
ME/CS 133(a): Solution to Homework #1
(Fall 2017/2018)

Solution to Problem 1:

Let the 2 × 1 vectors 1~v =
[
1vx

1vy
]T

and 2~v =
[
2vx

2vy
]T

have associated complex
representations 1ṽ = 1vx + i 1vy and 2ṽ = 2vx + i 2vy respectively (where i2 = −1). Recall
that the goal of this problem is to show that the complex number formula:

1ṽ = d̃12 + eiθ12 2ṽ . (1)

is equivalent to the planar coordinate transformation:

1~v = ~d12 +R(θ12)
2~v . (2)

Let’s evaluate the right hand side of expression (1) using the standard rules for multiplication
of complex numbers1:

d̃12 + eiθ12 2ṽ = (x+ iy) + (cos θ12 + i sin θ12)(
2vx + i 2vy)

= (x+ 2vx cos θ12 − 2vy sin θ12) + i(y + 2vx sin θ12 + 2vy cos θ12) (3)

where we have used Euler’s formula (eiθ = cos θ + i sin θ). Matching the real and complex
portions of Equation (3) with the real and complex parts of 1ṽ in the left hand side of
Equation (1), we see that

1vx = x+ 2vx cos θ − 2vy sin θ (4)
1vy = y + 2vx sin θ + 2vy cos θ . (5)

These equations are equivalent to

1~v = ~d12 +

[
cos θ12 − sin θ12
sin θ12 cos θ12

]
2~v (6)

Solution to Problem 2: Recall that the location of the pole is fixed in both the moving and
observer reference frames. Hence, before displacement, the pole is located at some position
B~p as seen by an observer in the fixed B frame. After displacement, the observer in the body
fixed C frame also sees the pole in his/her coordinates at point B~p. However, the moving

body has displaced relative to the fixed observer by amount D12 = (~d12, R12). But points in
the observer and displaced reference frames are related by a coodinate transform. Since the
pole is at the same location in both the fixed and moving frames, it must be true that:

B~p = ~d12 +R12
B~p.

This equation can be solved to find the pole location:

B~p = (I −R12)
−1~d12

1If ã = a1 + ia2 and b̃ = b1 + ib2, then ãb̃ = (a1b2 − a2b2) + i(a1b2 + a2b1).

1



Of course, the matrix (I − R12) must be invertible,which will alwas be true except when
R12 = I. In this case, the motion is a pure translation, which is viewed as a rotation about
the “pole at infinity.”

B) In Frame B, the pole is located at: B~p = (I −R12)
−1~d12

C) In Frame C, the vector describing the pole has exactly the same value as seen by the

observer in Frame B: C~p = (I −R12)
−1~d12

A) In Frame A, the expression for the pole vector is obtained by a simple coordinate trans-

formation of the expression in Frame B: A~p = ~d01 +R01
B~p = ~d01 +R01(I −R12)

−1~d12

Problem 3: To find the pole of the displacement: D2 = (x, y, θ) = (2.0, 2.0, 45.0o), substi-
tute into the above results:

B~p = (I −R12)
−1~d12 =

[(
1 0
0 1

)
−
(

cos(45o) − sin(45o)
sin(45o) cos(45o)

)]−1 [
2.0
2.0

]
=

[
1−

√
2
2

√
2
2

−
√
2
2

1−
√
2
2

]−1 [
2.0
2.0

]
=

[
−1.41421

3.4142

]
(7)

You could report this result in Frame B, or transform the results to frame A.

A~p = ~d01 +R01
B~p =

[
1.0
2.0

]
+

(
cos(30o) − sin(30o)
sin(30o) cos(30o)

)[
−1.414215

3.4142

]
(8)

=

[
−1.9319
4.2497

]
(9)

Problem 4: To show that a transformation is a pure rotation when viewed in a reference
frame at the pole, select a new reference frame, denoted by D, whose basis vectors are parallel
to Frame B and whose origin lies at the pole of the displacement. Let ~p denote the location
of the pole, as seen by an observer in Frame B. The location of Frame B relative to Frame
D is a pure translation of amount ~p, and therefore, DDB = (−~p, I). The displacement of the
body from the first position to the second position, as now observed in Frame D, is obtained
by a similarity transform DDBD12D

−1
DB:

DDBD12D
−1
DB = (−~p, I)(~d12, R12)(−~p, I)−1 (10)

= (−~p, I)(~d12, R12)(+~p, I) (11)

= (−~p, I)((~d12 +R12~p), R12) (12)

= ((~d12 + (R12 − I)~p), R12) (13)

Hence, if ~p = −(R12−I)−1~d12 = (I−R12)
−1~d12, then DDBD12D

−1
DB = (~0, R12). I.e., as viewed

in reference Frame D, the displacement is a pure rotation by amount R12.

2



Problem 5:

Part (a): There are many ways that one can prove that reflections preserve length. Here
is one approach (see Figure 1).

Figure 1: Geometry of Planar Rigid Body Reflection

Select any two non-identical points, A and B, in a rigid body. After reflection, those points
become A

′
and B

′
. Form the right triangle ABD, where the line BD is chosen to be

perpendicular to the line AA
′
. Similarly, in the reflected body, form the right triangle

A
′
B

′
D

′
. Simple geometric arguments show that since the distance |BD| and |B′

D
′| are

equal, and the distances |AD| and |A′
D

′| are equal, then |AB| = |A′
B

′|. Hence, the distance
between A and B is preserved under reflection. Since A and B were chosen randomly, the
result will hold for any non-identical pair of points in the body. Thus, distance is always
preserved under reflection.

Part (b): Generally, physically meaningful planar displacements are not equivalent to a
single reflection. To see this, define three points (A,B,C) in the body of Figure 1. Because
the body is rigid, one can think of points (A,B,C) as forming a rigid triangle. Consider the
triangle formed from the reflected points (A

′
, B

′
, C

′
). Note that it is impossible physically

translate (A,B,C) to (A
′
, B

′
, C

′
). Finally, note that any rigid body planar displacement can

generally be realized as the result of two sequential reflections.

An alternative proof for problem 5:

Part (a):

Without loss of generality, we can select any coordinate system on the plane. We choose an
xy-coordinate system such that the y-axis is coincident with the line of reflection. Under this
coordinate system, the reflection of any point (x, y) has coordinates (−x, y). Let A = (x1, y1)
and B = (x2, y2) be any two points on the rigid body, with corresponding reflections A′ and
B′ respectively. Then, A′ = (−x1, y1) and B′ = (−x2, y2). To see that |AB| = |A′B′|, we can
just plug their coordinates into the distance formula: |AB| =

√
(x2 − x1)2 + (y2 − y1)2 =

|A′B′| =
√

(−x2 − (−x1))2 + (y2 − y1)2.
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Part (b):

As in part (a), without loss of generality, we can select an xy-coordinate system on the plane
such that the y-axis is coincident with the line of reflection. Under this coordinate system,
the reflection of any point (x, y) has coordinates (−x, y). Let D be the reflection operator,
so that D : (x, y)→ (−x, y).

We prove by contradiction that operator D cannot be a planar displacement operator. As-
sume that D is represented by some planar displacement operator, such that D = (d, R) for
some vector d and rotation matrix R.

Let B be the set of points on the body. We assume that there exists a point P0 ∈ B and a
number ε > 0 such that Nε(P0) = {X ∈ R2| ||X − P0||2 < ε} ⊆ B. This just means that
there exists some open set that is contained inside B. Letting P0 = (x0, y0), there must exist
some points P1 = (x1, y0), P2 = (x0, y1), and P3 = (x1, y1), where x0 6= x1 and y0 6= y1. For
example, if you set x1 = x0 + ε

4
and y1 = y0 + ε

4
, then clearly {P0, P1, P2, P3} ⊂ Nε(P0) ⊆ B.

The reflections of these points under our reflection operator are P ′0 = (−x0, y0), P ′1 =
(−x1, y0), P ′2 = (−x0, y1), P ′3 = (−x1, y1).

Next, we note that D cannot represent a pure translation, i.e. R 6= I. This is because
under a pure translation, each point must have an equal distance of displacement under the
operator; however, |P0P

′
0| = 2|x0| 6= |P1P

′
1| = 2|x1|. This means that D must have a finite

pole; in other words, the pole of the planar displacement is not located at infinity.

Consider the displacements P0 → P ′0 and P1 → P ′1. Knowing the movement of these points
under D is enough to fully define the operator D: as discussed in class, a planar displacement
has 3 degrees of freedom. The movement of these 2 points is a pure rotation around the
point P = (0, y0). We can see that this must be the pole of the displacement, as (1) the pole
is unique for any displacement that is not a pure translation, and (2) the reflections P ′0 and
P ′1 are both achieved by rotating P0 and P1 about P = (0, y0) by an angle of π radians.

Consider the displacements P2 → P ′2 and P3 → P ′3. By the same logic as that of the previous
paragraph, the pole of the displacement must be at (0, y1) in order for the movement of these
2 points to be a pure rotation about the pole.

Thus, we have found that the pole of the displacement operator is at P = (0, y0) = (0, y1).
Since y0 6= y1, we have arrived at a contradiction! Thus, no planar displacement can equiv-
alently perform a reflection.
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