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Abstract —A wavelet scattering network computes a translation invari-
ant image representation, which is stable to deformations and preserves
high frequency information for classification. It cascades wavelet trans-
form convolutions with non-linear modulus and averaging operators. The
first network layer outputs SIFT-type descriptors whereas the next layers
provide complementary invariant information which improves classifica-
tion. The mathematical analysis of wavelet scattering networks explain
important properties of deep convolution networks for classification.

A scattering representation of stationary processes incorporates
higher order moments and can thus discriminate textures having same
Fourier power spectrum. State of the art classification results are ob-
tained for handwritten digits and texture discrimination, with a Gaussian
kernel SVM and a generative PCA classifier.

Index Terms —Classification, Convolution networks, Deformations, In-
variants, Wavelets

1 INTRODUCTION

A major difficulty of image classification comes from
the considerable variability within image classes and the
inability of Euclidean distances to measure image simi-
larities. Part of this variability is due to rigid translations,
rotations or scaling. This variability is often uninforma-
tive for classification and should thus be eliminated.
In the framework of kernel classifiers [33], the distance
between two signals x and x′ is defined as a Euclidean
distance ‖Φx − Φx′‖ applied to a representation Φx
of each x. Variability due to rigid transformations are
removed if Φ is invariant to these transformations.

Non-rigid deformations also induce important vari-
ability within object classes [17], [3]. For instance, in
handwritten digit recognition, one must take into ac-
count digit deformations due to different writing styles
[3]. However, a full deformation invariance would re-
duce discrimination since a digit can be deformed into a
different digit, for example a one into a seven. The rep-
resentation must therefore not be deformation invariant.
It should linearize small deformations, to handle them
effectively with linear classifiers. Linearization means
that the representation is Lipschitz continuous to defor-
mations. When an image x is slightly deformed into x′

then ‖Φx − Φx′‖ must be bounded by the size of the
deformation, as defined in Section 2.

• This work is funded by the French ANR grant BLAN 0126 01.

Translation invariant representations can be con-
structed with registration algorithms [34], autocorrela-
tions or with the Fourier transform modulus. However,
Section 2.1 explains that these invariants are not stable
to deformations and hence not adapted to image clas-
sification. Trying to avoid Fourier transform instabilities
suggests replacing sinusoidal waves by localized wave-
forms such as wavelets. However, wavelet transforms
are not invariant but covariant to translations. Build-
ing invariant representations from wavelet coefficients
requires introducing non-linear operators, which leads
to a convolution network architecture.

Deep convolution networks have the ability to build
large-scale invariants, which seem to be stable to defor-
mations [20]. They have been applied to a wide range of
image classification tasks. Despite the successes of this
neural network architecture, the properties and optimal
configurations of these networks are not well under-
stood, because of cascaded non-linearities. Why use
multiple layers ? How many layers ? How to optimize
filters and pooling non-linearities ? How many internal
and output neurons ? These questions are mostly an-
swered through numerical experimentations that require
significant expertise.

We address these questions from mathematical and
algorithmic point of views, by concentrating on a par-
ticular class of deep convolution networks, defined by
the scattering transforms introduced in [24], [25]. A scat-
tering transform computes a translation invariant repre-
sentation by cascading wavelet transforms and modulus
pooling operators, which average the amplitude of it-
erated wavelet coefficients. It is Lipschitz continuous to
deformations, while preserving the signal energy [25].
Scattering networks are described in Section 2 and their
properties are explained in Section 3. These proper-
ties guide the optimization of the network architecture
to retain important information while avoiding useless
computations.

An expected scattering representation of stationary
processes is introduced for texture discrimination. As op-
posed to the Fourier power spectrum, it gives informa-
tion on higher order moments and can thus discriminate
non-Gaussian textures having the same power spectrum.
Scattering coefficients provide consistent estimators of
expected scattering representations.
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Classification applications are studied in Section 4.
Classifiers are implemented with a Gaussian kernel SVM
and a generative classifier, which selects affine space
models computed with a PCA. State-of-the-art results
are obtained for handwritten digit recognition on MNIST
and USPS databases, and for texture discrimination.
These are problems where translation invariance, station-
arity and deformation stability play a crucial role. Soft-
ware is available at www.cmap.polytechnique.fr/scattering.

2 TOWARDS A CONVOLUTION NETWORK

Small deformations are nearly linearized by a representa-
tion if the representation is Lipschitz continuous to the
action of deformations. Section 2.1 explains why high
frequencies are sources of instabilities, which prevent
standard invariants to be Lipschitz continuous. Sec-
tion 2.2 introduces a wavelet-based scattering transform,
which is translation invariant and Lipschitz relatively
to deformations. Section 2.3 describes its convolution
network architecture.

2.1 Fourier and Registration Invariants

A representation Φx is invariant to global translations
xc(u) = x(u − c) by c = (c1, c2) ∈ R2 if

Φxc = Φx . (1)

A canonical invariant [17], [34] Φx = x(u−a(x)) registers
x with an anchor point a(x), which is translated when
x is translated: a(xc) = a(x) + c. It is therefore invariant:
Φxc = Φx. For example, the anchor point may be a
filtered maximum a(x) = argmaxu |x ⋆ h(u)|, for some
filter h(u).

The Fourier transform modulus is another example
of translation invariant representation. Let x̂(ω) be the
Fourier transform of x(u). Since x̂c(ω) = e−ic.ω x̂(ω),
it results that |x̂c| = |x̂| does not depend upon c.
The autocorrelation Rx(v) =

∫
x(u)x(u − v)du is also

translation invariant: Rx = Rxc.
To be stable to additive noise x′(u) = x(u) + ǫ(u), we

need a Lipschitz continuity condition which supposes
that there exists C > 0 such that for all x and x′

‖Φx′ − Φx‖ ≤ C ‖x′ − x‖ ,

where ‖x‖2 =
∫
|x(u)|2 du. The Plancherel formula

proves that the Fourier modulus Φx = |x̂| satisfies this
property with C = 2π.

To be stable to deformation variabilities, Φ must also
be Lipschitz continuous to deformations. A small deforma-
tion of x can be written xτ (u) = x(u − τ(u)), where
τ(u) is a non-constant displacement field which deforms
the image. The deformation gradient tensor ∇τ(u) is a
matrix whose norm |∇τ(u)| measures the deformation
amplitude at u and supu |∇τ(u)| is the global defor-
mation amplitude. A small deformation is invertible
if |∇τ(u)| < 1 [1]. Lipschitz continuity relatively to

deformations is obtained if there exists C > 0 such that
for all τ and x

‖Φxτ − Φx‖ ≤ C ‖x‖ sup
u

|∇τ(u)| , (2)

where ‖x‖2 =
∫
|x(u)|2 du. This property implies global

translation invariance, because if τ(u) = c then ∇τ(u) =
0, but it is much stronger.

If Φ is Lipschitz continuous to deformations τ then
the Radon-Nykoým property proves that the map which
transforms τ into Φxτ is almost everywhere differen-
tiable in the sense of Gateau [22]. It means that for
small deformations, Φx − Φxτ is closely approximated
by a bounded linear operator of τ , which is the Gateau
derivative. Deformations are thus linearized by Φ, which
enables linear classifiers to effectively handle deforma-
tion variabilities in the representation space.

A Fourier modulus is translation invariant and stable
to additive noise but unstable to small deformations at
high frequencies. Indeed, | |x̂(ω)| − |x̂τ (ω)| | can be arbi-
trarily large at a high frequency ω, even for small defor-
mations and in particular for a small dilation τ(u) = ǫu.
As a result, Φx = |x̂| does not satisfy the deformation
continuity condition (2) [25]. The autocorrelation Φx =

Rx satisfies R̂x(ω) = |x̂(ω)|2. The Plancherel formula
thus proves that it has the same instabilities as a Fourier
transform:

‖Rx−Rxτ‖ = (2π)−1‖|x̂|2 − |x̂τ |2‖ .

Besides deformation instabilities, a Fourier modulus
and an autocorrelation looses too much information.
For example, a Dirac δ(u) and a linear chirp eiu2

are
totally different signals having Fourier transforms whose
moduli are equal and constant. Very different signals
may not be discriminated from their Fourier modulus.

A registration invariant Φx(u) = x(u − a(x)) carries
more information than a Fourier modulus, and charac-
terizes x up to a global absolute position information
[34]. However, it has the same high-frequency instability
as a Fourier transform. Indeed, for any choice of anchor
point a(x), applying the Plancherel formula proves that

‖x(u− a(x))− x′(u− a(x′))‖ ≥ (2π)−1 ‖|x̂(ω)| − |x̂′(ω)|‖ .

If xτ = xτ , the Fourier transform instability at high
frequencies implies that Φx = x(u−a(x)) is also unstable
with respect to deformations.

2.2 Scattering Wavelets

A wavelet transform computes convolutions with di-
lated and rotated wavelets. Wavelets are localized wave-
forms and are thus stable to deformations, as opposed
to Fourier sinusoidal waves. However, convolutions are
translation covariant, not invariant. A scattering trans-
form builds non-linear invariants from wavelet coeffi-
cients, with modulus and averaging pooling functions.

Let G be a group of rotations r of angles 2kπ/K for
0 ≤ k < K . Two-dimensional directional wavelets are
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obtained by rotating a single band-pass filter ψ by r ∈ G
and dilating it by 2j for j ∈ Z

ψλ(u) = 2−2jψ(2−jr−1u) with λ = 2−jr . (3)

If the Fourier transform ψ̂(ω) is centered at a frequency
η then ψ̂2−jr(ω) = ψ̂(2jr−1ω) has a support centered at
2−jrη, and a bandwidth proportional to 2−j . The index
λ = 2−jr gives the frequency location of ψλ and its
amplitude is |λ| = 2−j .

The wavelet transform of x is {x ⋆ ψλ(u)}λ. It is a
redundant transform with no orthogonality property.
Section 3.1 explains that it is stable and invertible if the
wavelet filters ψ̂λ(ω) cover the whole frequency plane.
On discrete images, to avoid aliasing, we only capture
frequencies in the circle |ω| ≤ π inscribed in the image
frequency square. Most camera images have negligible
energy outside this frequency circle.

Let u.u′ and |u| denote the inner product and norm
in R2. A Morlet wavelet ψ is an example of complex
wavelet given by

ψ(u) = α (eiu.ξ − β) e−|u|2/(2σ2) ,

where β ≪ 1 is adjusted so that
∫
ψ(u) du = 0. It’s

real and image parts are nearly quadrature phase filters.
Figure 1 shows the Morlet wavelet with σ = 0.85 and
ξ = 3π/4, used in all classification experiments.

A wavelet transform commutes with translations, and
is therefore not translation invariant. To build a transla-
tion invariant representation, it is necessary to introduce
a non-linearity. If Q is a linear or non-linear operator
which commutes with translations, then

∫
Qx(u) du is

translation invariant. Applying this to Qx = x⋆ψλ gives
a trivial invariant

∫
x ⋆ ψλ(u) du = 0 for all x because∫

ψλ(u) du = 0. If Qx = M(x ⋆ ψλ) and M is linear
and commutes with translations then the integral still
vanishes. This shows that computing invariants requires
to incorporate a non-linear pooling operator M , but
which one ?

To guarantee that
∫
M(x ⋆ψλ)(u) du is stable to defor-

mations, we want M to commute with the action of any
diffeomorphism. To preserve stability to additive noise
we also want M to be nonexpansive: ‖My − Mz‖ ≤
‖y−z‖. If M is a nonexpansive operator which commutes
with the action of diffeomorphisms then one can prove
[7] that M is necessarily a pointwise operator. It means
that My(u) is a function of the value y(u) only. To
build invariants which also preserve the signal energy
requires to choose a modulus operator over complex
signals y = yr + i yi:

My(u) = |y(u)| = (|yr(u)|2 + |yi(u)|2)1/2 . (4)

The resulting translation invariant coefficients are then
L

1(R2) norms

‖x ⋆ ψλ‖1 =

∫
|x ⋆ ψλ(u)| du .

The L
1(R2) norms {‖x ⋆ ψλ‖1}λ form a crude signal

representation, which measures the sparsity of wavelet

coefficients. The loss of information does not come
from the modulus which removes the complex phase
of x ⋆ ψλ(u). Indeed, one can prove [38] that x can be
reconstructed from the modulus of its wavelet coeffi-
cients {|x⋆ψλ(u)|}λ, up to a multiplicative constant. The
information loss comes from the integration of |x⋆ψλ(u)|,
which removes all non-zero frequencies. These non-zero
frequencies are recovered by calculating the wavelet
coefficients {|x⋆ψλ1

|⋆ψλ2
(u)}λ2

of |x⋆ψλ1
|. Their L

1(R2)
norms define a much larger family of invariants, for all
λ1 and λ2:

‖|x ⋆ ψλ1
| ⋆ ψλ2

‖1 =

∫
||x ⋆ ψλ1

(u)| ⋆ ψλ2
| du .

More translation invariant coefficients can be com-
puted by further iterating on the wavelet transform
and modulus operators. Let U [λ]x = |x ⋆ ψλ|. Any
sequence p = (λ1, λ2, ..., λm) defines a path, along which
is computed an ordered product of non-linear and non-
commuting operators:

U [p]x = U [λm] ... U [λ2]U [λ1]x = | ||x⋆ψλ1
|⋆ψλ2

| ... |⋆ψλm
| ,

with U [∅]x = x. A scattering transform along the path p
is defined as an integral, normalized by the response of
a Dirac:

Sx(p) = µ−1
p

∫
U [p]x(u) du with µp =

∫
U [p]δ(u) du .

Each scattering coefficient Sx(p) is invariant to a trans-
lation of x. We shall see that this transform has many
similarities with the Fourier transform modulus, which
is also translation invariant. However, a scattering is
Lipschitz continuous to deformations as opposed to the
Fourier transform modulus.

For classification, it is often better to compute localized
descriptors which are invariant to translations smaller
than a predefined scale 2J , while keeping the spatial
variability at scales larger than 2J . This is obtained by
localizing the scattering integral with a scaled spatial
window φ2J (u) = 2−2Jφ(2−Ju). It defines a windowed
scattering transform in the neighborhood of u:

S[p]x(u) = U [p]x ⋆ φ2J (u) =

∫
U [p]x(v)φ2J (u− v) dv ,

and hence

S[p]x(u) = | ||x ⋆ ψλ1
| ⋆ ψλ2

| ... | ⋆ ψλm
| ⋆ φ2J (u) ,

with S[∅]x = x ⋆ φ2J . For each path p, S[p]x(u) is
a function of the window position u, which can be
subsampled at intervals proportional to the window size
2J . The averaging by φ2J implies that if xc(u) = x(u− c)
with |c| ≪ 2J then the windowed scattering is nearly
translation invariant: S[p]x ≈ S[p]xc. Section 3.1 proves
that it is also stable relatively to deformations.
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(a) (b) (c)

Fig. 1. Complex Morlet wavelet. (a): Real part of ψ(u). (b): Imaginary part of ψ(u). (c): Fourier modulus |ψ̂(ω)|.

m=0

m=1

m=2

m=3

x

U [λ1]x

S[∅]x = x ⋆ φ2J

U [λ1, λ2]x

S[λ1]x

S[λ1, λ2]x

Fig. 2. A scattering propagator W̃ applied to x computes the first layer of wavelet coefficients modulus U [λ1]x =

|x⋆ψλ1
| and outputs its local average S[∅]x = x⋆φ2J (black arrow). Applying W̃ to the first layer signals U [λ1]x outputs

first order scattering coefficients S[λ1] = U [λ1] ⋆ φ2J (black arrows) and computes the propagated signal U [λ1, λ2]x

of the second layer. Applying W̃ to each propagated signal U [p]x outputs S[p]x = U [p]x ⋆ φ2J (black arrows) and
computes a next layer of propagated signals.

2.3 Scattering Convolution Network

If p = (λ1, ..., λm) is a path of length m then S[p]x(u) is
called a windowed scattering coefficient of order m. It is
computed at the layer m of a convolution network which
is specified. For large scale invariants, several layers are
necessary to avoid losing crucial information.

For appropriate wavelets, first order coefficients S[λ1]x
are equivalent to SIFT coefficients [23]. Indeed, SIFT
computes the local sum of image gradient amplitudes
among image gradients having nearly the same direc-
tion, in a histogram having 8 different direction bins. The
DAISY approximation [35] shows that these coefficients
are well approximated by S[λ1]x = |x ⋆ ψλ1

| ⋆ φ2J (u)
where ψλ1

are partial derivatives of a Gaussian com-
puted at the finest image scale, along 8 different rota-
tions. The averaging filter φ2J is a scaled Gaussian.

Partial derivative wavelets are well adapted to detect
edges or sharp transitions but do not have enough fre-
quency and directional resolution to discriminate com-
plex directional structures. For texture analysis, many

researchers [21], [32], [30] have been using averaged
wavelet coefficient amplitudes |x⋆ψλ|⋆φ2J (u), calculated
with a complex wavelet ψ having a better frequency and
directional resolution.

A scattering transform computes higher-order coeffi-
cients by further iterating on wavelet transforms and
modulus operators. Wavelet coefficients are computed
up to a maximum scale 2J and the lower frequencies are
filtered by φ2J (u) = 2−2Jφ(2−Ju). For a Morlet wavelet
ψ, the averaging filter φ is chosen to be a Gaussian. Since
images are real-valued signals, it is sufficient to consider
“positive” rotations r ∈ G+ with angles in [0, π):

Wx(u) =
{
x ⋆ φ2J (u) , x ⋆ ψλ(u)

}
λ∈P

, (5)

with an index set P = {λ = 2−jr : r ∈ G+, j ≤ J}. Let
us emphasize that 2J and 2j are spatial scale variables,
whereas λ = 2−jr is a frequency index giving the
location of the frequency support of ψ̂λ(ω).

A wavelet modulus propagator keeps the low-
frequency averaging and computes the modulus of com-
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plex wavelet coefficients:

W̃x(u) =
{
x ⋆ φ2J (u) , |x ⋆ ψλ(u)|

}
λ∈P

. (6)

Iterating on W̃ defines a convolution network illustrated
in Figure 2.

The network nodes of the layer m correspond to the
set Pm of all paths p = (λ1, ..., λm) of length m. This
mth layer stores the propagated signals {U [p]x}p∈Pm and
outputs the scattering coefficients {S[p]x}p∈Pm . For any
p = (λ1, ..., λm) we denote p + λ = (λ1, ..., λm, λ). Since
S[p]x = U [p]x⋆φ2J and U [p+λ]x = |U [p]x⋆ψλ| it results
that

W̃ U [p]x =
{
S[p]x , U [p+ λ]x

}
λ∈P

.

Applying W̃ to all propagated signals U [p]x of the mth

layer Pm outputs all scattering signals S[p]x and com-
putes all propagated signals U [p + λ] on the next layer
Pm+1. All output scattering signals S[p]x along paths
of length m ≤ m are thus obtained by first calculating

W̃x = {S[∅]x , U [λ]x}λ∈P and then iteratively applying

W̃ to each layer of propagated signals for increasing
m ≤ m.

The translation invariance of S[p]x is due to the av-
eraging of U [p]x by φ2J . It has been argued [8] that an
average pooling loses information, which has motivated
the use of other operators such as hierarchical maxima
[9]. A scattering avoids this information loss by recover-
ing wavelet coefficients at the next layer, which explains
the importance of a multilayer network structure.

A scattering is implemented by a deep convolution
network [20], having a very specific architecture. As
opposed to standard convolution networks, output scat-
tering coefficients are produced by each layer as opposed
to the last layer [20]. Filters are not learned from data but
are predefined wavelets. Indeed, they build invariants
relatively to the action of the translation group which
does not need to be learned. Building invariants to other
known groups such as rotations or scaling is similarly
obtained with predefined wavelets, which perform con-
volutions along rotation or scale variables [25], [26].

Different complex quadrature phase wavelets may be
chosen but separating signal variations at different scales
is fundamental for deformation stability [25]. Using a
modulus (4) to pull together quadrature phase filters is
also important to remove the high frequency oscillations
of wavelet coefficients. Next section explains that it
guarantees a fast energy decay of propagated signals
U [p]x across layers, so that we can limit the network
depth.

For a fixed position u, windowed scattering coef-
ficients S[p]x(u) of order m = 1, 2 are displayed as
piecewise constant images over a disk representing the
Fourier support of the image x. This frequency disk is
partitioned into sectors {Ω[p]}p∈Pm indexed by the path
p. The image value is S[p]x(u) on the frequency sectors
Ω[p], shown in Figure 3.

For m = 1, a scattering coefficient S[λ1]x(u) depends
upon the local Fourier transform energy of x over the
support of ψ̂λ1

. Its value is displayed over a sector Ω[λ1]
which approximates the frequency support of ψ̂λ1

. For
λ1 = 2−j1r1, there are K rotated sectors located in an
annulus of scale 2−j1 , corresponding to each r1 ∈ G,
as shown by Figure 3(a). Their area are proportional to
‖ψλ1

‖2 ∼ K−1 2−j1 .
Second order scattering coefficients S[λ1, λ2]x(u) are

computed with a second wavelet transform which per-
forms a second frequency subdivision. These coefficients
are displayed over frequency sectors Ω[λ1, λ2] which
subdivide the sectors Ω[λ1] of the first wavelets ψ̂λ1

,
as illustrated in Figure 3(b). For λ2 = 2−j2r2, the scale
2j2 divides the radial axis and the resulting sectors
are subdivided into K angular sectors corresponding to
the different r2. The scale and angular subdivisions are
adjusted so that the area of each Ω[λ1, λ2] is proportional
to ‖|ψλ1

| ⋆ ψλ2
‖2.

Figure 4 shows the Fourier transform of two images,
and the amplitude of their scattering coefficients. In
this case the 2J is equal to the image size. The top
and bottom images are very different but they have the
same first order scattering coefficients. The second order
coefficients clearly discriminate these images. Section 3.1
shows that the second-order scattering coefficients of the
top image have a larger amplitude because the image
wavelet coefficients are more sparse. Higher-order coef-
ficients are not displayed because they have a negligible
energy as explained in Section 3.

3 SCATTERING PROPERTIES

A convolution network is highly non-linear, which
makes it difficult to understand how the coefficient
values relate to the signal properties. For a scatter-
ing network, Section 3.1 analyzes the coefficient prop-
erties and optimizes the network architecture. Section
3.2 describes the resulting computational algorithm. For
texture analysis, the scattering transform of stationary
processes is studied in Section 3.3. Section 3.4 shows that
a cosine transform further reduces the size of a scattering
representation.

3.1 Energy Propagation and Deformation Stability

A windowed scattering S is computed with a cascade

of wavelet modulus operators W̃ , and its properties
thus depend upon the wavelet transform properties.
Conditions are given on wavelets to define a scatter-
ing transform which is nonexpansive and preserves the
signal norm. This analysis shows that ‖S[p]x‖ decreases
quickly as the length of p increases, and is non-negligible
only over a particular subset of frequency-decreasing
paths. Reducing computations to these paths defines
a convolution network with much fewer internal and
output coefficients.
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Ω[λ1]

Ω[λ1, λ2]

(a) (b)

Fig. 3. To display scattering coefficients, the disk covering the image frequency support is partitioned into sectors
Ω[p], which depend upon the path p. (a): For m = 1, each Ω[λ1] is a sector rotated by r1 which approximates the
frequency support of ψ̂λ1

. (b): For m = 2, all Ω[λ1, λ2] are obtained by subdividing each Ω[λ1].

(a) (b) (c) (d)

Fig. 4. (a) Two images x(u). (b) Fourier modulus |x̂(ω)|. (c) First order scattering coefficients Sx[λ1] displayed over
the frequency sectors of Figure 3(a). They are the same for both images. (d) Second order scattering coefficients
Sx[λ1, λ2] over the frequency sectors of Figure 3(b). They are different for each image.

The norm and distance on a transform Tx = {xn}n

which output a family of signals will be defined by

‖Tx− Tx′‖2 =
∑

n

‖xn − x′n‖2 .

If there exists ǫ > 0 such that for all ω ∈ R2

1 − ǫ ≤ |φ̂(ω)|2 +
1

2

∞∑

j=0

∑

r∈G

|ψ̂(2jrω)|2 ≤ 1 , (7)

then applying the Plancherel formula proves that if x is
real then Wx = {x ⋆ φ2J , x ⋆ ψλ}λ∈P satisfies

(1 − ǫ) ‖x‖2 ≤ ‖Wx‖2 ≤ ‖x‖2 , (8)

with
‖Wx‖2 = ‖x ⋆ φ2J ‖2 +

∑

λ∈P

‖x ⋆ ψλ‖2 .

In the following we suppose that ǫ < 1 and hence that
the wavelet transform is a nonexpansive and invertible
operator, with a stable inverse. If ǫ = 0 then W is unitary.
The Morlet wavelet ψ shown in Figure 1 together with
φ(u) = exp(−|u|2/(2σ2))/(2πσ2) for σ = 0.7 satisfy (7)

with ǫ = 0.25. These functions are used in all classi-
fication applications. Rotated and dilated cubic spline
wavelets are constructed in [25] to satisfy (7) with ǫ = 0.

The modulus is nonexpansive in the sense that ||a| −
|b|| ≤ |a − b| for all (a, b) ∈ C2 Since W̃ = {x ⋆
φ2J , |x⋆ψλ|}λ∈P is obtained with a wavelet transform W
followed by a modulus, which are both nonexpansive, it
is also nonexpansive:

‖W̃x− W̃y‖ ≤ ‖x− y‖ .

Let P∞ = ∪m∈NPm be the set of all paths for any
length m ∈ N. The norm of Sx = {S[p]x}p∈P∞

is

‖Sx‖2 =
∑

p∈P∞

‖S[p]x‖2 .

Since S iteratively applies W̃ which is nonexpansive, it
is also nonexpansive:

‖Sx− Sy‖ ≤ ‖x− y‖ .

It is thus stable to additive noise.
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If W is unitary then W̃ also preserves the signal norm

‖W̃x‖2 = ‖x‖2. The convolution network is built layer

by layer by iterating on W̃ . If W̃ preserves the signal
norm then the signal energy is equal to the sum of the
scattering energy of each layer plus the energy of the
last propagated layer:

‖x‖2 =

m∑

m=0

∑

p∈Pm

‖S[p]x‖2 +
∑

p∈Pm+1

‖U [p]‖2 . (9)

For appropriate wavelets, it is proved in [25] that the
energy of the mth layer

∑
p∈Pm ‖U [p]‖2 converges to

zero when m increases, as well as the energy of all
scattering coefficients below m. This result is important
for numerical applications because it explains why the
network depth can be limited with a negligible loss of
signal energy. By letting the network depth m go to
infinity in (9), it results that the scattering transform
preserves the signal energy

‖x‖2 =
∑

p∈P∞

‖S[p]x‖2 = ‖Sx‖2 . (10)

This scattering energy conservation also proves that
the more sparse the wavelet coefficients, the more energy
propagates to deeper layers. Indeed, when 2J increases,
one can verify that at the first layer, S[λ1]x = |x ⋆ ψλ1

| ⋆
φ2J converges to ‖φ‖2 ‖x ⋆ ψλ‖2

1. The more sparse x ⋆
ψλ, the smaller ‖x ⋆ ψλ‖1 and hence the more energy is
propagated to deeper layers to satisfy the global energy
conservation (10).

Figure 4 shows two images having same first order
scattering coefficients, but the top image is piecewise reg-
ular and hence has wavelet coefficients which are much
more sparse than the uniform texture at the bottom.
As a result the top image has second order scattering
coefficients of larger amplitude than at the bottom. For
typical images, as in the CalTech101 dataset [12], Table
1 shows that the scattering energy has an exponential
decay as a function of the path length m. Scattering
coefficients are computed with cubic spline wavelets,
which define a unitary wavelet transform and satisfy
the scattering energy conservation (10). As expected, the
energy of scattering coefficients converges to 0 as m
increases, and it is already below 1% for m ≥ 3.

The propagated energy ‖U [p]x‖2 decays because U [p]x
is a progressively lower frequency signal as the path
length increases. Indeed, each modulus computes a
regular envelop of oscillating wavelet coefficients. The
modulus can thus be interpreted as a non-linear “de-
modulator” which pushes the wavelet coefficient energy
towards lower frequencies. As a result, an important
portion of the energy of U [p]x is then captured by the
low pass filter φ2J which outputs S[p]x = U [p]x ⋆ φ2J .
Hence fewer energy is propagated to the next layer.

Another consequence is that the scattering energy
propagates only along a subset of frequency decreasing
paths. Since the envelope |x ⋆ ψλ| is more regular than
x⋆ψλ, it results that |x⋆ψλ(u)|⋆ψλ′ is non-negligible only

TABLE 1
Percentage of energy

∑
p∈Pm

↓
‖S[p]x‖2/‖x‖2 of

scattering coefficients on frequency-decreasing paths of
length m, depending upon J . These average values are
computed on the Caltech-101 database, with zero mean

and unit variance images.

J m = 0 m = 1 m = 2 m = 3 m = 4 m ≤ 3

1 95.1 4.86 - - - 99.96
2 87.56 11.97 0.35 - - 99.89
3 76.29 21.92 1.54 0.02 - 99.78
4 61.52 33.87 4.05 0.16 0 99.61
5 44.6 45.26 8.9 0.61 0.01 99.37
6 26.15 57.02 14.4 1.54 0.07 99.1
7 0 73.37 21.98 3.56 0.25 98.91

if ψλ′ is located at lower frequencies than ψλ, and hence
if |λ′| < |λ|. Iterating on wavelet modulus operators
thus propagates the scattering energy along frequency-
decreasing paths p = (λ1, ..., λm) where |λk| < |λk−1| for
1 ≤ k < m. We denote by Pm

↓ the set of frequency de-
creasing paths of length m. Scattering coefficients along
other paths have a negligible energy. This is verified
by Table 1 which shows not only that the scattering
energy is concentrated on low-order paths, but also that
more than 99% of the energy is absorbed by frequency-
decreasing paths of length m ≤ 3. Numerically, it is
therefore sufficient to compute the scattering transform
along frequency-decreasing paths. It defines a much
smaller convolution network. Section 3.2 shows that
the resulting coefficients are computed with O(N logN)
operations.

Preserving energy does not imply that the signal infor-
mation is preserved. Since a scattering transform is cal-

culated by iteratively applying W̃ , inverting S requires

to invert W̃ . The wavelet transform W is a linear invert-
ible operator, so inverting W̃z = {z ⋆ φ2J , |z ⋆ ψλ|}λ∈P

amounts to recover the complex phases of wavelet coef-
ficients removed by the modulus. The phase of Fourier
coefficients can not be recovered from their modulus but
wavelet coefficients are redundant, as opposed to Fourier
coefficients. For particular wavelets, it has been proved
that the phase of wavelet coefficients can be recovered

from their modulus, and that W̃ has a continuous inverse
[38].

Still, one can not exactly invert S because we discard
information when computing the scattering coefficients
S[p]x = U [p] ⋆ φ2J of the last layer Pm. Indeed, the
propagated coefficients |U [p]x ⋆ ψλ| of the next layer are
eliminated, because they are not invariant and have a
negligible total energy. The number of such coefficients
is larger than the total number of scattering coefficients
kept at previous layers. Initializing the inversion by
considering that these small coefficients are zero pro-
duces an error. This error is further amplified as the

inversion of W̃ progresses across layers from m to 0.
Numerical experiments conducted over one-dimensional
audio signals, [2], [7] indicate that reconstructed sig-
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nals have a good audio quality with m = 2, as long
as the number of scattering coefficients is compara-
ble to the number of signal samples. Audio examples
in www.cmap.polytechnique.fr/scattering show that recon-
structions from first order scattering coefficients are typ-
ically of much lower quality because there are much
fewer first order than second order coefficients. When
the invariant scale 2J becomes too large, the number
of second order coefficients also becomes too small for
accurate reconstructions. Although individual signals
can be not be recovered, reconstructions of equivalent
stationary textures are possible with arbitrarily large
scale scattering invariants [7].

For classification applications, besides computing a
rich set of invariants, the most important property of
a scattering transform is its Lipschitz continuity to
deformations. Indeed wavelets are stable to deforma-
tions and the modulus commutes with deformations.
Let xτ (u) = x(u − τ(u)) be an image deformed by
the displacement field τ . Let ‖τ‖∞ = supu |τ(u)| and
‖∇τ‖∞ = supu |∇τ(u)| < 1. If Sx is computed on paths
of length m ≤ m then it is proved in [25] that for signals
x of compact support

‖Sxτ − Sx‖ ≤ C m ‖x‖
(
2−J‖τ‖∞ + ‖∇τ‖∞

)
, (11)

with a second order Hessian term which is part of
the metric definition on C

2 deformations, but which is
negligible if τ(u) is regular. If 2J ≥ ‖τ‖∞/‖∇τ‖∞ then
the translation term can be neglected and the transform
is Lipschitz continuous to deformations:

‖Sxτ − Sx‖ ≤ Cm ‖x‖ ‖∇τ‖∞ . (12)

If m goes to ∞ then Cm can be replaced by a more com-
plex expression [25], which is numerically converging for
natural images.

3.2 Fast Scattering Computations

We describe a fast scattering implementation over fre-
quency decreasing paths, where most of the scattering
energy is concentrated. A frequency decreasing path
p = (2−j1r1, ..., 2

−jmrm) satisfies 0 < jk ≤ jk+1 ≤ J .
If the wavelet transform is computed over K rotation
angles then the total number of frequency-decreasing
paths of length m is Km

(
J
m

)
. Let N be the number of

pixels of the image x. Since φ2J is a low-pass filter scaled
by 2J , S[p]x(u) = U [p]x⋆φ2J (u) is uniformly sampled at
intervals α2J , with α = 1 or α = 1/2. Each S[p]x is an
image with α−22−2JN coefficients. The total number of
coefficients in a scattering network of maximum depth
m is thus

P = N α−2 2−2J
m∑

m=0

Km

(
J

m

)
. (13)

If m = 2 then P ≃ α−2N2−2JK2J2/2. It decreases
exponentially when the scale 2J increases.

Algorithm 1 describes the computations of scattering
coefficients on sets Pm

↓ of frequency decreasing paths
of length m ≤ m. The initial set P0

↓ = {∅} corresponds
to the original image U [∅]x = x. Let p + λ be the path
which begins by p and ends with λ ∈ P . If λ = 2−jr then
U [p+ λ]x(u) = |U [p]x ⋆ ψλ(u)| has energy at frequencies
mostly below 2−jπ. To reduce computations we can thus
subsample this convolution at intervals α2j , with α = 1
or α = 1/2 to avoid aliasing.

Algorithm 1 Fast Scattering Transform

for m = 1 to m do
for all p ∈ Pm−1

↓ do

Output S[p]x(α2Jn) = U [p]x ⋆ φ2J (α2Jn)
end for
for all p+ λm ∈ Pm

↓ with λm = 2−jmrm do
Compute

U [p+ λm]x(α2jmn) = |U [p]x ⋆ ψλm
(α2jmn)|

end for
end for
for all p ∈ Pm

↓ do

Output S[p]x(α2Jn) = U [p]x ⋆ φ2J (α2Jn)
end for

At the layer m there are Km
(

J
m

)
propagated signals

U [p]x with p ∈ Pm
↓ . They are sampled at intervals α2jm

which depend on p. One can verify by induction on m
that the layer m has a total number of samples equal to
α−2 (K/3)mN . There are also Km

(
J
m

)
scattering signals

S[p]x but they are subsampled by 2J and thus have much
less coefficients. The number of operation to compute
each layer is therefore driven by the O((K/3)mN logN)
operations needed to compute the internal propagated
coefficients with FFT’s. For K > 3, the overall computa-
tional complexity is thus O((K/3)mN logN).

3.3 Scattering Stationary Processes

Image textures can be modeled as realizations of sta-
tionary processes X(u). We denote the expected value
of X by E(X), which does not depend upon u. De-
spite the importance of spectral methods, the power
spectrum is often not sufficient to discriminate image
textures because it only depends upon second order
moments. Figure 5 shows very different textures having
same power spectrum. A scattering representation of
stationary processes depends upon second order and
higher-order moments, and can thus discriminate such
textures. Moreover, it does not suffer from the large
variance curse of high order moments estimators [37],
because it is computed with a nonexpansive operator.

If X(u) is stationary then U [p]X(u) remains stationary
because it is computed with a cascade of convolutions
and modulus which preserve stationarity. Its expected
value thus does not depend upon u and defines the
expected scattering transform:

SX(p) = E(U [p]X) .
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(a) (b) (c) (d)

Fig. 5. (a) Realizations of two stationary processes X(u). Top: Brodatz texture. Bottom: Gaussian process. (b) The
power spectrum estimated from each realization is nearly the same. (c) First order scattering coefficients S[p]X are
nearly the same, for 2J equal to the image width. (d) Second order scattering coefficients S[p]X are clearly different.

A windowed scattering gives an estimator of SX(p),
calculated from a single realization of X , by averaging
U [p]X with φ2J :

S[p]X(u) = U [p]X ⋆ φ2J (u) .

Since
∫
φ2J (u) du = 1, this estimator is unbiased:

E(S[p]X) = E(U [p]X) = SX(p).
For appropriate wavelets, it is proved in [25] that

a windowed scattering transform conserves the second
moment of stationary processes:

∑

p∈P∞

E(|S[p]X |2) = E(|X |2) . (14)

The second order moments of all wavelet coefficient,
which are useful for texture discrimination, can also
be recovered from scattering coefficients. Indeed, for
p = (λ1, ..., λm) if we write λ+ p = (λ, λ1, ..., λm) then

S[p]|X ⋆ ψλ| = S[p]U [λ]X = S[λ+ p]X

and replacing X by |X ⋆ ψλ| in (14) gives
∑

p∈P∞

E(|S[λ+ p]X |2) = E(|X ⋆ ψλ|2) . (15)

However, if p has a length m, because of the m successive
modulus non-linearities, one can show [25] that SX(p)
also depends upon normalized high order moments of
X , mainly of order up to 2m. Scattering coefficients
can thus discriminate textures having same second-order
moments but different higher-order moments. This is
illustrated by the two textures in Figure 5, which have
same power spectrum and hence same second order
moments. Scattering coefficients S[p]X are shown for
m = 1 and m = 2 with the frequency tiling illustrated

in Figure 3. The squared distance between the order 1
scattering coefficients of these two textures is of order
their variance. Indeed, order 1 scattering coefficients
mostly depend upon second-order moments and are
thus nearly equal for both textures. On the contrary,
scattering coefficients of order 2 are different because
they depend on moments up to 4. Their squared distance
is more than 5 times bigger than their variance.

High order moment are difficult to use in signal
processing because their estimators have a large variance
[37], which can introduce important errors. This large
variance comes from the blow up of large coefficient out-
liers produced by Xq for q > 2. On the contrary, a scatter-
ing is computed with a nonexpansive operator and thus
has much lower variance estimators. The estimation of
SX(p) = E(U [p]X) by S[p]X = U [p]X ⋆ φ2J has a vari-
ance which is reduced when the averaging scale 2J in-
creases. For all image textures, it is numerically observed
that the scattering variance

∑
p∈P∞

E(|S[p]X − SX(p)|2
decreases exponentially to zero when 2J increases. Table
2 gives the decay of this scattering variance, computed
on average over the Brodatz texture dataset. Expected
scattering coefficients of stationary textures are thus
better estimated from windowed scattering tranforms at
the largest possible scale 2J , equal to the image size.

Let P∞ be the set of all paths p = (λ1, ..., λm) for all
λk = 2jkrk ∈ 2Z×G+ and all length m. The conservation
equation (14) together with the scattering variance decay
also implies that the second moment is equal to the
energy of expected scattering coefficients in P∞

‖SX‖2 =
∑

p∈P∞

|SX(p)|2 = E(|X |2) . (16)
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TABLE 2
Normalized scattering variance∑

p∈P∞
E(|S[p]X − SX(p)|2)/E(|X |2), as a function of

J , computed on zero-mean and unit variance images of
the Brodatz dataset, with cubic spline wavelets.

J = 1 J = 2 J = 3 J = 4 J = 5 J = 6 J = 7

0.85 0.65 0.45 0.26 0.14 0.07 0.0025

TABLE 3
Percentage of energy

∑
p∈Pm

↓
|SX(p)|2/E(|X |2) along

frequency decreasing paths of length m, computed on
the normalized Brodatz dataset, with cubic spline

wavelets.

m = 0 m = 1 m = 2 m = 3 m = 4

0 74 19 3 0.3

Indeed E(S[p]X) = SX(p) so

E(|S[p]X |2) = SX(p)2 + E(|S[p]X − E(S[p]X)|2) .

Summing over p and letting J go to ∞ gives (16).
Table 3 gives the ratio between the average energy

along frequency decreasing paths of length m and sec-
ond moments, for textures in the Brodatz data set. Most
of this energy is concentrated over paths of length m ≤ 3.

3.4 Cosine Scattering Transform

Natural images have scattering coefficients S[p]X(u)
which are correlated across paths p = (λ1, ..., λm), at any
given position u. The strongest correlation is between
coefficients of a same layer. For each m, scattering coeffi-
cients are decorrelated in a Karhunen-Loève basis which
diagonalizes their covariance matrix. Figure 6 compares
the decay of the sorted variances E(|S[p]X−E(S[p]X)|2)
and the variance decay in the Karhunen-Loève basis
computed over half of the Caltech image dataset, for the
first layer and second coefficients. Scattering coefficients
are calculated with a Morlet wavelet. The variance decay
(computed on the second half data set) is much faster in
the Karhunen-Loève basis, which shows that there is a
strong correlation between scattering coefficients of same
layers.

A change of variables proves that a rotation and
scaling X2lr(u) = X(2−lru) produces a rotation and
inverse scaling on the path variable

SX2lr(p) = SX(2lrp) where 2lrp = (2lrλ1, ..., 2
lrλm) ,

and 2lrλk = 2l−jkrrk . If natural images can be con-
sidered as randomly rotated and scaled [29], then the
path p is randomly rotated and scaled. In this case, the
scattering transform has stationary variations along the
scale and rotation variables. This suggests approximat-
ing the Karhunen-Loève basis by a cosine basis along
these variables. Let us parametrize each rotation r by its

angle θ ∈ [0, 2π]. A path p = (2−j1r1, ..., 2
−jkrk) is then

parametrized by ((j1, θ1), ..., (jm, θm)).
Since scattering coefficients are computed along fre-

quency decreasing paths for which 0 < jk < jk+1 ≤ J ,
to reduce boundary effects, a separable cosine transform
is computed along the variables l1 = j1 , l2 = j2 −
j1, ... , lm = jm − jm−1, and along each angle variable
θ1, θ2, ... , θm. Cosine scattering coefficients are by ap-
plying this separable discrete cosine transform along the
scale and angle variables of S[p]X(u), for each u and
each path length m. Figure 6 shows that the cosine
scattering coefficients have variances for m = 1 and
m = 2 which decay nearly as fast as the variances in
the Karhunen-Loève basis. It shows that a DCT across
scales and orientations is nearly optimal to decorrelate
scattering coefficients. Lower-frequency DCT coefficients
absorb most of the scattering energy. On natural images,
more than 99.5% of the scattering energy is absorbed by
the 1/2 lowest frequency cosine scattering coefficients.

We saw in (13) that without oversampling α = 1,
when m = 2, an image of size N is represented by
P = N 2−2J (KJ +K2J(J − 1)/2) scattering coefficients.
Numerical computations are performed with K = 6 rota-
tion angles and the DCT reduces at least by 2 the number
of coefficients. At a small invariant scale J = 2, the
resulting cosine scattering representation has P = 3N/2
coefficients. As a matter of comparison, SIFT represents
small blocks of 42 pixels with 8 coefficients, and a dense
SIFT representation thus has N/2 coefficients. When J
increases, the size of a cosine scattering representation
decreases like 2−2J , with P = N for J = 3 and P ≈ N/40
for J = 7.

4 CLASSIFICATION

A scattering transform eliminates the image variability
due to translations and linearizes small deformations.
Classification is studied with linear generative models
computed with a PCA, and with discriminant SVM
classifiers. State-of-the-art results are obtained for hand-
written digit recognition and for texture discrimination.
Scattering representations are computed with a Morlet
wavelet.

4.1 PCA Affine Space Selection

Although discriminant classifiers such as SVM have
better asymptotic properties than generative classifiers
[28], the situation can be inverted for small training sets.
We introduce a simple robust generative classifier based
on affine space models computed with a PCA. Applying
a DCT on scattering coefficients has no effect on any
linear classifier because it is a linear orthogonal trans-
form. Keeping the 50% lower frequency cosine scattering
coefficients reduces computations and has a negligible
effect on classification results. The classification algo-
rithm is described directly on scattering coefficients to
simplify explanations. Each signal class is represented
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Fig. 6. (A): Sorted variances of scattering coefficients of order 1 (left) and order 2 (right), computed on the CalTech101
database. (B): Sorted variances of cosine transform scattering coefficients. (C): Sorted variances in a Karhunen-Loève
basis calculated for each layer of scattering coefficients.

by a random vector Xk, whose realizations are images
of N pixels in the class.

Each scattering vector SXk has P coefficients. Let
E(SXk) be the expected vector over the signal class k.
The difference SXk − E(SXk) is approximated by its
projection in a linear space of low dimension d≪ P . The
covariance matrix of SXk has P 2 coefficients. Let Vk be
the linear space generated by the d PCA eigenvectors
of this covariance matrix having the largest eigenvalues.
Among all linear spaces of dimension d, it is the space
which approximates SXk − E(SXk) with the smallest
expected quadratic error. This is equivalent to approxi-
mating SXk by its projection on an affine approximation
space:

Ak = E{SXk} + Vk.

The classifier associates to each signal x the class index
k̂ of the best approximation space:

k̂(x) = argmin
k≤C

‖Sx− PAk
(Sx)‖ . (17)

The minimization of this distance has similarities with
the minimization of a tangential distance [14] in the
sense that we remove the principal scattering directions
of variabilities to evaluate the distance. However it is
much simpler since it does not evaluate a tangential
space which depends upon Sx. Let V

⊥
k be the orthogonal

complement of Vk corresponding to directions of lower
variability. This distance is also equal to the norm of the
difference between Sx and the average class “template”
E(SXk), projected in V

⊥
k :

‖Sx− PAk
(Sx)‖ =

∥∥∥PV⊥
k

(
Sx− E(SXk)

)∥∥∥ . (18)

Minimizing the affine space approximation error is thus
equivalent to finding the class centroid E(SXk) which
is the closest to Sx, without taking into account the
first d principal variability directions. The d principal
directions of the space Vk result from deformations and
from structural variability. The projection PAk

(Sx) is the
optimum linear prediction of Sx from these d principal
modes. The selected class has the smallest prediction
error.

This affine space selection is effective if SXk −
E(SXk) is well approximated by a projection in a low-
dimensional space. This is the case if realizations of Xk

are translations and limited deformations of a single
template. Indeed, the Lipschitz continuity implies that
small deformations are linearized by the scattering trans-
form. Hand-written digit recognition is an example. This
is also valid for stationary textures where SXk has a
small variance, which can be interpreted as structural
variability.

The dimension d must be adjusted so that SXk has a
better approximation in the affine space Ak than in affine
spaces Al of other classes l 6= k. This is a model selection
problem, which requires to optimize the dimension d in
order to avoid over-fitting [5].

The invariance scale 2J must also be optimized. When
the scale 2J increases, translation invariance increases
but it comes with a partial loss of information, which
brings the representations of different signals closer. One
can prove [25] that the scattering distance ‖Sx−Sx′‖ de-
creases when 2J increases, and it converges to a non-zero
value when 2J goes to ∞. To classify deformed templates
such as hand-written digits, the optimal 2J is of the order
of the maximum pixel displacements due to translations
and deformations. In a stochastic framework where x
and x′ are realizations of stationary processes, Sx and
Sx′ converge to the expected scattering transforms Sx
and Sx′. In order to classify stationary processes such as
textures, the optimal scale is the maximum scale equal
to the image width, because it minimizes the variance of
the windowed scattering estimator.

A cross-validation procedure is used to find the di-
mension d and the scale 2J which yield the smallest
classification error. This error is computed on a subset
of the training images, which is not used to estimate the
covariance matrix for the PCA calculations.

As in the case of SVM, the performance of the affine
PCA classifier are improved by equalizing the descriptor
space. Table 1 shows that scattering vectors have unequal
energy distribution along its path variables, in particular
as the order varies. A robust equalization is obtained by
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dividing each S[p]X(u) by

γ(p) = max
xi

( ∑

u

|S[p]xi(u)|2
)1/2

, (19)

where the maximum is computed over all training sig-
nals xi. To simplify notations, we still write SX the vec-
tor of normalized scattering coefficients S[p]X(u)/γ(p).

Affine space scattering models can be interpreted as
generative models computed independently for each
class. As opposed to discriminative classifiers such as
SVM, we do not estimate cross-correlation interactions
between classes, besides optimizing the model dimen-
sion d. Such estimators are particularly effective for
small number of training samples per class. Indeed, if
there are few training samples per class then variance
terms dominate bias errors when estimating off-diagonal
covariance coefficients between classes [4].

An affine space approximation classifier can also be
interpreted as a robust quadratic discriminant classifier
obtained by coarsely quantizing the eigenvalues of the
inverse covariance matrix. For each class, the eigenval-
ues of the inverse covariance are set to 0 in Vk and to
1 in V

⊥
k , where d is adjusted by cross-validation. This

coarse quantization is justified by the poor estimation
of covariance eigenvalues from few training samples.
These affine space models are robust when applied to
distributions of scattering vectors having non-Gaussian
distributions, where a Gaussian Fisher discriminant can
lead to significant errors.

4.2 Handwritten Digit Recognition

The MNIST database of hand-written digits is an exam-
ple of structured pattern classification, where most of
the intra-class variability is due to local translations and
deformations. It comprises at most 60000 training sam-
ples and 10000 test samples. If the training dataset is not
augmented with deformations, the state of the art was
achieved by deep-learning convolution networks [31],
deformation models [17], [3], and dictionary learning
[27]. These results are improved by a scattering classifier.

All computations are performed on the reduced cosine
scattering representation described in Section 3.4, which
keeps the lower-frequency half of the coefficients. Table
4 computes classification errors on a fixed set of test
images, depending upon the size of the training set,
for different representations and classifiers. The affine
space selection of section 4.1 is compared with an SVM
classifier using RBF kernels, which are computed us-
ing Libsvm [10], and whose variance is adjusted using
standard cross-validation over a subset of the training
set. The SVM classifier is trained with a renormalization
which maps all coefficients to [−1, 1]. The PCA classifier
is trained with the renormalisation factors (19). The first
two columns of Table 4 show that classification errors
are much smaller with an SVM than with the PCA
algorithm if applied directly on the image. The 3rd and
4th columns give the classification error obtained with

a PCA or an SVM classification applied to the modulus
of a windowed Fourier transform. The spatial size 2J of
the window is optimized with a cross-validation which
yields a minimum error for 2J = 8. It corresponds
to the largest pixel displacements due to translations
or deformations in each class. Removing the complex
phase of the windowed Fourier transform yields a locally
invariant representation but whose high frequencies are
unstable to deformations, as explained in Section 2.1.
Suppressing this local translation variability improves
the classification rate by a factor 3 for a PCA and by
almost 2 for an SVM. The comparison between PCA
and SVM confirms the fact that generative classifiers
can outperform discriminative classifiers when training
samples are scarce [28]. As the training set size increases,
the bias-variance trade-off turns in favor of the richer
SVM classifiers, independently of the descriptor.

Columns 6 and 8 give the PCA classification result
applied to a windowed scattering representation for m =
1 and m = 2. The cross validation also chooses 2J = 8.
Figure 7 displays the arrays of normalized windowed
scattering coefficients of a digit ‘3’. The first and second
order coefficients of S[p]X(u) are displayed as energy
distributions over frequency disks described in Section
2.3. The spatial parameter u is sampled at intervals 2J

so each image of N pixels is represented by N2−2J = 42

translated disks, both for order 1 and order 2 coefficients.
Increasing the scattering order from m = 1 to m = 2

reduces errors by about 30%, which shows that second
order coefficients carry important information even at
a relatively small scale 2J = 8. However, third order
coefficients have a negligible energy and including them
brings marginal classification improvements, while in-
creasing computations by an important factor. As the
learning set increases in size, the classification improve-
ment of a scattering transform increases relatively to
windowed Fourier transform because the classification
is able to incorporate more high frequency structures,
which have deformation instabilities in the Fourier do-
main as opposed to the scattering domain.

Table 4 that below 5000 training samples, the scatter-
ing PCA classifier improves results of a deep-learning
convolution networks, which learns all filter coefficients
with a back-propagation algorithm [20]. As more train-
ing samples are available, the flexibility of the SVM clas-
sifier brings an improvement over the more rigid affine
classifier, yielding a 0.43% error rate on the original
dataset, thus improving upon previous state of the art
methods.

To evaluate the precision of affine space models, we
compute an average normalized approximation error of
scattering vectors projected on the affine space of their
own class, over all classes k

σ2
d = C−1

C∑

k=1

E(‖SXk − PAk
(SXk)‖2)

E(‖SXk‖2)
. (20)

An average separation factor measures the ratio between
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(a) (b) (c)

Fig. 7. (a): Image X(u) of a digit ’3’. (b): Arrays of windowed scattering coefficients S[p]X(u) of order m = 1, with u
sampled at intervals of 2J = 8 pixels. (c): Windowed scattering coefficients S[p]X(u) of order m = 2.

TABLE 4
Percentage of errors of MNIST classifiers, depending on the training size.

Training x Wind. Four. Scat. m = 1 Scat. m = 2 Conv.
size PCA SVM PCA SVM PCA SVM PCA SVM Net.
300 14.5 15.4 7.35 7.4 5.7 8 4.7 5.6 7.18

1000 7.2 8.2 3.74 3.74 2.35 4 2.3 2.6 3.21
2000 5.8 6.5 2.99 2.9 1.7 2.6 1.3 1.8 2.53
5000 4.9 4 2.34 2.2 1.6 1.6 1.03 1.4 1.52
10000 4.55 3.11 2.24 1.65 1.5 1.23 0.88 1 0.85

20000 4.25 2.2 1.92 1.15 1.4 0.96 0.79 0.58 0.76
40000 4.1 1.7 1.85 0.9 1.36 0.75 0.74 0.53 0.65
60000 4.3 1.4 1.80 0.8 1.34 0.62 0.7 0.43 0.53

TABLE 5
For each MNIST training size, the table gives the

cross-validated dimension d of affine approximation
spaces, together with the average approximation error σ2

d

and separation ratio ρ2
d of these spaces.

Training d σ2

d
ρ2

d

300 5 3 · 10−1 2

5000 100 4 · 10−2 3

40000 140 2 · 10−2 4

the approximation error in the affine space Ak of the
signal class and the minimum approximation error in
another affine model Al with l 6= k, for all classes k

ρ2
d = C−1

C∑

k=1

E(minl 6=k ‖SXk − PAl
(SXk)‖2)

E(‖SXk − PAk
(SXk)‖2)

. (21)

For a scattering representation with m = 2, Table 5
gives the dimension d of affine approximation spaces
optimized with a cross validation. It varies considerably,
ranging from 5 to 140 when the number of training
examples goes from 300 to 40000. Indeed, many training
samples are needed to estimate reliably the eigenvectors
of the covariance matrix and thus to compute reliable
affine space models for each class. The average ap-
proximation error σ2

d of affine space models is progres-
sively reduced while the separation ratio ρ2

d increases.
It explains the reduction of the classification error rate
observed in Table 4, as the training size increases.

TABLE 6
Percentage of errors for the whole USPS database.

Tang. Scat. m = 2 Scat. m = 1 Scat. m = 2

Kern. SVM PCA PCA
2.4 2.7 3.24 2.6 / 2.3

The US-Postal Service is another handwritten digit
dataset, with 7291 training samples and 2007 test images
16×16 pixels. The state of the art is obtained with tangent
distance kernels [14]. Table 6 gives results obtained
with a scattering transform with the PCA classifier for
m = 1, 2. The cross-validation sets the scattering scale to
2J = 8. As in the MNIST case, the error is reduced when
going from m = 1 to m = 2 but remains stable for m = 3.
Different renormalization strategies can bring marginal
improvements on this dataset. If the renormalization is
performed by equalizing using the standard deviation of
each component, the classification error is 2.3% whereas
it is 2.6% if the supremum is normalized.

The scattering transform is stable but not invariant
to rotations. Stability to rotations is demonstrated over
the MNIST database in the setting defined in [18]. A
database with 12000 training samples and 50000 test
images is constructed with random rotations of MNIST
digits. The PCA affine space selection takes into account
the rotation variability by increasing the dimension d
of the affine approximation space. This is equivalent
to projecting the distance to the class centroid on a
smaller orthogonal space, by removing more principal
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TABLE 7
Percentage of errors on an MNIST rotated dataset [18].

Scat. m = 1 Scat. m = 2 Conv.
PCA PCA Net.

8 4.4 8.8

TABLE 8
Percentage of errors on scaled/rotated MNIST digits

Transformations Scat. m = 1 Scat. m = 2

on MNIST images PCA PCA
None 1.6 0.8

Rotations 6.7 3.3
Scalings 2 1

Rot. + Scal. 12 5.5

components. The error rate in Table 7 is much smaller
with a scattering PCA than with a convolution network
[18]. Much better results are obtained for a scattering
with m = 2 than with m = 1 because second order
coefficients maintain enough discriminability despite the
removal of a larger number d of principal directions. In
this case, m = 3 marginally reduces the error.

Scaling and rotation invariance is studied by intro-
ducing a random scaling factor uniformly distributed
between 1/

√
2 and

√
2, and a random rotation by a uni-

form angle. In this case, the digit ‘9’ is removed from the
database as to avoid any indetermination with the digit
‘6’ when rotated. The training set has 9000 samples (1000
samples per class). Table 8 gives the error rate on the
original MNIST database when transforming the training
and testing samples either with random rotations, scal-
ings, or both. Scalings have a smaller impact on the error
rate than rotations because scaled scattering vectors span
an invariant linear space of lower dimension. Second-
order scattering outperforms first-order scattering, and
the difference becomes more significant when rotation
and scaling are combined. Second order coefficients are
highly discriminative in presence of scaling and rotation
variability.

4.3 Texture Discrimination

Visual texture discrimination remains an outstanding
image processing problem because textures are realiza-
tions of non-Gaussian stationary processes, which cannot
be discriminated using the power spectrum. The affine
PCA space classifier removes most of the variability of
SX − E{SX} within each class. This variability is due
to the residual stochastic variability which decays as J
increases, and to variability due to illumination, rotation,
scaling, or perspective deformations when textures are
mapped on surfaces.

Texture classification is tested on the CUReT texture
database [21], [36], which includes 61 classes of image
textures of N = 2002 pixels. Each texture class gives
images of the same material with different pose and

illumination conditions. Specularities, shadowing and
surface normal variations make classification challeng-
ing. Pose variation requires global rotation and illumi-
nation invariance. Figure 8 illustrates the large intra-
class variability, after a normalization of the mean and
variance of each textured image.

Table 9 compares error rates obtained with different
image representations. The database is randomly split
into a training and a testing set, with 46 training images
for each class as in [36]. Results are averaged over 10
different splits. A PCA affine space classifier applied
directly on the image pixels yields a large classification
error of 17%. The lowest published classification errors
obtained on this dataset are 2% for Markov Random
Fields [36], 1.53% for a dictionary of textons [15], 1.4%
for Basic Image Features [11] and 1% for histograms
of image variations [6]. A PCA classifier applied to
a Fourier power spectrum estimator also reaches 1%
error. The power spectrum is estimated with windowed
Fourier transforms calculated over half-overlapping win-
dows, whose squared modulus are averaged over the
whole image to reduce the estimator variance. A cross-
validation optimizes the window size to 2J = 32 pixels.

For the scattering PCA classifier, the cross validation
chooses an optimal scale 2J equal to the image width
to reduce the scattering estimation variance. Indeed,
contrarily to a power spectrum estimation, the variance
of the scattering vector decreases when 2J increases. Fig-
ure 9 displays the scattering coefficients S[p]X of order
m = 1 and m = 2 of a CureT textured image X . A PCA
classification with only first order coefficients (mmax = 1)
yields an error 0.5%, although first-order scattering co-
efficients are strongly correlated with second order mo-
ments, whose values depend on the Fourier spectrum.
The classification error is improved relatively to a power
spectrum estimator because SX [λ1]X = |X ⋆ ψλ1

| ⋆ φ2J

is an estimator of a first order moment S[λ1]X = E(|X ⋆
ψλ1

|) and thus has a lower variance than second order
moment estimators. A PCA classification with first and
second order scattering coefficients (mmax = 2) reduces
the error to 0.2%. Indeed, scattering coefficients of order
m = 2 depend upon moments of order 4, which are
necessary to differentiate textures having same second
order moments as in Figure 5. Moreover, the estimation
of S[λ1, λ2]X = E(||X ⋆ ψλ1

| ⋆ ψλ2
|) has a low variance

because X is transformed by a nonexpansive operator
as opposed to Xq for high order moments q ≥ 2. For
m = 2, the cross validation chooses affine space models
of small dimension d = 16. However, they still produce
a small average approximation error (20) σ2

d = 2.5 · 10−1

and the separation ratio (21) is ρ2
d = 3.

The PCA classifier provides a partial rotation invari-
ance by removing principal components. It mostly aver-
ages the scattering coefficients along rotated paths. The
rotation of p = (2−j1r1, ..., 2

−jmrm) by r is defined by
rp = (2−j1rr1, ..., 2

−jmrrm). This rotation invariance ob-
tained by averaging comes at the cost of a reduced rep-
resentation discriminability. As in the translation case, a
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Fig. 8. Examples of textures from the CUReT database with normalized mean and variance. Each row corresponds to
a different class, showing intra-class variability in the form of stochastic variability and changes in pose and illumination.

(a) (b) (c)

Fig. 9. (a): Example of CureT texture X(u). (b): First order scattering coefficients S[p]X , for 2J equal to the image
width. (c): Second order scattering coefficients S[p]X(u).

TABLE 9
Percentage of classification errors of different algorithms on CUReT.

Training X MRF Textons BIF Histo. Four. Spectr. Scat. m = 1 Scat. m = 2

size PCA [36] [15] [11] [6] PCA PCA PCA
46 17 2 1.5 1.4 1 1 0.5 0.2

multilayer scattering along rotations recovers the infor-
mation lost by this averaging with wavelet convolutions
along rotation angles [26]. It preserves discriminability
by producing a larger number of invariant coefficients
to translations and rotations, which improves rotation in-
variant texture discrimination [26]. This combined trans-
lation and rotation scattering yields a translation and
rotation invariant representation, which remains stable
to deformations [25].

5 CONCLUSION

A scattering transform is implemented by a deep convo-
lution network. It computes a translation invariant repre-
sentation which is Lipschitz continuous to deformations,
with wavelet filters and a modulus pooling non-linearity.
Averaged scattering coefficients are provided by each
layer. The first layer gives SIFT-type descriptors, which
are not sufficiently informative for large-scale invariance.

The second layer provides important coefficients for
classification.

The deformation stability gives state-of-the-art clas-
sification results for handwritten digit recognition and
texture discrimination, with SVM and PCA classifiers.
If the data set has other sources of variability due to
the action of another Lie group such as rotations, then
this variability can also be eliminated with an invariant
scattering computed on this group [25], [26].

In complex image databases such as CalTech256 or
Pascal, important sources of image variability do not
result from the action a known group. Unsupervised
learning is then necessary to take into account this
unknown variability. For deep convolution networks,
it involves learning filters from data [20]. A wavelet
scattering transform can then provide the first two layers
of such networks. It eliminates translation or rotation
variability, which can help learning the next layers.
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Similarly, scattering coefficients can replace SIFT vectors
for bag-of-feature clustering algorithms [8]. Indeed, we
showed that second layer scattering coefficients pro-
vide important complementary information, with a small
computational and memory cost.
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