that there is a diffeomor-
phism at section Σ = 0, h̃(x) : B → B′ satisfying

h̃(T (x)) = e2πBh̃(x), (42)
where T = S2π

0 . We define

(y, s) ≡ h(x, s)≡ (P (s)eBsh̃(S0
s (x)), s)

= (P (s)eBsy(0), s), (43)
and thus h provides us with the desired conjugacy. Note
that (42) is needed as y0 would otherwise not be uniquely
defined when we increase s by 1.

To develop KMD of an analytic observable g(x) for sys-
tem (39), we use conjugacy obtained by linearization theorem
above, and the Theorem 4.2 from Section 4.1. Using the inverse
k̃ of diffeormorphism h as discussed above, define g̃(y, s) =

g(k̃(y, s)). The function g̃(y, s) is time periodic function and
can be expanded based on Theorem 4.2, providing the required
formula for KMD of g(x).

5. KMD FOR SYSTEMS WITH QUASI-PERIODIC
TIME-DEPENDENCE

In this section we outline a similar approach as described above
for systems with quasi-periodic time dependence. The most
general systems we consider are

ẋ = f(x, t), (44)
that have a quasi-periodic attractor - a torus on which the
dynamics is conjugate to θ̇ = ω,θ ∈ Tm,ω ∈ Rm, and ω
is a constant and incommensurable vector of frequencies that
satisfies k · ω ≥ c/|k|γ for some c, γ > 0. In addition, we
ask that the quasi periodic linearization matrix A(t) = DTm at
the torus has a full spectrum, where the spectrum σ(A) of the
quasi-periodic matrix is defined as a set of points λ ∈ R for
which the shifted equation

ẏ = (A(θ + ωt)− λI)y,
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does not have an exponential dichotomy. Provided σ(A) is full
- meaning it consists of m isolated points, and A(θ + ωt) is
sufficiently smooth in θ, in the paper Sell (1978) it is proven
that there is a quasi-periodic transformation P (t) and a constant
matrix B - which we will call quasi-Floquet- such that the
transformation z = P (t)y reduces the system to ż = Bz. Just
like in the periodic system case we consider the skew-linear
system 1

ẏ=A(θ)y,

θ̇=ω, (45)

where y ∈ Rn,θ ∈ Tm and A(θ) is a 2π-periodic matrix.
Theorem 5.1. Let quasi-Floquet exponents µ = (µ1, ·, µn) of
(45) (eigenvalues of the quasi-Floquet matrix B) be distinct.
Any vector-valued function g(y,θ) that is analytic in y and
L2 in θ can be expanded into eigenfunctions of the Koopman
operator associated with (45) as follows:

g(y,θ) =
∑

m∈Nn,k∈Zm

amkz
m(y,θ)eik·θ,

where amk are constant Koopman modes, and
z(y,θ) = (z1(y,θ), ..., zk(y,θ))

are as before the principal Koopman eigenfunctions defined by
z(y,θ) = V −1P−1(θ)y,

where, V −1 is the diagonalizing matrix for B. For m =
(m1, ...,mn),

zm(y,θ) = zm1
1 (y,θ) · ... · zmn

n (y,θ)

, and zmeikθ is an eigenfunction of the Koopman operator
corresponding to the eigenvalue e(m·µ+ik·ω)t.

In order to develop an expression for KMD of a general observ-
able one can follow similar procedure as described in Sections
4.1 and 4.2.

6. TIME DEPENDENT KMD COMPUTATION

Computation of Koopman tuple is a challenging problem and is
an active area of research. A variety of techniques have been
proposed in literature, including harmonic averaging (Mezić
(2005); Mezić and Banaszuk (2004)), generalized Laplacian
analysis (Budisic et al. (2012)), and Dynamic Mode Decom-
position (DMD) and its variants, (see Tu et al. (2014) and ref-
erences there in), and extended DMD (Williams et al. (2015a)).
These approaches enable computation of Koopman tuple in an
autonomous setting of Section 2. As pointed in the introduction,
a notable exception is multi resolution DMD (mrDMD, see
Kutz et al. (Unpublished)), which considers non-stationarity
in the data. The connection of mrDMD to Koopman operator
spectral properties in a non-autonomous setting like introduced
in this paper still need to be studied. Furthermore, mrDMD ap-
proach exploits time scale separation for decomposition, which
may not be present in systems with periodic/quasi-periodic
forcing. We next discuss how above approaches can be adapted
for computing the time dependent KMD proposed in this paper.
To develop this extension, we first discuss in more detail the
extended DMD (EDMD) approach (Williams et al. (2015a))
and its kernel version (Williams et al. (Unpublished)).

1 Note on terminology: these types of systems were classically called linear
skew-product systems.

EDMD is a Galerkin weighted residual approach which uses
a dictionary of basis functions to approximate KEFs and cor-
responding KEs. Let FD ⊂ F be a subset of observables
spanned by a dictionary D ≡ {ψ1, · · · , ψD}, where ψi : M →
C. Then θ, θ̂ ∈ FD can be expressed as θ(x) = Ψ∗(x)a,
θ̂(x) = Ψ∗(x)â, respectively, for some a, â ∈ CD, where
Ψ(x) = (ψ1(x), · · · , ψD(x))∗. Under the action of Koopman
operator

U t(θ)(x) = (Ψ ◦ Φ(t,x))∗a = Ψ∗(x)â+ r(x)

=Ψ∗(x)Ua+ r(x), (46)

where, U is a finite dimensional approximation of U t, and r(x)
is the residual as FD may not be invariant under action of U .
Note that θ̂(x) is an approximation of θ̃(t,x) (see Eqn. (3)) for
a given t.

Given a dataset of snapshot pairs {(xi,xi)}Ni=1, xi =
Φ(xi, t) generated from the ODE (2), one can formulate a least
square problem of minimizing,

N∑
i=1

|r(xi)|2 =
N∑
i=1

| (Ψ∗(xi)−Ψ∗(xi)U) a|,

to obtain
U = Ψ†

xΨx, (47)
where, † is the pseudo inverse and

Ψx =




Ψ∗(x1)
Ψ∗(x2)

...
Ψ∗(xN )



N×D

, Ψx =




Ψ∗(x1)
Ψ∗(x2)

...
Ψ∗(xN )



N×D

.

Let λi, i = 1, · · · , D be eigenvalues of U , with corresponding
right/left eigenvectors ξi, γi, respectively. Then λi approximate
KEs with corresponding KEFs given by φi(x) = Ψ∗(x)ξi. Let
the coordinate function gi(x) = xi be in span of D so that
xi = Ψ∗bi for some bi ∈ RD. Then, KMs can be obtained via
vi = B∗γi , where B = [b1, · · ·bn].

EDMD approach discussed above suffers from curse of dimen-
sionality due to explosion in number of required dictionary ele-
ments D with the increase in state dimension n. To circumvent
explicit construction of the dictionary, a kernel based EDMD
approach has been proposed in Williams et al. (Unpublished).
In this approach the computation of eigenvectors/eigenvalues of
U is accomplished by forming an alternative matrix

Û = Ĝ†Â, (48)

where, Ĝ = ΨxΨ
∗
x and Â = ΨxΨ

∗
x are N ×N matrices. Us-

ing the kernel trick, entries of matrices Ĝ, Â can be computed
directly (without forming Ψ(x) for computing inner products
of form Ψ∗(xi)Ψ(xj), an O(D) operation) as

Ĝij = K(xi,xj), Âij = K(xi,xj), (49)
where, K(x,x) : M × M → R is an appropriately chosen
kernel function. K implicitly defines FD (subspace of scalar
observables spanned by elements of Ψ(x)), and evaluates the
inner products implicity in O(n) rather than O(D) time. Op-
timal choice of D or equivalently K is an important, yet open
question. These choices will most likely depend both on under-
lying dynamical system and strategy used to obtain the dataset.
Examples of D include polynomials, spectral elements, radial
basis functions etc. (Williams et al. (2015a)), while choices of
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does not have an exponential dichotomy. Provided σ(A) is full
- meaning it consists of m isolated points, and A(θ + ωt) is
sufficiently smooth in θ, in the paper Sell (1978) it is proven
that there is a quasi-periodic transformation P (t) and a constant
matrix B - which we will call quasi-Floquet- such that the
transformation z = P (t)y reduces the system to ż = Bz. Just
like in the periodic system case we consider the skew-linear
system 1

ẏ=A(θ)y,

θ̇=ω, (45)

where y ∈ Rn,θ ∈ Tm and A(θ) is a 2π-periodic matrix.
Theorem 5.1. Let quasi-Floquet exponents µ = (µ1, ·, µn) of
(45) (eigenvalues of the quasi-Floquet matrix B) be distinct.
Any vector-valued function g(y,θ) that is analytic in y and
L2 in θ can be expanded into eigenfunctions of the Koopman
operator associated with (45) as follows:

g(y,θ) =
∑

m∈Nn,k∈Zm

amkz
m(y,θ)eik·θ,

where amk are constant Koopman modes, and
z(y,θ) = (z1(y,θ), ..., zk(y,θ))

are as before the principal Koopman eigenfunctions defined by
z(y,θ) = V −1P−1(θ)y,

where, V −1 is the diagonalizing matrix for B. For m =
(m1, ...,mn),

zm(y,θ) = zm1
1 (y,θ) · ... · zmn

n (y,θ)

, and zmeikθ is an eigenfunction of the Koopman operator
corresponding to the eigenvalue e(m·µ+ik·ω)t.

In order to develop an expression for KMD of a general observ-
able one can follow similar procedure as described in Sections
4.1 and 4.2.

6. TIME DEPENDENT KMD COMPUTATION

Computation of Koopman tuple is a challenging problem and is
an active area of research. A variety of techniques have been
proposed in literature, including harmonic averaging (Mezić
(2005); Mezić and Banaszuk (2004)), generalized Laplacian
analysis (Budisic et al. (2012)), and Dynamic Mode Decom-
position (DMD) and its variants, (see Tu et al. (2014) and ref-
erences there in), and extended DMD (Williams et al. (2015a)).
These approaches enable computation of Koopman tuple in an
autonomous setting of Section 2. As pointed in the introduction,
a notable exception is multi resolution DMD (mrDMD, see
Kutz et al. (Unpublished)), which considers non-stationarity
in the data. The connection of mrDMD to Koopman operator
spectral properties in a non-autonomous setting like introduced
in this paper still need to be studied. Furthermore, mrDMD ap-
proach exploits time scale separation for decomposition, which
may not be present in systems with periodic/quasi-periodic
forcing. We next discuss how above approaches can be adapted
for computing the time dependent KMD proposed in this paper.
To develop this extension, we first discuss in more detail the
extended DMD (EDMD) approach (Williams et al. (2015a))
and its kernel version (Williams et al. (Unpublished)).

1 Note on terminology: these types of systems were classically called linear
skew-product systems.

EDMD is a Galerkin weighted residual approach which uses
a dictionary of basis functions to approximate KEFs and cor-
responding KEs. Let FD ⊂ F be a subset of observables
spanned by a dictionary D ≡ {ψ1, · · · , ψD}, where ψi : M →
C. Then θ, θ̂ ∈ FD can be expressed as θ(x) = Ψ∗(x)a,
θ̂(x) = Ψ∗(x)â, respectively, for some a, â ∈ CD, where
Ψ(x) = (ψ1(x), · · · , ψD(x))∗. Under the action of Koopman
operator

U t(θ)(x) = (Ψ ◦ Φ(t,x))∗a = Ψ∗(x)â+ r(x)

=Ψ∗(x)Ua+ r(x), (46)

where, U is a finite dimensional approximation of U t, and r(x)
is the residual as FD may not be invariant under action of U .
Note that θ̂(x) is an approximation of θ̃(t,x) (see Eqn. (3)) for
a given t.

Given a dataset of snapshot pairs {(xi,xi)}Ni=1, xi =
Φ(xi, t) generated from the ODE (2), one can formulate a least
square problem of minimizing,

N∑
i=1

|r(xi)|2 =
N∑
i=1

| (Ψ∗(xi)−Ψ∗(xi)U) a|,

to obtain
U = Ψ†

xΨx, (47)
where, † is the pseudo inverse and

Ψx =




Ψ∗(x1)
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
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, Ψx =




Ψ∗(x1)
Ψ∗(x2)

...
Ψ∗(xN )
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.

Let λi, i = 1, · · · , D be eigenvalues of U , with corresponding
right/left eigenvectors ξi, γi, respectively. Then λi approximate
KEs with corresponding KEFs given by φi(x) = Ψ∗(x)ξi. Let
the coordinate function gi(x) = xi be in span of D so that
xi = Ψ∗bi for some bi ∈ RD. Then, KMs can be obtained via
vi = B∗γi , where B = [b1, · · ·bn].

EDMD approach discussed above suffers from curse of dimen-
sionality due to explosion in number of required dictionary ele-
ments D with the increase in state dimension n. To circumvent
explicit construction of the dictionary, a kernel based EDMD
approach has been proposed in Williams et al. (Unpublished).
In this approach the computation of eigenvectors/eigenvalues of
U is accomplished by forming an alternative matrix

Û = Ĝ†Â, (48)

where, Ĝ = ΨxΨ
∗
x and Â = ΨxΨ

∗
x are N ×N matrices. Us-

ing the kernel trick, entries of matrices Ĝ, Â can be computed
directly (without forming Ψ(x) for computing inner products
of form Ψ∗(xi)Ψ(xj), an O(D) operation) as

Ĝij = K(xi,xj), Âij = K(xi,xj), (49)
where, K(x,x) : M × M → R is an appropriately chosen
kernel function. K implicitly defines FD (subspace of scalar
observables spanned by elements of Ψ(x)), and evaluates the
inner products implicity in O(n) rather than O(D) time. Op-
timal choice of D or equivalently K is an important, yet open
question. These choices will most likely depend both on under-
lying dynamical system and strategy used to obtain the dataset.
Examples of D include polynomials, spectral elements, radial
basis functions etc. (Williams et al. (2015a)), while choices of
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Algorithm 1 Kernel based EDMD
1: Input: Dataset with snapshot pairs {(xi,xi)}Ni=1, kernel

function K
2: Output: Koopman tuple ({(λi, φi,vi}Ni=1

3: Compute Û by forming Ĝ, Â using (49).
4: Compute eigenvalues λi, i = 1, · · · , N , and corresponding

right eigenvectors ξ̂i of Û .
5: Let Ξ̂ = [ξ̂1 · · · ξ̂N ], then i-th rows of

Φx = ĜΞ̂, Φx = ÂΞ̂, (50)
contains the numerically computed KEFs evaluated at xi

and xi, respectively.
6: Compute KMs for full state observable as

[v1, · · · ,vN ] = (Φx)
†X, (51)

where, X = [x1, · · · ,xN ]∗.

kernels include polynomial, Gaussian, Matern, etc. see Ras-
mussen and Williams (2006).

The steps for Koopman tuple computation based on kernel
EDMD approach are summarized in Algo 1. Note that to
compute KMs for any other observable g(x), one can replace
X with Hx = [g(x1), · · · ,g(xN )]∗ in (51). EDMD proce-
dure being a weighted residual Galerkin method converges as
N → ∞. With randomly distributed samples, the convergence
rate behaves as O(N−1/2) as in Monte Carlo integration tech-
niques. Other sampling choices, e.g. uniform grid, effectively
uses different quadrature rules and could lead to better conver-
gence rates. The total computational cost of this approach is
O(N2 max(n,N)).

Using the interpretation of KEFs/KEs in the extended phase
space (see Section 4.1), and standard techniques for computing
Koopman tuple as discussed above, we propose following steps
for computing time periodic KMD:

1) Simulate time periodic system (39)

ẋ= f(x, s)

ṡ= 1,

starting with different phases s1, s2, · · · sM ∈ [0, T ],
where T is the period.

2) Apply standard DMD procedure (e.g. EDMD described
in Algo 1) to the data generated at different phase si, i =
1 · · · ,M and obtain the KE/KEF/KM for each phase si.

Note that one can apply Laplace analysis (Budisic et al. (2012))
or other variants of DMD in Step 2. For quasi-periodic case one
can follow similar procedure, but rather than using different
phases, one uses different points θ on a torus (e.g. randomly
chosen). It still remains to establish that above steps indeed
lead to computation of time-periodic/quasi-periodic KMD as
proposed in this paper, and will be considered in future work.

7. NUMERICAL EXAMPLES

In this section we demonstrate computation of time dependent
KMD on some examples.

7.1 Example I

We first consider a linear time periodic system:
ẋ = A(t)x,

with

A(t) =




1 +
cos(t)

2 + sin(t)
0

3 sin(t)− cos(t) + 8

4 + 2 sin(t)
−1


 .

Following notation of the section 4.1, it can be shown that for
above system

P (t) =

(
2 + sin(t) 0

1

2
(sin(t)− cos(t)) 1

)
,

and

B =

(
1 0
0 −1

)
.

Thus, P (t)vk(t) =
∑3

j=1 e
iωjtvk,j , where ω1 = 0, ω2 =

1, ω3 = −1, and

v1,1 =

(
2
0

)
,v1,2 =

( −i/2

− i+ 1

4

)
,v1,3 =

(
i/2
i− 1

4

)
,

v2,1 =

(
0
1

)
,v2,2 = v2,3 =

(
0
0

)
.

Also
φk,j(x, t) = eiωjtφk(P

−1(t)x),

for k = 1, 2 and j = 1, 2, 3 with corresponding λ1,j = 1 + iωj

and λ2,j = −1 + iωj , respectively, where

φ1(P
−1(t)x) =

1

2 + sin(t)
x1,

φ2(P
−1(t)x) =− sin(t)− cos(t) + 4

4 + 2 sin(t)
x1 + x2.

With all the above quantities defined the KMD (36) for full state
observable can be obtained as:

U t,t0x(x0) =

2∑
k=1

3∑
j=1

eλk,jtφt0
k,j(x0)vk,j .

7.2 Example II

As a second example, we consider periodically forced Van der
Pol system,

ẋ1 = x1 (52)

ẋ2 =−x1 + x2 − x2
1x2 +Ωcos(ωt), (53)

with ω = 2π and amplitude Ω = 0.5. For these parameters
there is a limit cycle with period ∼ 8 sec for autonomous case,
i.e. for Ω = 0. To obtain time periodic KMD we generate
sample data by simulating the suspended system using initial
conditions uniformly spaced in [−3, 3] × [−3, 3] and with
different initial phases s ∈ {0, T/3, 2T/3}, where T = 2π

ω .
For data from each phase we compute Koopman tuple using
kernel EDMD Algo. (1). After trail and error, we found Martern
covariance kernel (K(x1,x2) = (1 +

√
5r
l + 5r2

3l2 ) exp(−
√
5r
l )

, where, r = ||x1 − x2||, see Rasmussen and Williams (2006))
worked well for this problem.

Figure 1 shows a subset of Koopman eigenvalues recovered
by kernel EDMD, and magnitude of Koopman eigenfunction
corresponding to Koopman eigenvalue (denoted by red + in
top row plots) whose period is close to the limit cycle period
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Fig. 1. Top row shows a subset of Koopman eigenvalues in complex plane, and bottom row shows magnitude of Koopman
eigenfunction corresponding to Koopman eigenvalue (denoted by red + in top row) whose period is close to the limit cycle
period. The green curve in top plots show a portion of a circle of unit radius. The first column shows results for autonomous
case i.e. Ω = 0. Other columns are for the case of time periodic forcing for different phases s ∈ {0, T/3, 2T/3}.

(which we found numerically). For reference, we also produce
similar plots for autonomous case in the first column. As can
be seen the Koopman eigenvalue distribution for periodically
forced Van der Pol oscillator changes with phase, and is also
different from the autonomous case. The bottom row shows
that the eigenfunctions for different phases are close to the
autonomous case but oscillate in magnitude.

8. CONCLUSION

In this paper we have developed a Koopman Mode De-
composition framework for non-autonomous systems with
periodic/quasi-periodic time dependence, and proposed a nu-
merical technique for computing it. In future it will be im-
portant to evaluate the framework on more complex and real
datasets arising in practical problems such as fluid mechanics,
power grid, etc. Also more work is needed to determine con-
ditions under which the proposed numerical approach results
in the theoretical time dependent KMD developed in the paper.
In that regard it will also be worthwhile to explore connections
to wavelet like approach used in multi resolution DMD (Kutz
et al. (Unpublished)), and eventually generalization to non-
autonomous systems with arbitrary time dependence, that we
outlined in equation (24).
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