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Abstract

Used to analyze the time-evolution of fluid flows, dynamic mode decomposition
(DMD) has quickly gained traction in the fluids community. However, the existing
DMD literature focuses primarily on applications, rather than theory. In this thesis,
we present new results of both types.

First, we propose a new definition in which we interpret DMD as an approximate
eigendecomposition of the best-fit (in a least-squares/minimum-norm sense) oper-
ator relating two data matrices. This definition preserves the link between DMD
and Koopman operator theory; it also highlights the relationship between DMD
and linear inverse modeling. Using our definition, we are able to generalize the
DMD algorithm to arbitrary datasets, not just sequential time-series (as are typi-
cally considered). Then, turning to applications, we use DMD to estimate the slow
eigenvectors that dominate the long-time behavior of impulse responses. We use
these in developing a variant of balanced proper orthogonal decomposition that is
both more accurate and more computationally efficient.

We also apply DMD to analyze oscillatory fluid flows, which is its most common
use. In one example, we apply both DMD and proper orthogonal decomposition
(POD) to study the effects of zero-net-mass-flux actuation on separated flows. We
find a correlation between the separation bubble height and the distribution of
energy among the POD modes. We also find that the most effective control strategy
is characterized by frequency lock-on between the wake and the shear layer. In
another example, we use DMD to investigate the source of low-frequency oscillations
in shock-turbulent boundary layer interactions. Using data from direct numerical
simulations, we find modes whose characteristics match those suggested by linear
stability analysis.

The last part of this thesis deals with issues of time-resolution. DMD requires
data that are collected at least twice as fast as any frequency of interest. We propose
two approaches for identifying oscillatory flow structures when such sampling rates
are not possible. First, we demonstrate a procedure for dynamically estimating a
time-resolved trajectory from non-time-resolved data; DMD can computed from the
estimated trajectory. Second, we develop a method in which oscillatory modes are
computed using compressed sensing techniques.
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Chapter 1

Introduction

Dynamic mode decomposition (DMD) is a method used to analyze the time evolu-
tion of fluid flows. First introduced in 2008, DMD has quickly gained a following.
However, the majority of its practitioners have focused on applying the method,
rather than on developing its underlying theory. In this thesis, we strive to do both.
This chapter sets the stage for such a discussion, first motivating the need for meth-
ods like DMD, then providing a brief history of modal decomposition techniques in
fluid mechanics, and finally, outlining the organization and key contributions of this
thesis.

1.1 Motivation

Fluid mechanical devices abound in engineering. From pumps to compressors to
airplanes to rockets, it is easy to think of devices that operate in fluid environ-
ments. In a sense, we are lucky, in that most fluid mechanical systems of interest
are described by the same governing equations: the Navier–Stokes equations. Un-
fortunately, the Navier–Stokes equations are a set of nonlinear partial differential
equations (PDEs) that give rise to all manner of dynamics, including those char-
acterized by bifurcations, limit cycles, resonances, and full-blown turbulence. As
a result, the complex geometries and challenging flow regimes (e.g., high speeds,
pressures, or temperatures) typical in engineered systems can easily confound our
ability to generate analytic solutions. This forces us to rely on experiments and
high-performance computations when studying such systems.

As experiments and computations become more advanced, they generate ever-
increasing amounts of data. (In 2011, the amount of data (of all types) generated
worldwide was more than double the amount of available storage space [19, 60]!)
While having more data is certainly better than having less, the sheer size of modern
datasets poses its own challenges. Manipulating such data to find anything but the
most obvious trends requires a skillset all its own. This has led to a growing need for
data-driven methods that can take a dataset and characterize it in meaningful ways
with minimal guidance. Along with the development of the methods themselves,
there is a parallel need to develop foundational theory upon which the methods
can rest. This is especially key in the data-driven approach, as we are relying on
the data itself to guide us, rather than imposing our expert scientific knowledge.
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Without sound theory, we may design algorithms that in some cases produce results
that we cannot explain or trust.

Many in fluid mechanics have turned to modal decomposition as the tool of choice
for data-driven analysis. Generally, a modal decomposition takes a set of data and
from it computes a set of modes, or characteristic features. The meaning of the
modes depends on the particular type of decomposition used. However, in all cases,
the hope is that the modes identify features of the data that elucidate the underlying
physics.

This thesis focuses in particular on DMD, which has gained popularity as a tool
for analyzing the dynamics of nonlinearly evolving fluid flows. In fact, it is the
only modal decomposition developed specifically for this task. Proper orthogonal
decomposition (POD), perhaps the most common modal decomposition in the fluids
community, is at its heart a statistical method designed to identify the features of
a flow most important for reconstructing a dataset. It can certainly be applied to
flows with nonlinear dynamics, but the POD modes are not necessarily optimal for
modeling those dynamics. For instance, when analyzing a time-series, the POD
modes remain unchanged if the data are reordered; the modes do not depend on the
time evolution/dynamics encoded in the data. Balanced POD (BPOD) does identify
modes that are dynamically important, but it is only applicable to flow control
configurations, in which there are clearly defined inputs (actuators or disturbances)
and outputs (sensor measurements). Even more restrictive, it is only applicable to
systems where the input-output dynamics are linear.

In engineering flows, nonlinear dynamics may be unavoidable. Furthermore,
as we continue to push for better performance and higher efficiency in engineered
devices, an understanding of transient dynamics, not just steady-state behaviors,
becomes critical. As such, it seems there is a clear role for DMD in engineering
analysis going forward. In this thesis, we not only provide examples of DMD analy-
sis, but also further develop DMD theory. We hope that by doing so, we give DMD
practitioners a solid framework within which to work, demonstrating strategies for
how to leverage DMD in different situations and establishing theory that makes it
clear what DMD analysis can, and just as importantly cannot, tell us.

1.2 A brief history

To place DMD in the proper context, we must consider the recent history of modal
decompositions in fluid mechanics. The most well-known of these is POD, which is
attributed to Lumley [96, 97]. POD is a method that identifies the set of orthogonal
modes that best reconstructs a dataset. That is, suppose we are given a dataset
and asked what single mode bests represents the entirety of that data. The solution
is the first POD mode. If we are allowed two (orthogonal) modes to represent the
data, then the optimal choice is the first two POD modes, and so on. (This notion of
optimality is made more precise in Appendix A.) POD is known by many different
names, depending on the field of application. Of these, principal component analysis
(PCA) is the oldest, generally traced back more than a century to Pearson [123].
Other equivalent methods include the Hotelling transform [79, 80], the Karhunen–
Loève transform [94], and empirical orthogonal function (EOF) analysis [95]. All of
these reduce to computing the singular value decomposition (SVD) of a dataset.
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The utility of POD was first demonstrated to the fluids community in the study
of turbulent boundary layers, due mainly to the work of Lumley [96, 97], Sirovich
[155], and Aubry et al. [12]. Since then, the number of fluids researchers using POD
has exploded, with a quick web search for “POD and fluids” returning nearly 700
results. It has also spawned a number of variants, including double POD [153, 174],
observer-inferred decomposition (OID) [140], and temporal POD [64], among others.
(We note that though it has a similar name, BPOD is more of a related method
than a variant, as its formulation is quite distinct from that of POD.) Due to the
success of POD, the fluids community has been fairly receptive to the continued
development and application of modal decomposition techniques.

As a result, when DMD was first introduced at a 2008 conference by Schmid
and Sesterhenn [143], it was well-received and quickly embraced. The first archival
article featuring DMD was published by Rowley et al. [138] only a year later, in
2009. Schmid [141] followed this with his own archival article in 2010. These are
generally considered the two seminal works on the topic. However, they differ quite
significantly in the way they regard DMD.

The article by Rowley et al. [138] builds on the theory of Koopman spectral anal-
ysis, which dates back to 1931 [89]. Mezić [103] was the first to apply this theory for
the purposes of model reduction, with Rowley et al. [138] taking a similar approach
in the context of fluid mechanics. Both leverage the fact that based on Koopman
operator theory, there exists a set of modes, the “Koopman modes,” that completely
characterizes the dynamics of a nonlinear system. Each mode is associated with a
particular Koopman eigenvalue. Together, the modes and eigenvalues constitute a
Koopman decomposition, which can be considered a generalization of an eigenvec-
tor/eigenvalue decomposition to nonlinear systems. Rowley et al. [138] regard DMD
as a particular numerical algorithm that computes an approximate Koopman de-
composition. Thus, from this perspective, DMD is not an end in itself, but a means
to performing Koopman spectral analysis.

In contrast, the article by Schmid [141] focuses squarely on DMD. Again, the
method is presented as a generalization of linear stability analysis, but here it is
argued that DMD is valid for nonlinear systems because it analyzes a “linear tangent
approximation to the underlying flow” [141]. This is in contrast to the Koompan
operator framework discussed above. Schmid [141] also explores the connections
between DMD and POD, leading to an SVD-based algorithm that is more well-
conditioned than the companion matrix-based algorithm presented by Rowley et al.
[138]. This algorithm has become the standard for DMD practitioners.

The differing perspectives found in these two articles has led to some confusion
regarding the difference between Koopman modes and DMD modes. In fact, the
two terms are often used interchangably. At this point in time, both Koopman and
DMD analysis rely on the same algorithms. It is only the theoretical framework in
which the results are interpreted that differs.

Though it has been fewer than five years since its introduction, DMD has al-
ready been used to analyze a wide variety of flows. Rowley et al. [138] studied a
jet in crossflow, showing that Koopman analysis correctly identifies the shedding
frequency when linear stability analysis cannot. Furthermore, the Koopman modes
decouple the shear-layer and wall vortices; POD modes mix them together. Schmid
[141] applied DMD to a number of examples, including the flow over a square cav-
ity, the wake behind a flexible membrane, and a jet between two cylinders, showing
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that DMD is viable for both computational and experimental data. Others have ap-
plied DMD to the flow around high-speed trains [109], instabilities in annular liquid
sheets [47], shock-turbulent boundary layer interactions [73], detonation waves [102],
cavity flows [146], and various jets [142, 144, 145, 151].

There have also been a number of theoretical efforts. For instance, Duke et al.
[48] analyzed the error properties of DMD when attempting to capture the growth
rate of flow instabilities. Chen et al. [31] built on the work of Rowley et al. [138], of-
fering existence and uniqueness theorems and showing further connections between
DMD and Fourier analysis. That article also proposed a variant of DMD called
“Optimized DMD,” which in some cases is better able to identify characteristic flow
frequencies. Recently, Goulart et al. [65] introduced the “Optimal Mode Decom-
position,” another closely related method. It involves a simultaneous optimization
of a modal subspace and a “dynamic matrix,” whereas DMD can be interpreted as
a similar optimization where the modal subspace is constrained to be spanned by
POD modes. The review article by Mezić [104] offers a nice overview of the DMD
literature.

1.3 Organization and contributions

The contributions of this thesis comprise two main parts. First, we develop a rig-
orous, linear algebra-based theory of DMD, building upon and extending previous
work. In particular, we present a precise definition of DMD and show that it agrees
with the algorithms developed by Rowley et al. [138] and Schmid [141]. From this
definition, we build an entire DMD framework, which we use to explain seemingly
anomolous results, develop extended algorithms, and elucidate connections between
DMD and other topics. Second, we demonstrate strategies for implementing DMD
in practice. Not only do we apply DMD to a number of fluid flows, but we also use
DMD in conjunction with other methods, such as BPOD and dynamic estimation.

Chapter 2 deals with the theory of DMD. In Section 2.2, we present our new def-
inition of DMD. Topics relating to the DMD algorithm are discussed in Section 2.3.
Numerical examples demonstrating the utility of this generalized theory are pre-
sented in Section 2.4. In Section 2.5, the relationship between DMD and Koopman
spectral analysis is discussed in detail, with care taken to identify cases where the
two theories agree and cases where they do not. Then in Section 2.6, we show that
under certain assumptions, DMD is equivalent to linear inverse modeling, a method
from the climate science literature.

The remainder of this thesis centers on applications of DMD. Chapter 3 presents
an extension of the BPOD algorithm that uses DMD to compute the slow eigen-
vectors and eigenvalues that dominate the tails of impulse responses. By doing so,
we are able to simultaneously improve the speed and accuracy of BPOD computa-
tions. Chapter 4 focuses on DMD anlaysis of oscillatory fluid flows. In one example,
we use DMD to look at the effect of open-loop, oscillatory forcing on the various
frequencies that characterize a separated flow. We also apply DMD to identify co-
herent structures associated with oscillatory instabilities observed in shock-turbulent
boundary layer interactions. Chapters 5 and 6 deal with time-resolution issues that
are common when working with experimental data. In the former, we use dynamic
estimation to estimate a time-resolved trajectory, applying DMD to the estimated
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state history. In the latter we compute oscillatory modes directly from non-time-
resolved data using compressed sensing techniques.

The work composing this thesis has resulted in the following archival publica-
tions:

• J. H. Tu and C. W. Rowley. An improved algorithm for balanced POD
through an analytic treatment of impulse response tails. J. Comput. Phys.,
231(16): 5317-5333, June 2012.

• J. H. Tu, C. W. Rowley, J. Griffin, L. N. Cattafesta III, A. Hart,

and L. S. Ukeiley. Integration of non-time-resolved PIV and time-resolved
velocity point sensors for dynamic estimation of time-resolved velocity fields.
Exp. Fluids, 54(2): 1429, Feb. 2013.

• J. H. Tu, D. M. Luchtenburg, C. W. Rowley, S. L. Brunton, and

J. N. Kutz. Generalizing dynamic mode decomposition to a larger class of
datasets. J. Comput. Dyn. (in preparation).

• J. H. Tu, C. W. Rowley, and J. N. Kutz. Spectral analysis of fluid flows
using sub-Nyquist-rate PIV data. Exp. Fluids (in preparation).

It has also been presented at the following conferences:

• J. H. Tu and C. W. Rowley. Dynamic mode decomposition with sub-
Nyquist-rate data samples. SIAM Conference on Applications of Dynamics
Systems, May 2013.

• J. H. Tu, C. W. Rowley. An improved algorithm for balanced proper or-
thogonal decomposition using analytic tails. APS Division of Fluid Dynamics
— 65th Annual Meeting, Nov. 2012.

• J. H. Tu, C. W. Rowley, J. Griffin, L. N. Cattafesta III, A. Hart,

and L. S. Ukeiley. Integration of non-time-resolved PIV and time-resolved
velocity point sensors for dynamic estimation of time-resolved velocity fields.
50th AIAA Aerospace Sciences Meeting, AIAA paper 2012-0033, Jan. 2012.

• J. H. Tu, C. W. Rowley, S. Aram, and R. Mittal. Identification of
frequency lock-on using Koopman spectral analysis. APS Division of Fluid
Dynamics — 64th Annual Meeting, Nov. 2011.

• J. H. Tu, C. W. Rowley, E. Aram, and R. Mittal. Koopman spec-
tral analysis of separated flow over a finite-thickness flat plate with elliptical
leading edge. 49th AIAA Aerospace Sciences Meeting, AIAA paper 2011-0038,
Jan. 2011.

Details on related work lying outside the scope of this thesis can be found here:

• K. K. Chen, J. H. Tu, and C. W. Rowley. Variants of dynamic mode
decomposition: connections between Koopman and Fourier analyses. J. Non-
linear Sci., 22(6): 887–915, Dec. 2012.

• B. A. Belson, J. H. Tu, and C. W. Rowley. A parallelized model reduc-
tion library. ACM T. Math Software (submitted).
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1.4 Use of notation

This thesis brings together work from many fields, including fluid mechanics, con-
trol theory, stochastic estimation, and compressed sensing, to name a few. Rather
than attempt to develop a single set of non-overlapping notation encompassing the
combined set of variables used in this thesis, we have decided to adhere as closely as
possible to the conventions of each individual field. This avoids the use of unfamil-
iar variables for familiar quantities, which could be a source of confusion. As such,
certain variables may take on different meanings depending on the context. We are
of course careful to define notation as it is introduced. However, it should be noted
that between chapters, variable names may be reused. In other words, a particular
variable name may not retain its meaning across chapters.
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Chapter 2

Extensions of DMD theory

Theoretical results concerning dynamic mode decomposition (DMD) deal primar-
ily with sequential time-series in which the measurement dimension is much larger
than the number of measurements taken. In this chapter, we present a theoretical
framework that generalizes DMD to a larger class of datasets. Using this frame-
work, we develop extensions of the DMD algorithm to non-sequential time-series
and demonstrate their utility through a number of examples. We also provide ex-
amples showing both the potential benefits and the potential pitfalls of applying
DMD to rank-deficient datasets. (We more precisely define what we mean by the
rank of a dataset in Section 2.1.) Such computations are not considered in the exist-
ing literature, but can be understood using our generalized framework. Though our
theory is built entirely on linear algebra, it preserves the connections between DMD
and Koopman operator theory. It also highlights the connections between DMD
and linear inverse modeling (LIM), a method from the climate science community.

The remainder of this chapter is organized as follows: in Section 2.2, we present
and discuss our new definition of DMD. In Section 2.3 we show that our definition
agrees with the accepted, algorithmic definition of DMD and develop a general-
ized variant of the standard algorithm. A number of examples are presented in
Section 2.3. These explore the application of DMD to rank-deficient datasets and
non-sequential time-series. Sections 2.5 and 2.6 describe the connections between
DMD and Koopman operator theory and between DMD and LIM, respectively. We
summarize our results in Section 2.7.

The material presented in this chapter was developed in collaboration with Dirk
M. Luchtenburg (Princeton University), Professor J. Nathan Kutz (University of
Washington), and Steven L. Brunton (University of Washington). Dirk M. Lucht-
enburg provided valuable insight regarding practical implications of this theory.
Professor J. Nathan Kutz provided the impetus for exploring the connections be-
tween DMD and LIM; the equivalence of the methods was proven with the help of
Steven L. Brunton.

2.1 Motivation

The main theoretical results regarding DMD build on the theory of Krylov sub-
spaces [31, 138, 141], due to the original derivation of DMD as a variant of the
Arnoldi algorithm [138, 143]. As such, these results apply only to DMD computa-
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tions wherein the underlying dataset comes from a sequential time-series. Further-
more, these results assume that when the last element of the time-series is ignored,
the elements of the time-series are linearly independent; we say that such a dataset
(comprising all but the last element of the time-series) has full rank. (Some results
also require that the DMD eigenvalues are distinct.) In contrast, the SVD-based
DMD algorithm [141] produces unique modes and eigenvalues even when these con-
ditions are not satisfied. Given that this algorithm has become standard among
DMD practitioners, a complete theory of DMD should account for the validity (or
lack thereof) of such computations.

To develop such a theory, we build on the idea that DMD is able to characterize
nonlinear dynamics through an analysis of some approximating linear system, first
suggested by Schmid [141]. Consider two data matrices X and X� with arbitrary
but matching sizes. Solving AX = X� for A using a right pseudoinverse yields the
best-fit linear operator relating X and X�, in a least-squares/minimum-norm sense.
We show that DMD can be defined as an approximate eigendecomposition of this
approximating linear operator. (Note that this operator is not defined abstractly,
but rather in terms of the data matrices X and X�.)

There is of course no guarantee that analyzing this particular approximation is
meaningful when X and X� are generated by nonlinear dynamics. To this end, we
show that when X has linearly independent columns, our definition preserves the
connections between DMD and Koopman operator theory. This is key, as it allows
us to interpret DMD as an approximation to Koopman spectral analysis. We can
then be confident that DMD is useful for characterizing nonlinear dynamics. When
X is rank-deficient, the Koopman analogy can break down and DMD analysis may
produce either meaningful or misleading results. In Section 2.4 we show an exam-
ple of each and explain the results using our approximating-operator definition of
DMD. (For a more detailed investigation of how well DMD eigenvalues approximate
Koopman eigenvalues, we refer the reader to [14].)

By defining DMD in this way, we emphasize the nature of DMD analysis, rather
than its implementation. This allows us to consider alternative DMD algorithms.
For instance, it leads to natural extensions of DMD that deal with concatenated
datasets and non-uniformly sampled data. It also highlights connections between
DMD and linear inverse modeling (LIM), a method developed in the climate science
community decades ago [124, 125]. In fact, under certain conditions, DMD is equiv-
alent to LIM. As such, it stands to reason that practioners of DMD could benefit
greatly from an awareness of the climate science/LIM literature.

2.2 A new definition

DMD is typically applied to data matrices X and X� whose columns are taken
from a sequential time-series {xk}mk=0. In this section, we relax this restriction
on the data matrices, developing a definition of DMD that applies to generic X
and X�. We do so by defining DMD as an approximate eigendecomposition of the
operator A � X�X†, where X† is the Moore-Penrose generalized inverse of X. This
operator is the least-squares/minimum-norm solution to the potentially over- or
under-constrained problem AX = X�, and as such we can consider A to be the
best-fit operator relating X and X�.
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Definition 1. Consider X, X� ∈ Rn×m. Define the operator A as

A � X�X†
,

where X† indicates the Moore-Penrose pseudoinverse of X. Let the SVD of X be
given by

X =
�
Φ · · ·

� �Σ 0
0 0

� �W∗

...

�
, (2.1)

with Φ ∈ Rn×q, Σ ∈ Rq×q, and W ∈ Rm×q. q is the rank of X, Σ is diagonal, and
W∗ denotes the conjugate transpose of W. Then we can write

A = X�WΣ−1Φ∗
, (2.2)

with its projection onto the column space of Φ∗ given by

Ã � Φ∗AΦ. (2.3)

Denoting the eigendecomposition of Ã by

ÃṼ = ṼΛ, (2.4)

the DMD eigenvalues are given by the eigenvalues lying on the diagonal of Λ (a
diagonal matrix), and the corresponding DMD modes by the columns of

Ψ � ΦṼ. (2.5)

Together, the pair (Ψ,Λ) composes the dynamic mode decomposition of the data
(X,X�).

Remark 1. In (2.1), the columns of Φ are the POD modes of the matrix X. As
such, (2.3) defines Ã to be the POD projection of A and (2.5) defines the DMD
modes to be a linear combination of the POD modes.

From this definition, it is clear that Ψ and Λ are related to the operator A. To
elucidate the nature of this relationship, we make use of the following property:

Theorem 1. If the columns of X� are spanned by those of X, the DMD modes and
eigenvalues defined in Definition 1 are eigenvectors and eigenvalues of the operator
A defined by (2.2).

Proof. Substituting (2.3) into (2.4), we see that the DMD modes and eigenvalues
satisfy

Φ∗AΦṼ = ṼΛ

ΦΦ∗AΦṼ = ΦṼΛ

ΦΦ∗AΨ = ΨΛ. (2.6)

(We note that Φ∗Φ = W∗W = I, but in general ΦΦ∗ and WW∗ are not equal to
the identity matrix.) As such, they are eigenvectors and eigenvalues of the projection
of A onto the column space of Φ. Because the columns of Φ are orthonormal, we
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can write
X� = ΦΦ∗X� +R�

,

where Φ∗R� = 0. Combining this expression with (2.2), we find that A can be
written as

A =
�
ΦΦ∗X� +R��WΣ−1Φ∗

= ΦΦ∗A+R�WΣ−1Φ∗
. (2.7)

Plugging (2.7) into (2.6) and making use of (2.5), along with the fact that Φ∗Φ is
the identity, we find that

(A−R�WΣ−1Φ∗)Ψ = ΨΛ

AΨ−ΨΛ = R�WΣ−1Ṽ. (2.8)

When the columns of X� are spanned by those of X (or equivalently, those of Φ), we
have R� = 0 and the DMD modes and eigenvalues are eigenvectors and eigenvalues
of A.

Remark 2. We note that when R� is not identically zero, there is no guarantee that
the pair (Ψ, Λ) closely approximates the true eigendecomposition of A. However,
we find that in practice, R� being small is generally a good metric for the conver-
gence of the DMD modes and eigenvalues to the correct values. Arguments similar
to the one used to prove Theorem 1 are used to prove the convegence of the Arnoldi
algorithm [139], which is a standard algorithm for iteratively computing approximate
eigendecompositions of a linear operator. In fact, when applied to sequential time-
series, DMD can be considered a variant of the Arnoldi algorithm [138, 141]. As
such, we consider DMD to be a method for computing an approximate eigendecom-
position of A.

Given Definition 1 and Theorem 1, we see that the defining property of DMD
is that it yields an approximate eigendecomposition of the best-fit linear operator
relating two data matrices. Consequently, any algorithm that produces modes and
eigenvalues satisfying Definition 1 (and thus Theorem 1) should be considered an
implementation of DMD. While one could compute a DMD using the equations
given in Definition 1, we emphasize that this is not how DMD should be computed
in practice. For instance, if the size of the data vectors n is very large, then it may
be inefficient, or even impossible, to form the matrix A. We discuss practical DMD
algorithms in Section 2.3.

As DMD theory continues to develop, it may be necessary to consider more gen-
eral definitions of DMD. A number of possible generalizations arise naturally from
modifications of Definition 1. Suppose we continue to define DMD as an approx-
imate eigendecomposition of A, as given by (2.2). We can generalize Definition 1
by altering the nature of the approximation: rather than defining Ã through (2.3),
we can allow for more general projections of A. For instance, we can truncate the
SVD of X, keeping only the first r columns of Φ and truncating Σ and W accord-
ingly. (This was first suggested in [141].) The error in the eigendecomposition is
still given by (2.8), but with R� computed with respect to the truncated SVD basis.
This approach might be appropriate if the data X and X� are known to evolve in a
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relatively low-dimensional space, with excursions in other directions due primarily
to noise or unimportant dynamics. Other, more general projections could also be
used, though if DMD is to remain a data-driven method, such projections should
be constrained to bases lying in the column space of X.

2.3 Algorithms

Here we discuss how to compute DMD modes and eigenvalues that satsify the defi-
nition presented in Section 2.2. Specifically, we show that the standard, SVD-based
DMD algorithm agrees with Definition 1. We also present a variant of this algorithm
that extends DMD to non-sequential time-series. To do so, we take advantage of
the fact that Definition 1 allows for arbitrary data matrices X and X�.

2.3.1 Sequential time-series

There have been a number of algorithms proposed for computing DMD, which differ
mainly in their use of a companion matrix [138] versus an SVD [141]. (The two
approaches are equivalent for full-rank datasets [141].) All are presented in the
context of analyzing sequential time-series. The SVD-based algorithm has come to
dominate among DMD practioners due to its numerical stability. Effectively, it has
become the working definition of DMD.

In the standard SVD-based algorithm [141], the data matrices X and X� are
defined as

X �



x0 · · · xm−1



 , X� �



x1 · · · xm



 . (2.9)

It is assumed that the data come from a dynamical system whose evolution is given
by

xk+1 = f(xk),

where each xk ∈ Rn. (Alternatively, the vectors xk can be sampled from a continuous
evolution x(t), in which case xk = x(k∆t) and a fixed sampling rate ∆t is assumed.)
Thus X and X� describe the sequential time-series {xk}mk=0.

The rest of the algorithm follows Definition 1, except that Ã is computed directly,
rather than as a projection of A. Doing so relies on the following identity, which
can be derived by plugging (2.2) into (2.3) and recalling that Φ∗Φ is the identity:

Ã = Φ∗AΦ

= Φ∗(X�WΣ−1Φ∗)Φ

= Φ∗X�WΣ−1
. (2.10)

Thus DMD modes and eigenvalues computed using the standard SVD-based algo-
rithm satisfy Definition 1.

In fluid systems, the state dimension is generally much larger than the number
of snapshots (i.e., n � m). This can be due to the fine spatial resolution necessary
to accurately simulate the Navier–Stokes equations, or the fine image resolution
necessary to resolve pertinent flow features in experiments. As such, the use of (2.10)
is key, as it bypasses the computation of the n×n operator A. (It is not uncommon
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for n to be 106 or greater in fluid systems, making the storage of an n × n matrix
computationally prohibitive.) Further efficiency can be achieved by computing the
SVD of X using the so-called “method of snapshots,” often used to compute POD
modes [155]. To do so, we first solve the symmetric m×m eigenvalue problem

X∗XW = WΣ2
.

By definition, the columns of W and diagonal elements of Σ are right singular
vectors and values of X, respectively. We then define

Φ � XWΣ−1
. (2.11)

It is easy to show that Φ satisfies XX∗Φ = ΦΣ2, and as such, contains left singular
vectors of X. (Other efficiency-driven modifications to the standard SVD-based
algorithm are detailed in [171] and [21].)

The original presentation of the SVD-based algorithm in [141] discusses the
meaning of the DMD modes and eigenvalues in terms of a linear operator satisfying
AX = X�. Such an operator would exist if the trajectory {xk}mk=0 were generated
by linear dynamics xk+1 = Axk. It would also exist if the trajectory were nonlinear
but could be approximated locally by a linear operator. Using this operator, one
can show that (2.3) and (2.10) agree; in [141], this agreement is used to show the
connection between DMD and POD. However, the assumption that such an oper-
ator exists is unnecessary: Remark 1 establishes the same connection without it.
Similarly, the equivalence of (2.3) and (2.10) was shown above using only Defini-
tion 1. Thus we are able to prove the relationship between DMD and POD more
generally, eliminating the need to assume linear dynamics and extending the result
from sequential time-series to generic data matrices X and X�.

Another key result in DMD theory concerns sequential time-series {xk}mk=0 for
which xk+1 = Axk. Suppose the last snapshot xm is linearly dependent on the first
m snapshots. Then the DMD eigenvalues are equal to those of a companion matrix
describing the snapshot evolution. This is proven in both [138] and [141] and shows
that when applied to sequential time-series, DMD can be considered a variant of
the Arnoldi algorithm. However, this result is a special case of Theorem 1. In [138]
and [141], the first m− 1 columns of X� are also columns of X and the last column
is xm, so any non-zero entries of R� must lie in its last column. Thus the condition
that xm be linearly dependent on the first m snapshots is equivalent to R� = 0.
As such, we see that Theorem 1 generalizes this result from sequential time-series
to arbitrary data matrices X and X�. Furthermore, it does so without assuming a
linear relationship between the snapshots.

2.3.2 Non-sequential time-series

We observe that the standard SVD-based DMD algorithm, described in Sec-
tion 2.3.1, does not make use of the structure imposed by (2.9). That is, the
algorithm can be carried out for arbitrary X and X�. We recall from Definition 1
that DMD can be interpreted as an analysis of the best-fit operator relating X and
X�. This operator relates the columns of X to those of X� in a pairwise fashion. As
such, if we wish to use DMD to analyze the dynamics of a generic (not necessarily
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sequential) time-series, we simply require that the columns of X and X� be related
by the dynamics of interest.

As before, consider a dynamical system governed by

xk+1 = f(xk),

with each xk ∈ Rn. We can use DMD to analyze these dynamics by collecting
a sequence of m vectors {xk0 ,xk1 , . . . ,xkm−1} and a corresponding set {f(xk0) =
xk0+1, f(xk1) = xk1+1, . . . , f(xkm−1) = xkm−1+1}. Unlike in Section 2.3.1, the index
set {k0, k1, . . . , km−1} does not need to be sequential or ordered. Defining the data
matrices

X �



xk0 · · · xkm−1



 , X� �



xk0+1 · · · xkm−1+1



 , (2.12)

the DMD modes and eigenvalues are computed as described in Section 2.3.1.

Remark 3. We observe that only the pairwise correspondence of the columns of X
and X� is important, and not the overall ordering. That is, permuting the order of
the columns of X has no effect on the subsequent computation of DMD modes and
eigenvalues, so long as the same permutation is applied to the columns of X�. This
is true even for data taken from a sequential time-series (i.e., X and X� satisfy-
ing (2.9)).

By using (2.12) in place of (2.9), we generalize the algorithm presented in [141]
to a larger class of datasets: the data need not be sequential or uniformly sampled
in time, X and X� can have distinct columns, and there is no requirement of linear
independence in the columns of X. The computation of DMD from a sequential
time-series can be considered a special case of this generalized approach. However,
it is important to note that for sequential time-series, there exist memory-efficient
variants of the standard SVD-based DMD algorithm [21, 171]. These improved
algorithms take advantage of the overlap in the columns of X and X� (when defined
as in (2.9)) to avoid redundant computations. This is not possible for the general
definitions of X and X� given by (2.12).

2.4 Examples

In this section we present examples that demonstrate the utility of a DMD theory
based on Definition 1. The first two examples consider DMD computations involving
rank-deficient datasets, which are not treated in the existing DMD literature. We
show that in some cases, DMD can still provide meaningful information about the
underlying dynamical system, but in others, the results can be misleading. The
second two examples use the generalized approach described in Section 2.3.2 to
perform DMD analysis using non-sequential datasets. First, we use non-uniform
sampling to dramatically increase the efficiency of DMD computations. Then, we
concatenate time-series taken from multiple runs of an experiment, reducing the
effects of noise.
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2.4.1 Stochastic dynamics

Consider a system with stochastic dynamics

xk+1 = λxk + nk, (2.13)

where each xk ∈ R. We choose a decay rate λ = 0.5 and let nk be white noise
with variance σ

2 = 10. (This system was first used as a test of DMD in [186].)
Figure 2.1 (left) shows a typical trajectory for an initial condition x0 = 0. If we
apply DMD to this trajectory, we estimate a decay rate λ̃ = 0.55. This is despite
the fact that the nominal (noiseless) trajectory is simply given by xk = 0 for all k;
a global, linear analysis of the trajectory shown in Figure 2.1 (left) would identify a
stationary process (λ̃ = 0).

Because the existing DMD literature focuses on high-dimensional systems, ex-
isting DMD theory deals primarily with time-series whose elements are linearly
independent. As such, it cannot be applied to explain the ability of DMD to ac-
curately estimate the dynamics underlying this noisy data (a rank-one time-series).
Recalling Definition 1, we can interpret DMD in terms of a linear operator that
relates the columns of a data matrix X to those of X�, in column-wise pairs. Fig-
ure 2.1 (right) shows the time-series from Figure 2.1 (left) plotted in this pairwise
fashion. We see that though the data are noisy, there is clear evidence of a linear
relationship between xk and xk+1. For rank-deficient data, DMD approximates the
dynamics relating X and X� through a least-squares fit, and so it is no surprise that
we can accurately estimate λ from this time-series.

2.4.2 Standing waves

Because each DMD mode has a corresponding DMD eigenvalue (and thus a corre-
sponding growth rate and, in the case of a complex eigenvalue, frequency), DMD
is often used to analyze oscillatory behavior, whether the underlying dynamics are
linear or nonlinear. Consider data generated by a standing wave:

xk = sin(ωtk)v, (2.14)

where v is a fixed vector in Rn.
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Figure 2.1: (Left) Typical trajectory of a noisy one-dimensional system governed
by (2.13). (Right) Scatter plot showing the correlation of xk+1 with xk. DMD is
able to identify the relationship between future and past values of x even though
the dataset is rank-deficient.
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Such data can arise from a linear system. For instance, consider dynamics

ẋ = −ωy

ẏ = ωx.

If we measure only the state x, then we observe a standing wave. (Since our mea-
surement is one-dimensional, we simply have v = 1.) Such behavior can also arise
in nonlinear systems, for instance by measuring only one component of a multi-
dimensional limit cycle.

Suppose we compute DMD from data satisfying (2.14). By construction, the
columns of the data matrix X will be spanned by the single basis vector v. As such,
the SVD of X will generate a matrix Φ with a single column, and the matrix Ã will
be 1× 1. Then there will be precisely one DMD eigenvalue λ. Since we assume x is
real-valued, then so is λ, meaning it captures only exponential growth/decay, and
no oscillations. This is despite the fact that the original data are known to oscillate
with a fixed frequency.

The inability to capture standing waves is a general property of DMD. DMD
eigenvalues and modes are determined by the eigenvalue problem (2.4). If the data
matrix X is real-valued, then any complex eigenvalues of Ã must come in conju-
gate pairs, with corresponding complex conjugate eigenvectors. Consequently, any
oscillation with a frequency ω must correspond to a subspace whose dimension is at
least two. For this reason, DMD cannot correctly capture standing wave behavior,
which oscillates in a subspace of rank one. More generally, DMD cannot capture
oscillatory behavior occurring in a subspace whose rank is is less than twice the
number of observed frequencies.

We note that in practice, we observe the same deficiency when the data don’t
satisfy (2.14) exactly, so long as the dynamics are dominated by such behavior (a
standing wave). Thus the presence of random noise, which may increase the rank of
the dataset, does not alleviate the problem. This is not surprising, as the addition
of random noise should not enlarge the subspace in which the oscillation occurs.
However, if we append the measurement with a time-shifted value, i.e., performing

DMD on a sequence of vectors
�
xk xk+1

�T
, then we are often able to identify the

correct oscillation frequency.

2.4.3 Non-uniform sampling

Systems with a wide range of time scales can be challenging to analyze. If data are
collected too slowly, dynamics on the fastest time scales will not be captured. On
the other hand, uniform sampling at a high frequency can yield an overabundance
of data, which can prove challenging to deal with numerically. Such a situation can
be handled using the following sampling strategy:

X �



x0 xP · · · x(m−1)P



 , X� �



x1 xP+1 · · · x(m−1)P+1



 , (2.15)

where we again assume dynamics of the form xk+1 = f(xk). The columns of X and
X� are separated by a single iteration of f , capturing its fastest dynamics. However,
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the tuning parameter P allows a separation of time scales between the flow map
iteration and the rate of data collection.

We demonstrate this strategy using a flow control example. (The flow configura-
tion described below is the same one used in the last example in Section 3.5.) Con-
sider the flow past a two-dimensional cylinder, which is governed by the incompress-
ible Navier–Stokes equations. We simulate the dynamics using the fast immersed
boundary projection method detailed in [36, 158]. The (non-dimensionalized) equa-
tions of motion are

∂�u

∂t
+ (�u · ∇)�u = −∇p+

1

Re
∇2

�u+

�

∂B
�f(�x)δ(�x− �ξ) d�ξ

∇ · �u = 0,

(2.16)

where �u is the velocity, p is the pressure, and �x is the spatial coordinate. The
Reynolds number Re � U∞D/ν is a nondimensional parameter defined by the
freestream velocity U∞, the cylinder diameter D, and the kinematic viscosity ν.
∂B is the union of the boundaries of any bodies in the flow. �f is a boundary force
that can be thought of a Lagrange multiplier used to enforce the no-slip boundary
condition. δ is the Dirac delta function. (We use arrows to denote the vectors in
these equations, to avoid confusion with the variables defined previously.)

The fast immersed boundary method uses nested domains, each with increas-
ing mesh resolution. For the finest domain we consider �x ∈ [−15, 15] × [−5, 5],
with a cylinder of diameter D = 1 centered at (0, 0). The large upstream region
is useful for the adjoint simulations, for which the flow moves in the reverse di-
rection. With three nested grids, the full computational domain spans a region
(x, y) ∈ [−60, 60] × [−20, 20]. (See Figure 2.2 for an illustration of the compu-
tational domain.) Convergence tests show that this domain is sufficiently large,
avoiding blockage effects and fully capturing the features of the wake. In terms
of grid cells, each of the nested domains has dimension 1500 × 500, corresponding
to dx = dy = 0.02 for the innermost domain. Only the data from the innermost

−60 −40 −20 0 20 40 60
−20

0

20

x

y

Figure 2.2: Domain used for simulating the flow past a two-dimensional cylinder.
Each of the nested domains contains 1500 × 500 grid points, giving the finest grid
a grid spacing dx = dy = 0.02. The large upstream region is useful for adjoint
simulations, which flow from right to left.
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domain, with the finest resolution, are used for DMD analysis. The outer domains
are used only to ensure an accurate simulation.

We consider a uniform incoming flow with freestream velocity U∞ = 1 and
Reynolds number Re = 100. At this Reynolds number, the flow is globally unsta-
ble. Motivated by an application of BPOD, we restrict the linearized dynamics to
their stable subspace. The system is actuated using a vertical velocity perturbation
supported on a disk downstream of the cylinder and sensed using localized measure-
ments of vertical velocity placed along the flow centerline. This setup is based on
flow control benchmark proposed in [116] and is illustrated in Figure 2.3 (left).

The impulse response of this system is shown in Figure 2.3 (right). We see that
from t = 200 to t = 500, the dynamics exhibit both a fast and slow oscillation.
Suppose we want to identify the underlying frequencies and corresponding modes
using DMD. In order to capture the fast frequency, we must sample the system every
50 timesteps, with each timestep corresponding to ∆t = 0.02. (This is in order to
satisfy the Nyquist-Shannon sampling criterion.) As such, we let xk = x(50k∆t).

Table 2.1 and Figure 2.4 compare the DMD eigenvalues computed using uniform
sampling and non-uniform sampling. (Referring back to (2.15), the former corre-
sponds to P = 1 and the latter to P = 10.) We see that the dominant eigenvalues
agree, with less than 10 % error in all cases. (We use the DMD eigenvalues computed
with uniform sampling as truth values.) However, the larger errors occur for modes
with norms on the order of 10−5, two orders of magnitude smaller than those of
the dominant two DMD modes. As such, these modes have negligible contribution
to the evolution of the impulse response, and thus the error in the corresponding
eigenvalues is not significant. The dominant DMD modes show similar agreement,
as seen in Figure 2.5. This agreement is achieved despite using 90 % less data in
the nonuniform sampling case, which results in a 85.8 % reduction in computation
time.

2.4.4 Combining multiple trajectories

DMD is often applied to experimental data, which are typically noisy. While filtering
or phase-averaging can be done to eliminate noise prior to DMD analysis, this is not
always desirable, as it may remove features of the true dynamics. In POD analysis,
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Figure 2.3: (Left) Schematic showing the placement of sensors (×) and actuators
(◦) used to control the flow past a two-dimensional cylinder. (Right) Kinetic energy
of the corresponding impulse response (restricted to the stable subspace). After
an initial period of non-normal growth, oscillations with both short and long time
scales are observed.
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Table 2.1: Comparison of DMD eigenvalues∗

Frequency Growth rate

Seq. DMD Nonseq. DMD Error Seq. DMD Nonseq. DMD Error
0.118 0.118 0.00% 0.998 0.998 0.00%
0.127 0.127 0.01% 0.988 0.988 0.00%
0.107 0.106 3.40% 0.979 0.977 2.10%
0.138 0.139 7.50% 0.964 0.964 0.05%

* Row order corresponds to decreasing mode norm.

the effects of noise can be averaged out by combining multiple trajectories in a single
POD computation. We can take the same approach in DMD analysis using (2.12).

Consider multiple dynamic trajectories, indexed by j: {xj
k}

mj

k=0. These could
be multiple runs of an experiment, or particular slices of a single, long trajectory.
(The latter might be useful in trying to isolate the dynamics of a recurring dynamic
event.) Suppose there are a total of J trajectories. DMD can be applied to the
entire ensemble of trajectories by defining

X �



x0
0 · · · x0

m0−1 x1
0 · · · x1

m1−1 · · · xJ
0 · · · xJ

mJ−1



 ,

X� �



x0
1 · · · x0

m0
x1
1 · · · x1

m1
· · · xJ

1 · · · xJ
mJ



 .

(2.17)

We demonstrate this approach using experimental data from a bluff-body wake
experiment. A finite-thickness flat plate with an elliptical leading edge is placed in
a uniform oncoming flow. Figure 2.6 shows an schematic of the experimental setup.
We capture snapshots of the velocity field in the wake behind the body using a time-
resolved particle image velocimetry (TRPIV) system. (This flow is also analyzed in
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Figure 2.4: DMD estimates of the eigenvalues governing the decay of the impulse
response shown in Figure 2.3 (right). The slowest decaying eigenvalues are cap-
tured well with both uniform sampling (sequential DMD) and nonuniform sampling
(nonsequential DMD).
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Figure 2.5: Comparison of dominant DMD modes computed from the impulse re-
sponse shown in Figure 2.3 (right), illustrated using contours of vorticity. For each of
the dominant frequencies, modes computed using nonuniform sampling (nonsequen-
tial DMD; bottom row) match those computed using uniform sampling (sequential
DMD; top row). (For brevity, only the real part of each mode is shown; similar
agreement is observed in the imaginary parts.) (a) f = 0.118, uniform sampling;
(b) f = 0.127, uniform sampling; (c) f = 0.118, nonuniform sampling; (d) f = 0.127,
nonuniform sampling.

Chapter 5; more details on the experimental setup can be found in Section 5.4.1)
Multiple experimental runs are conducted, with approximately 1,400 velocity fields
captured in each run. This corresponds to the maximum amount of data that can
be collected per run.

Due to the high Reynolds number (Re = 50, 000), the flow is turbulent. As such,
though we observe a standard von Kármán vortex street (Figure 2.7), the familiar
vortical structures are contaminated by turbulent fluctuations. Figure 2.8 (left)
shows a DMD spectrum computed using TRPIV data from a single experimental
run.2 The spectrum is characterized by a harmonic set of peaks, with the dominant
peak corresponding to the wake shedding frequency. The corresponding modes are
shown in Figure 2.9 (a–c). We see that the first pair of modes (Figure 2.9 (a)) ex-
hibits top-bottom symmetry, with respect to the centerline of the body. The second
pair of modes (Figure 2.9 (b)) shows something close to top-bottom antisymme-
try, though variations in the vorticity contours make this antisymmetry inexact.
The third pair of modes (Figure 2.9 (c)) again shows top-bottom symmetry, with
structures that are roughly spatial harmonics of those seen in the first mode pair.

These modal features are to be expected, based on two-dimensional computa-
tions of a similar flow configuration [172]. However, when computed from noise-free
simulation data, the symmetry/antisymmetry of the modes is more exact. Fig-
ures 2.8 (right) and 2.9 (d–g) show that when five experimental runs are used, the

1Experimental data acquisition and processing was done by John Griffin (University of Florida)
and Adam Hart (University of Florida Research and Engineering Education Facility).

2Instead of simply plotting the mode norms against their corresponding frequencies, as is gen-
erally done, we first scale the mode norms by λm. This reduces the height of spectral peaks
corresponding to modes with large norm but quickly decaying eigenvalues. For dynamics known to
lie on an attractor, such peaks can be misleading; they do not contribute to the long-time evolution
of the system.
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Figure 2.6: Schematic of setup for bluff-body wake experiment. (Figure courtesy of
John Griffin.)
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Figure 2.7: Typical vorticity field from the bluff-body wake experiment depicted in
Figure 2.6. A clear von Kármán vortex street is observed, though the flow field is
contaminated by turbulent fluctuations.

experimental DMD results improve, more closely matching computational results.
In the DMD spectrum (Figure 2.8 (right)), we again observe harmonic peaks, with
a fundamental frequency corresponding to the shedding frequency. The peaks are
more isolated those in Figure 2.8 (left); in fact, we observe a fourth frequency peak,
which is not observed in the single-run computation. The modal structures, shown
in Figure 2.9 (d–g), display more obvious symmetry and antisymmetry, respectively.
The structures are also smoother and more elliptical.

2.5 Connections to Koopman operator theory

The connections between Koopman operator theory and DMD were first explored
in [138]. We summarize those findings below and discuss how they relate to the
theory introduced in Section 2.2. Consider a discrete-time system with dynamics

xk+1 = f(xk),

where x ∈ M, a finite-dimensional manifold. The Koopman operator U acts on
scalar functions g : M → R or C, mapping g to a new function Ug whose action is
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Figure 2.8: Comparison of DMD spectra computed using a single experimental
run (left) and five experimental runs (right). When multiple runs are used, the
spectral peaks are more isolated and occur at almost exactly harmonic frequencies.
Furthermore, a fourth harmonic peak is identified; this peak is obscured in the single-
run DMD computation. (Peaks corresponding to modes depicted in Figure 2.9 are
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Figure 2.9: Representative DMD modes, illustrated using contours of vorticity. (For
brevity, only the real part of each mode is shown.) The modes computed using
multiple runs (bottom row) have more exact symmetry/antisymmetry and smoother
contours, as expected. (a) f = 87.75 Hz, single run; (b) f = 172.6 Hz, single run;
(c) f = 261.2 Hz, single run; (d) f = 88.39 Hz, five runs; (e) f = 175.6 Hz, five
runs; (f) f = 264.8 Hz, five runs; (g) f = 351.8 Hz, five runs.

given by

Ug(xk) � g

�
f(xk)

�
= g(xk+1). (2.18)

We observe that U acts linearly on functions g, even though the dynamics defined
by f may be nonlinear.

As such, consider the eigendecomposition

Uθj(x) = λjθj(x), j = 0, 1, . . . (2.19)

We can express a vector-valued function h : M → Rn or Cn in terms of these
eigenfunctions as

h(x) =
∞�

j=0

θj(x)ψ̂j ,
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where ψ̂j ∈ Rn or Cn. (We assume each component of h lies in the span of the

eigenfunctions.) We refer to the vectors ψ̂j as the Koopman modes.

Substituting (2.19) into (2.18), we can then write

h(xk) =
∞�

j=0

λ
k
j θj(x0)ψ̂j . (2.20)

We see that each mode ψ̂j has a growth rate and frequency determined by λj , and
that the Koopman modes and eigenvalues completely determine the evolution of h
along the trajectory starting at x0.

Suppose we collect sequential snapshots of h and stack them as in (2.9), with
hj = h(xj) replacing xj . From these data we can compute DMD modes and eigen-
values using the standard SVD-based DMD algorithm. If the columns of X are
linearly independent and the DMD eigenvalues are distinct, then the DMD modes
{ψj}m−1

j=0 and eigenvalues {λj}m−1
j=0 are the unique solution to

hk =
m−1�

i=0

λ
k
iψj k = 0, . . . , m− 1

hm =
m−1�

i=0

λ
m
i ψj + r r ⊥ span{x0, . . . , xm−1},

(2.21)

as shown in [31]. (When DMD is applied to non-sequential time-series, it is easily
verified that (2.21) does not generally hold.)

We observe that (2.21) mirrors (2.20), with a finite sum in the former replac-
ing the infinite sum in the latter. When there is no residual r, then the DMD
modes cannot be distinguished from the Koopman modes. It is for this reason
that [138] considers DMD to be a numerical algorithm for computing approximate
Koopman modes and eigenvalues. Because the modes {ψj}m−1

j=0 are generated using
the standard SVD-based DMD algorithm, they satisfy Definition 1, and we say that
Definition 1 preserves the connections between DMD and Koopman operator theory.

Using an operator theoretic argument, [13] interprets DMD the same way. Re-
calling (2.18), we see that in a sense, the Koopman operator U sends h(xk) to
h(xk+1). This action can be represented with the infinite-dimensional left shift
operator

S �





0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

. . .
...




.
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For a data matrixX with full column rank, the standard SVD-based DMD algorithm
is equivalent to an analysis of the companion matrix

C �





0 0 · · · 0 c0

1 0 · · · 0 c1

0 1 · · · 0 c2
...

. . .
...

0 0 · · · 1 cm−1




.

We can think of C as a finite-dimensional approximation of S, restricted to column
space of X. Consequently, we can think of DMD as a finite-dimensional approxima-
tion of Koopman spectral analysis.

Though the Koopman analog provides a firm mathematical foundation for ap-
plying DMD to data generated by nonlinear systems, it is limited by the fact that it
relies on (2.21). It was shown in [31] that if the columns of X are linearly dependent
or the DMD eigenvalues are not distinct, then the choice of modes and eigenvalues
that satisfies (2.21) is not unique. It is even possible to generate matrices X and
X� so that (2.21) cannot be satisfied by any set of modes and eigenvalues. For
instance, one can easily verify that the modes and eigenvalues generated by the
standard SVD-based DMD algorithm do not satisfy (2.21) in the case of repeated
DMD eigenvalues. Thus the Koopman analogy is most appropriate in the case that
X describes a sequential time-series, X has linearly independent columns, and the
DMD eigenvalues are distinct.3 (The second condition requires that the number
of snapshots be smaller than the measurement dimension n, which can be limiting
when the observable h is low-dimensional.) In contrast, an understanding of DMD
built on Definition 1 holds even when these conditions break down.

2.6 Equivalence to LIM

In this section, we investigate the connections between DMD and LIM. To set up
this discussion, we briefly introduce and define a number of terms used in the climate
science literature. This is followed by a more in-depth description of LIM. Finally,
we show that under certain conditions, LIM and DMD are equivalent.

2.6.1 Nomenclature

Empirical orthogonal functions (EOFs) were first introduced in 1956 by Lorenz [95].
While the term “EOF” is unique to the climate science literature, EOFs simply
arise from the application of principal component analysis (PCA) [79, 80, 123] to
meteorological data [124]. As a result, EOF analysis is equivalent to PCA, and thus
also to POD and SVD. (We note that in PCA and and EOF analysis, the data mean
is always subtracted, so that the results can be interpreted in terms of variances;
this is often done for POD as well.)

3In general, it is unclear how well DMD approximates Koopman spectral analysis. For instance,
in some systems DMD modes and eigenvalues closely approximate those of the Koopman operator
near an attractor, but not far from it [14]. DMD may also perform poorly when applied to dynamics
whose Koopman spectral decomposition contains Jordan blocks [14].
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In practice, EOFs are often used as a particular choice of principal interaction
patterns (PIPs), a concept introduced in 1988 by Hasselmann [75]. The following
discussion uses notation similar to that found in [177], which provides a nice review
of PIP concepts. Consider a dynamical system with a high-dimensional state x(t) ∈
Rn. In some cases, such a system may be approximately “driven” by a lower-
dimensional system with state z(t) ∈ Rr, where r < n. To be precise, we say that x
and z are related as follows:

zk+1 = F(zk;α) + noise

xk = Pzk + noise,

where α is a vector of parameters. From this we see that given a knowledge of z
and its dynamics, x is completely specified by the static map P, aside from the
effects of noise. Though P cannot be inverted, given a measurement of x, we can
approximate z using a least-squares fit:

zk = (PTP)−1PTxk.

In climate science, the general approach of modeling the dynamics of a high-
dimensional variable x through a lower-dimensional variable z is referred to as in-
verse modeling. The inverse model described above requires definitions of F, P, and
α. Generally, F is chosen based on physical intuition. Once that choice is made, P
and α are fitted simultaneously. The PIPs are the columns of P for the choice of P
(and α) that minimizes the error

�(P,α) � E

����xk+1 − xk −P
�
F(zk;α)− zk

����
�
,

where E is the expected value operator [177]. In general, the choice of P is not
unique.

Hasselmann also introduced the notion of principal oscillation patterns (POPs)
in his 1988 paper [75]. Again, we use the notation based on the review by von Storch
et al. [177]. Consider a system with unknown dynamics. We assume that we can
approximate these dynamics with a linear system

xk+1 = Axk + noise.

If we multiply both sides by xT
k and take expected values, we can solve for A as

A = E(xk+1x
T
k )E(xkx

T
k )

−1
. (2.22)

The eigenvectors of A are referred to as POPs. That is, POPs are eigenvectors of a
particular linear approximation of otherwise unknown dynamics.

Even within the climate science literature, there is some confusion between PIPs
and POPs. This is due to the fact that POPs can be considered a special case
of PIPs. In general, PIPs are basis vectors spanning a low-dimensional subspace
useful for reduced-order modeling. Suppose we model our dynamics with the linear
approximation described above, and do not reduce the order of the state. If we then
express the model in its eigenvector basis, we are choosing our PIPs to be POPs.
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2.6.2 Defining LIM

In 1989, Penland derived a method for computing a linear, discrete-time system that
approximates the trajectory of a stochastic, continuous-time, linear system, which
he referred to as a linear Markov model [124]. We describe this method, which came
to be known as LIM, using the notation found in [125]. Consider an n-dimensional
Markov process

dx

dt
= Bx(t) + ξ(t),

where ξ(t) is white noise with covariance

Q = E
�
ξ(t)ξT (t)

�
.

We assume the mean of the process has been removed. The covariance of x is given
by

Λ = E
�
x(t)xT (t)

�
. (2.23)

One can show that the following must hold:

BΛ+ΛBT +Q = 0

E
�
x(t+ τ)xT (t)

�
= exp(Bτ)Λ.

(See [124] for details.)

Defining the Green’s function

G(τ) � exp(Bτ)

= E
�
x(t+ τ)xT (t)

�
Λ−1

, (2.24)

we can say that given a state x(t), the most probable state time τ later is

x(t+ τ) = G(τ)x(t).

The operator G(τ) is computed from snapshots of the continuous-time system and
has the same form as the linear approximation used in POP analysis (see (2.22)).
We note that we arrive at the same model if we apply linear stochastic estimation
to snapshots of the state x, taking x(t) and x(t + τ) to be the unconditional and
conditional variables, respectively. (This is done in Chapter 5 to identify a model
for the evolution of POD coefficients in a fluid flow.)

When this approach is applied to a nonlinear system, it can be shown that G(τ)
is equivalent to a weighted average of the nonlinear dynamics, evaluated over an en-
semble of snapshots [23]. This is in contrast to a typical linearization, which involves
evaluating the Jacobian of the dynamics at a fixed point. If the true dynamics are
nearly linear, these two approaches will yield nearly the same model. However, if
nonlinear effects are significant, G(τ) will be closer to the ensemble average, and
arguably a better model than a traditional linearization [23].

In [125], this method was applied to compute a linear Markov model in the
space of EOF coefficients. This is an example of inverse modeling (equivalently,
PIP analysis); a high-dimensional variable is modeled via a projection onto a lower-
dimensional EOF subspace. Due to the assumption of linear dynamics, this approach
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came to be known as linear inverse modeling. The combination of PIP and POP
concepts in this early work has contributed to the continuing confusion between
PIPs and POPs in the climate science literature today.

2.6.3 Proof of equivalence

In Definition 1, the DMD eigenvalues are given by the eigenvalues of a projected
linear operator Ã. The DMD modes are computed by lifting the eigenvectors of
Ã to the original space via the left singular vectors Φ (see (2.5)). In [125], the
eigendecomposition of a low-order linear model G(τ) is computed and the low-order
eigenvectors lifted to the original space via EOFs, in the same way as in DMD. The
similarity in these two approaches is obvious. Recall that left singular vectors and
EOFs are equivalent, so long as they are computed from the same data. Then to
prove that an LIM-based eigenvector analysis is equivalent to DMD, we simply have
to show the equivalence of G(τ) and Ã.

Consider two n × m data matrices X and X�, with columns xj = x(tj) and
x�
j = x(tj + τ), respectively. X and X� may or may not share columns. As in (2.1),

we assume that the EOFs to be used for LIM are computed from X alone, giving us

X = ΦΣW∗
,

where the columns of Φ are the EOFs. The EOF coefficients of X and X� are given
by

X̂ = Φ∗X, X̂� = Φ∗X�
, (2.25)

whose columns we donote by x̂j and x̂�
j , respectively.

In order to show that G(τ) and Ã are equivalent, we must reduce (2.24) to (2.3).
Because we are interested in the equivalence of LIM and DMD when the former is
performed in the space of EOF coefficients, we replace all instances of x in (2.23)
and (2.24) with x̂. Recall that the expected value of a, for an ensemble {aj}m−1

j=0 , is
given by

E (aj) �
1

m

m−1�

j=0

aj . (2.26)

Then we can rewrite (2.23) as

Λ =
1

m

m−1�

j=0

x̂jx̂
∗
j

=
1

m
X̂X̂∗

=
1

m
Φ∗XX∗Φ

=
1

m
Φ∗ΦΣ2

=
1

m
Σ2

,
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using the fact that XX∗Φ = ΦΣ2, by the definition of left singular vectors. This
result, along with (2.1), allows us to rewrite (2.24) as

G(τ) =



 1

m

m−1�

j=0

x̂�
jx̂

∗
j



�
mΣ−2

�

= X̂�X̂∗Σ−2

= Φ∗X�X∗ΦΣ−2

= Φ∗X�WΣΦ∗ΦΣ−2

= Φ∗X�WΣ−1
.

(Recall that x(tj + τ) = x�
j , and x(tj) = xj .) From (2.10), we then have G(τ) = Ã,

and we see that DMD and LIM are built on the same low-dimensional, approximat-
ing linear dynamics.4

We emphasize that this equivalence relies on a number of assumptions. First,
we assume that we perform LIM in the space of EOF coefficients. Second, we
assume that the EOFs are computed from X alone. This may not be an intuitive
choice if X and X� are completely distinct, but for a sequential snapshot sequence
where X and X� differ by a single column, this is not a significant difference. Given
these assumptions, the equivalence of DMD and LIM gives us yet another way to
interpret DMD analysis. If the data mean is removed, then the low-order map that
generates the DMD eigenvalues and eigenvectors is simply the one that yields the
statistically most likely state in the future. In a small sense, the DMD framework
is more general, as the intrepretation provided by Definition 1 holds even for data
that is not mean-subtracted. Then again, in LIM the computation of the EOFs is
completely divorced from the modeling procedure, allowing for a computation using
both X and X�. Nevertheless, the similarities between the two methods suggests
that practitioners of DMD would be well-served in studying and learning from the
climate science/LIM literature.

2.7 Conclusions

We have presented a new definition in which DMD is defined to be an approximate
eigendecomposition of an approximating linear operator. Whereas existing DMD
theory focuses on full-rank, sequential time-series, our theory applies to arbitrary
datasets. At the same time, our definition agrees with the commonly used, SVD-
based DMD algorithm and preserves the links between DMD and Koopman operator
theory. Thus our framework can be considered to be an extension of existing DMD
theory to a more general class of datasets.

For instance, when analyzing data generated by a dynamical system, we require
only that the columns of the data matrices X and X� be related by the dynamics of
interest, in a pairwise fashion. Unlike existing DMD algorithms, we do not require
that the data come from uniform sampling of a single time-series, nor do we require
that the columns of X and X� overlap. We demonstrated the utility of this approach
using two numerical examples. In the first, we sampled a trajectory non-uniformly,

4The above proof was developed together with Steven L. Brunton (University of Washington).
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significantly reducing computational costs. In the second, we concatenated multiple
datasets in a single DMD computation, effectively averaging out the effects of noise.
Our generalized interpretation of DMD also proved useful in explaining the results
of DMD computations involving rank-deficient datasets. Such computations may
provide either meaningful or misleading information, depending on the dataset, and
are not treated in the existing DMD literature.

Finally, we showed that DMD is closely related to LIM, a method developed
decades ago in the climate science community. The two methods are in fact equiva-
lent under certain assumptions. This suggests that lessons learned from past appli-
cations of LIM can inform strategies for future applications of DMD.
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Chapter 3

A DMD-based extension of the

BPOD algorithm

We now shift our focus from the theory of dynamic mode decomposition (DMD)
to its application. While one of the main draws of DMD is that it can be used to
analyze nonlinear dynamics, there are also situations in which DMD may be an ap-
propriate tool for analyzing linear systems. In the present chapter, we demonstrate
the utility of DMD in computing snapshot-based eigendecompositions. The avail-
ability of a snapshot-based algorithm is critical in applications where it is inefficient,
or impossible, to compute the action of a dynamical operator on arbitrary initial
conditions. This restriction prohibits the use of standard methods like the Lanczos
and Arnoldi algorithms [166].

We focus on a DMD-based modification of the balanced proper orthogonal de-
composition (BPOD) algorithm for systems with simple impulse response tails. In
this new variant of BPOD, we use DMD to estimate the slowly decaying eigenvectors
that dominate the long-time behavior (the “tails”) of the direct and adjoint impulse
responses. We then formulate analytic expressions for the contribution of these
eigenvectors to the controllability and observability Gramians. These contributions
can be accounted for in the BPOD algorithm by simply appending the impulse re-
sponse snapshot matrices (direct and adjoint, respectively) with particular linear
combinations of the slow eigenvectors. Aside from these additions to the snapshot
matrices, the algorithm remains unchanged. By treating the tails analytically, we
eliminate the need to run long impulse response simulations, lowering storage re-
quirements and speeding up ensuing computations. To demonstrate its effectiveness,
we apply this method to two examples: the linearized, complex Ginzburg-Landau
(CGL) equation and the two-dimensional fluid flow past a cylinder. As expected,
reduced-order models computed using an analytic tail match or exceed the accuracy
of those computed using the standard BPOD procedure, at a fraction of the cost.

The remainder of this chapter is organized as follows: Section 3.2 motivates the
need for an improved BPOD algorithm and provides a brief introduction to empirical
Gramians, balanced truncation, and the standard BPOD algorithm. Section 3.3
builds on this theory to develop the analytic tail method. Both a complex and real
formulation are derived. In Section 3.4 we describe how DMD is used to estimate the
eigenvectors and eigenvalues required to describe an impulse response tail. Finally,
in Section 3.5 we demonstrate the effectiveness of the analytic tail method using a
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number of examples. We note that this material is based on the article by Tu and
Rowley [171], and to avoid confusion we use the notation found in that work.

3.1 Motivation

Model reduction is an increasingly common approach in numerical flow control stud-
ies. A typical discretization of the Navier–Stokes equations can produce a dynamical
system with over 106 states, making standard control design procedures prohibitively
expensive. However, the gross behavior of a fluid system can be much simpler than
its state dimension would suggest. In such flows, a reduced-order model may be able
to capture the dominant behavior using a relatively small number of states. For in-
stance, the main features of vortex shedding behind a cylinder at low Reynolds
numbers can be captured with a three-dimensional model [115]. These low-order
models can then be used for control design, and in the course of their development
important underlying physical mechanisms may be discovered.

Of the many model reduction techniques, balanced truncation is an especially
well-suited choice for control-oriented applications. The resulting models balance
the controllability and observability of a stable, linear system. (Unstable systems can
be treated by decoupling the stable and unstable dynamics, as done by Barbagallo
et al. [20] and Ahuja and Rowley [4].) Modes that are neither highly controllable
nor highly observable are truncated. These modes are exactly those that cannot be
easily affected by actuation or easily measured with sensors. In other words, they
have little effect on the input-output dynamics of the system, and as such are not
useful for control design.

Unfortunately, for very high-dimensional systems, the standard balanced trunca-
tion technique is impractical, requiring the solution of high-dimensional Lyapunov
equations. A number of methods have been developed to iteratively solve such
equations, including the classical Smith method [156] and its cyclic low-rank vari-
ant [126]. Alternatively, it is possible to avoid solving Lyapunov equations entirely.
BPOD is a snapshot-based approximation to balanced truncation that takes this
approach, making it suitable for large systems [137]. It has been used to great effect
in a variety of flow control applications. For instance, Ilak and Rowley [84] used
BPOD to accurately model the nonnormal transient growth in a linearized channel
flow. Ahuja and Rowley [4] used BPOD to design estimator-based controllers that
stabilized unstable steady states of the flow past a flat plate at a high angle of at-
tack. BPOD-based controllers were also used by Bagheri et al. [15] and Semeraro
et al. [150] to suppress the growth of perturbations in a boundary layer. Dergham
et al. [43] used BPOD to model the flow over a backward-facing step, showing that
a small number of input projection modes is able to capture the effect of arbitrarily
placed localized actuators.

In balanced truncation, the product of the controllability and observability
Gramians is used to find a transformation to a balanced coordinate system. In
BPOD, a similar computation is performed. Impulse response simulations of the di-
rect and adjoint systems are sampled and the resulting snapshots are collected into
large matrices. The product of these snapshot matrices approximates the Hankel
matrix, from which an approximate balancing transformation can be found.
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Two obvious sources of error are inherent in approximating the Hankel matrix
this way. The first is in discretely sampling the continuously varying impulse re-
sponses. The second is in truncating the impulse responses at a finite time. In
practice, both of these are dealt with by using convergence tests, with respect to the
sampling frequency and simulation lengths, respectively. However, such tests can
be costly for large-scale simulations.

As an alternative, we propose a method for incorporating the effect of the trun-
cated snapshots, based on analytic considerations. For a stable, linear system, the
long-time behavior of the impulse response is dominated by the system’s slowest
eigenvectors alone. After enough time has elapsed, the contribution of all other
eigenvectors to the state will have decayed to nearly zero. When the number of
these slow eigenvectors is small, we say that the system has a simple impulse re-
sponse tail. We use DMD to estimate these slow eigenvectors and eigenvalues. We
then express the state at the beginning of the tail as a linear combination of the slow
eigenvectors. The further evolution of the state is completely characterized by the
corresponding eigenvalues, so no further snapshots need to be saved, reducing the
required storage space and simulation time. The contribution of the tail to the Han-
kel matrix can then be computed analytically, as a function of the slow eigenvectors
and eigenvalues.

3.2 Background

3.2.1 Empirical Gramians

Consider the stable, linear system

ẋ = Ax+Bu x ∈ Rn
, u ∈ Rp

y = Cx y ∈ Rq
.

(3.1)

The controllability and observability Gramians are given by

Wc =

� ∞

0
e
AtBB∗

e
A

∗t
dt Wo =

� ∞

0
e
A

∗tC∗Ce
At

dt,

where asterisks denote the conjugate transpose of a matrix. The controllability
Gramian provides a measure of how easily a state is affected by actuation, while the
observability Gramian describes how easily a state excites a sensor measurement.

Typically, the Gramians are computed by solving the Lyapunov equations

AWc +WcA
∗ +BB∗ = 0 A∗Wo +WoA+C∗C = 0.

However, for very large systems, this can be numerically prohibitive. We can instead
use data from numerical simulations to compute empirical Gramians. Suppose the
system (3.1) has p inputs. Then we can write B columnwise as

B =
�
b1 · · · bp

�
,

and similarly,

u =
�
u1(t) · · · up(t)

�T
.
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The response to a single impulsive input uj(t) = δ(t) is then given by

xj(t) = e
Atbj ,

and the controllability Gramian can be rewritten as

Wc =

� ∞

0

p�

j=1

xj(t)x
∗
j (t) dt. (3.2)

To evaluate the right hand side, we run numerical simulations of the impulse
responses, collecting snapshots of the state at discrete times t1, t2, . . . , tm. We then
scale each snapshot xj(tk) by an appropriate quadrature weight δk and collect the
scaled snapshots in a data matrix

X =
�
x1(t1)

√
δ1 · · · x1(tm)

√
δm · · · xp(t1)

√
δ1 · · · xp(tm)

√
δm

�
.

The integral (3.2) can then be approximated by a quadrature sum:

Wc ≈ XX∗
. (3.3)

We follow a similar procedure to compute the observability Gramian. Defining the
adjoint system as

ż = A∗z+C∗w, (3.4)

we again sample impulse response simulations, scale the snapshots by quadrature
weights, and form a data matrixY. The observability Gramian is then approximated
by the quadrature sum Wo ≈ YY∗.

In approximating a Gramian this way, there are two clear sources of error. First,
we are sampling the continuously varying impulse response at discrete points in time.
However, if the sampling rate is sufficiently fast with respect to the dynamics of the
system, this error should be minimal and can be further mitigated by using appro-
priate quadrature weights. The second source of error comes from truncating the
impulse response at tm, when the integral in (3.2) is evaluated to t → ∞. For a
stable system, the impulse response must eventually decay to zero. Thus if tm is
large enough, the contribution of the truncated snapshots to the Gramian will be
negligible. However, it is unclear how to determine an appropriate truncation point
given some a priori bound on the desired accuracy of the empirical Gramian. Fur-
thermore, any such guideline would likely require knowledge about the eigenvalues
(and possibly eigenvectors) of the system. For a large system, these may not be
known, and can be expensive to compute (e.g., using an Arnoldi iteration).

3.2.2 Balanced truncation

Balanced truncation was developed by Moore [108] as a model reduction technique
for stable, linear systems. For control applications, we are interested in the input-
output dynamics of a system. As such, if a mode is difficult to affect with actuation
(inputs) or hard to measure using sensors (outputs), then it is not particularly
useful for control. Balanced truncation builds upon this simple idea by seeking a
balanced realization of the system (3.1), in which the most controllable states are
also the most observable. To get a reduced-order model, we then truncate those
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states that are neither highly controllable nor observable. It is a standard result
that if a system is both controllable and observable, then such a realization always
exists (for example, see the standard references by Dullerud and Paganini [49] or
Antoulas [9]).

In performing balanced truncation, we compute a coordinate transformation
x = Tx̃ that balances the Gramians. Under this transformation, the Gramians
become

W̃c = T−1Wc(T
−1)∗ W̃o = T∗WoT,

and in particular are equal and diagonal:

W̃c = W̃o = Σ.

The non-zero elements σi of the diagonal matrix Σ satisfy σ1 ≥ . . . ≥ σn ≥ 0, and
are known as the Hankel singular values.

The Hankel singular values can be used to compute a priori bounds on the
error in approximating the system (3.1) with a reduced-order model. Let G(s) =
C(sI−A)−1B be the transfer function of the original system, and Gr(s) be that of
the reduced-order system of order r. Then the error is bounded below by the first
truncated Hankel singular value:

�G(s)−Gr(s)�∞ > σr+1. (3.5)

This is a lower bound for any reduced-order approximation of G(s). For a balanced
truncation model, we also have an upper bound given by

�G(s)−Gr(s)�∞ < 2
n�

j=r+1

σj . (3.6)

(These error bounds are standard results and can be found in Dullerud and Paganini
[49], Antoulas [9], or other standard texts.)

3.2.3 BPOD

BPOD was developed by Rowley [137] as an approximation to balanced truncation.
It is a snapshot-based method that avoids computation of the true Gramians Wc

and Wo. Instead, it makes use of the factors X and Y of the empirical Gramians
in analyzing the Hankel matrix H = Y∗X. This makes BPOD suitable for very
high-dimensional systems, whereas balanced truncation is not. If we compute the
singular value decomposition (SVD) of the Hankel matrix and write it as

H =
�
UH · · ·

� �ΣH 0
0 0

� �W∗
H

...

�
,

then the direct BPOD modes are then given by

Φ = XWHΣ−1/2
H
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and the adjoint BPOD modes by

Ψ = YUHΣ−1/2
H

.

To get a reduced-order model of order r, we project the system (3.1) onto the
span of the BPOD modes:

ẋr = Arxr +Bru Ar = Ψ∗
rAΦr

yr = Crxr Br = Ψ∗
rB

Cr = CΦr,

where Φr and Ψr contain only the first r columns of Φ and Ψ, respectively. The
entries of the diagonal matrix ΣH provide an approximation to the Hankel singular
values of the system (3.1) and can be used to estimate the error bounds given by
(3.5) and (3.6). However, even if the true Hankel singular values are known, a
BPOD-based model may not satisfy the theoretical upper error bound, as BPOD is
only an approximation of balanced truncation. (The approximation comes in taking
X and Y to be factors of the empirical, rather than true, Gramians. As such, the
truncation and discrete sampling of the impulse responses are again to blame.)

3.3 Analytic tail method

3.3.1 Motivation

Many of the stable, linear systems studied in fluid dynamics exhibit what we refer
to as a simple impulse response tail. For such a system, the long-time behavior of
the impulse response is dominated by a small set of slowly decaying eigenvectors. If
we can estimate these eigenvectors and their corresponding eigenvalues, then we can
approximate the further evolution of the impulse response analytically, neglecting
the fast eigenvectors whose contributions have already decayed to nearly zero. This
reduces the required storage space for snapshots, a key consideration when dealing
with large datasets. Furthermore, we can use this analytic expression to evaluate
the contribution of the tail to a Gramian or to the Hankel matrix. This minimizes
the error due to truncation by accounting for the effect of the impulse response(s)
past the truncation point. (See Section 3.2.1 for a brief discussion of truncation
error.)

3.3.2 Complex formulation

Consider the stable, linear system (3.1). Without loss of generality we assume a
single-input system. If there are multiple inputs, the following procedure can be
applied to each independently. Let x(t) be the response to an impulse in the input
u(t). Suppose that at some time T , we can approximate the state as a linear
combination of M slow eigenvectors:

x(T ) =
M�

j=1

vj ,
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where Avj = λjvj and we scale the eigenvectors vj to subsume any multiplicative
constants. Then for t ≥ T , the state is given by

x(t) =
M�

j=1

e
λj(t−T )vj ,

or in matrix notation,

x(t) =
�
v1 · · · vM

�



e
λ1(t−T )

...
e
λM (t−T )



 . (3.7)

Suppose we want to compute the empirical controllability Gramian, as in (3.2).
For our single-input system, we have

Wc =

� ∞

0
x(t)x∗(t) dt.

For t ≥ T , we can substitute for x(t) from (3.7), yielding

x(t)x∗(t) = VMM(t)V∗
M ,

where
VM =

�
v1 · · · vM

�

and the elements of M(t) are given by

Mj,k(t) = e
(λj+λk)(t−T )

,

where λk is the complex conjugate of λk.

Splitting the integral at t = T , we can rewrite the controllability Gramian using
our simple tail approximation:

Wc =

� T

0
x(t)x∗(t) dt+VM

�� ∞

T
M(t) dt

�
V∗

M .

The integral of M(t) can be performed element-wise, recalling that the eigenvalues
of A all have negative real part:

� ∞

0
Mj,k(t) dt =

� ∞

0
e
(λj+λk)(t−T )

dt

= lim
tf→∞

e
(λj+λk)(t−T )

λj + λk

�����

tf

T

= − 1

λj + λk
.

Then we can write

Wc =

� T

0
x(t)x∗(t) dt+VMNV∗

M , (3.8)
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where the elements of N are given by

Nj,k = − 1

λj + λk
. (3.9)

We wish to express (3.8) in a form that lends itself to the snapshot-based for-
mulation. In other words, we seek an expression Wc = XX∗ for some data matrix
X. If we collect impulse response snapshots at discrete times t1, . . . , tm = T , then
the integral in (3.8) is given by

� T

0
x(t)x∗(t) dt = XTX

∗
T ,

where
XT =

�
x(t1)

√
δ1 . . . x(T )

√
δm

�
.

Then
Wc = XTX

∗
T +VMNV∗

M . (3.10)

We observe that as the product of a matrix with its transpose, M(t) is positive
semi-definite. Since N is just the integral of M(t), it too is positive semi-definite,
and can be factored using a Cholesky decomposition as

N = ΓΓ∗
,

where Γ is lower-triangular.1 We can then write

VMNV∗
M = VMΓΓ∗V∗

M ,

allowing us to rewrite (3.10) as

Wc =
�
XT VMΓ

� �
XT VMΓ

�∗
. (3.11)

This procedure can be applied in the same way to an impulse response of the
adjoint system, yielding an improved approximation of the observability Gramian.

3.3.3 Real formulation

In some applications, it may not be desirable to append the snapshot matrix with
complex-valued vectors, as is done in (3.11). For instance, in an application where
the state is always real-valued (often the case in numerical simulations), post-
processing codes for computing empirical Gramians or BPOD modes may already
exist, but may not be equipped to deal with complex-valued vectors. While we must
typically consider complex-valued vectors when computing the eigenvector matrix
VM , this process will in general be handled by a different code than the one that
computes Gramians or BPOD modes. As such, a real factorization of VMNV∗

M
may be desirable. (In general, the elements of VM and N are complex.)

1Certain matrix libraries (e.g., the one used by Matlab) will not compute the Cholesky factor-
ization of N if it is not positive definite. In this case, one can compute unitary diagonalization
N = UNΛNU∗

N and let Γ = UNΛ1/2
N .
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We break VM and N into their real and imaginary parts:

VM = VRe
M + iVIm

M

N = NRe + iNIm
.

For a real-valued system, the product VMNV∗
M must also be real-valued, so we can

simply collect the real terms in computing

VMNV∗
M =

�
VRe

M + iVIm
M

� �
NRe + iNIm

� �
VRe

M − iVIm
M
�T

= VRe
M NRe(VRe

M )T +VRe
M NIm(VIm

M )T −VIm
M NIm(VRe

M )T +VIm
M NRe(VIm

M )T

=
�
VRe

M VIm
M

� � NRe NIm

−NIm NRe

� �
VRe

M VIm
M

�T
. (3.12)

(The imaginary terms can be shown to equal the zero matrix individually, if one
considers the form of N itself, as well as the fact that the columns of VM come in
conjugate pairs for a real-valued system.)

We recall from (3.9) that

Nj,k = − 1

λj + λk
.

Since (3.1) is a stable system, we let λj = −αj + iβj , with αj > 0. Then

Nj,k =
αj + αk

(αj + αk)2 + (βj − βk)2
+ i

βj − βk

(αj + αk)2 + (βj − βk)2
,

giving us

NRe
j,k =

αj + αk

(αj + αk)2 + (βj − βk)2

NIm
j,k =

βj − βk

(αj + αk)2 + (βj − βk)2
.

From this we see that NRe is symmetric and NIm is skew-symmetric, making

Q =

�
NRe NIm

−NIm NRe

�
=

�
NRe NIm

(NIm)T NRe

�

a real, symmetric matrix. One can show that if
�
(vRe)T (vIm)T

�T
is an eigenvector

of Q, then vRe − ivIm is an eigenvector of N with the same eigenvalue. Thus the
eigenvalues of Q are a subset of those of N, which are all real and non-negative, and
Q is positive semi-definite. Letting Q = RRT be the Cholesky factorization of Q,2

(3.12) can be rewritten as

VMNV∗
M =

� �
VRe

M VIm
M

�
R
�� �

VRe
M VIm

M

�
R
�T

,

2As with N, if necessary, a unitary diagonalization can be used to factor Q instead of a Cholesky
factorization.
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and the controllability Gramian (see (3.10)) as

Wc =

�
XT

�
VRe

M VIm
M

�
R

��
XT

�
VRe

M VIm
M

�
R

�T
, (3.13)

a product of real matrices.

3.3.4 Application to BPOD

While (3.11) was derived for an impulse response of the direct system (3.1), the
same method can be applied to an impulse response of the adjoint system (3.4).
Applying the analytic tail method to both sets of impulse responses, we can factor
the controllability and observability Gramians as

Wc =
�
XT Vc

MΓc
� �

XT Vc

MΓc
�∗

Wo =
�
YT Vo

MΓo
� �

YT Vo

MΓo
�∗

.

For BPOD, we construct the Hankel matrix by multiplying factors of the controlla-
bility and observability matrices. With the analytic tail, this gives us

H =
�
YT Vo

MΓo
�∗ �

XT Vc

MΓc
�
. (3.14)

From here, the rest of the BPOD algorithm is the same as that described in Sec-
tion 3.2.3.

3.4 Snapshot-based eigenvector estimation using DMD

The analytic tail method described in Section 3.3 requires a knowledge of certain
eigenvalues and eigenvectors of A. For a very large system, computing the eigenvec-
tors ofA directly may be numerically intractable. In some cases, for instance in fluid
simulations, an explicit representation of A is not even available. Iterative meth-
ods such as the Arnoldi algorithm provide a means for estimating the eigenvalues
and eigenvectors of large systems, taking a “black box” approach that requires only
the ability to evaluate the matrix-vector product Ax. However, for our purposes
Arnoldi-like methods are less than ideal. In addition to requiring additional simula-
tions, which may be expensive, they typically estimate the eigenvectors of A whose
corresponding eigenvalues lie on the periphery of the spectrum [166], whereas we
are only interested in those that dominate the impulse response tail. For instance,
the slowest eigenvalue of A may correspond to an eigenvector that is not excited by
the impulse at all.

Instead, we turn to DMD, discussed in detail in Chapter 2. Since our data are
generated by a linear system, the DMD modes and eigenvalues will approximate
the eigenvectors and eigenvalues of the underlying dynamics. For the analytic tail
method, we can run an impulse response simulation until a small number of eigen-
vectors begins to dominate the state, at which point we stop the simulation. (This
cut-off can be detected, for example, by plotting the norm of the state and waiting
until only a few frequencies dominate the signal.) DMD modes can then be com-
puted from a small number of snapshots collected at the end of the impulse response.
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By applying DMD to these later snapshots, we eliminate the need for any additional
simulations and guarantee that only those eigenvectors with a measurable presence
in the tail are estimated.

The number of snapshots necessary for such a DMD computation depends on the
number of eigenvectors that are active in the impulse response tail. At minimum, the
rank of the snapshot set must be equal the number of eigenvectors to be estimated.
Since this number is assumed to be small (a simple tail is assumed), the DMD
computation is quite cheap. Furthermore, there is no benefit in using additional
snapshots if they do not increase the rank of the snapshot set. In a simple impulse
response tail, all snapshots will be linear combinations of the same few eigenvectors,
so there is no need to extend the impulse response past the beginning of the tail.

It was shown by Rowley et al. [138] that if one uses DMD to estimate eigenvalues
λj and eigenvectors vj from a set of linearly independent snapshots {kj}Nj=0, the
modes can be scaled such that

kj =
N�

k=1

λ
j
kvk j = 0, . . . , N − 1. (3.15)

(For more details, see Section 2.5.) Thus the norm of each mode gives some indi-
cation of its contribution to a given snapshot. For example, the first snapshot is
simply equal to the sum of the DMD modes:

k0 =
N�

k=1

vk. (3.16)

As such, in addition to an estimate of the eigenvectors and eigenvalues that dominate
the impulse response tail, DMD analysis also provides us with a way to quantify the
relative importance of each eigenvector/eigenvalue pair, based on the norm �vk�.
This can be used to determine how many eigenvectors are necessary to characterize
an impulse response tail.

3.5 Results and discussion

3.5.1 Computing the controllability Gramian

Here we present two examples that demonstrate the effectiveness of the analytic
tail method in computing empirical Gramians. In each, we compute the impulse
response of a real system ẋ = Ax + Bu, collecting snapshots of the state x every
∆t = 0.01. The empirical controllability Gramian is first computed using what we
will refer to as the “standard” method. For varying T , we stack snapshots spanning
the interval t = [0, T ] as columns of a matrix, using a uniform quadrature weight√
∆t:

XT =
�
x(0) x(∆t) . . . x(T )

�√
∆t.

The empirical Gramian is then given by Wc = X∗
TXT . For the analytic tail method,

we use DMD to compute the slow eigenvalues and eigenvectors and form the matrices
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V and Γ as in (3.11). The modified snapshot matrix is then

X =
�
XT VΓ

�

and the controllability Gramian is given by Wc = X∗X. We compare each of these
computations against the controllability Gramian as computed using Matlab. The
error is measured using the Frobenius matrix norm:

�∆Wc�2 =




�

j

�

k

�
Wc

(matlab)
j,k −Wc

(empirical)
j,k

�2




1/2

. (3.17)

Non-normal 3× 3 system

In our first example, we consider the system (3.1) with

A =




−1 0 100
0 −2 100
0 0 −5



 B =




1
1
1



 . (3.18)

(This system was first used as a test for model reduction techniques by Holmes et al.
[78, Section 5.6.1].) Though this system is stable, it exhibits non-normal transient
growth before undergoing exponential decay (Figure 3.1, left). This non-normality is

caused by the fact that the fast-decaying eigenvector
�
−0.6 −0.8 0.02

�T
is nearly

parallel to the span of the other two eigenvectors,
�
1 0 0

�T
and

�
0 1 0

�T
. Using

the standard method, we must sample the impulse response to T = 6 before Wc

converges to its final value (Figure 3.1, right). In contrast, if we estimate the slow
eigenvector and treat the tail analytically, we observe convergence in Wc by T = 4.
(For a given simulation length T , the last four snapshots are used for the DMD
computation.)

In addition to the 33 % reduction in required storage space for snapshots, we see
that the analytic tail method produces a more accurate controllability Gramian for
all T , up to the point where both methods have converged. That the same amount of

0 2 4 6 8 10
10−6
10−4
10−2
100
102

t

�x
� 2

2 4 6 8 10

10−4

10−3

10−2

10−1

 

 

T

�∆
W

c
� 2

Analytic tail
Standard

Figure 3.1: (Left) Non-normal transient growth in a 3× 3 linear system. The slow
decay is the result of a single slow eigenvector. (Right) Error in computing the
controllability Gramian empirically. With the analytic tail method, convergence is
achieved with approximately 33% fewer snapshots than is required for the standard
method.
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error is eventually observed for both methods is expected and encouraging. Though
the analytic tail method should increase accuracy by accounting for the truncated
snapshots, for a stable impulse response the contribution of those snapshots will
eventually be negligible. Thus for T large enough, the two methods should produce
nearly identical results. The observed agreement suggests that the analytic tail
method is indeed enhancing accuracy in the manner intended. The remaining error
in computing Wc is due to the fact that we are using snapshots to compute the
Gramian empirically, and can be reduced by sampling the impulse response faster
and/or using higher-order quadrature weights.

Pseudorandom 100× 100 system

For a larger example, we construct a pseudorandom, 100× 100 matrix A using the
following procedure:

1. Start with a matrix of zeroes. Place ten stable, slowly decaying oscillators of
the form �

−α β

−β −α

�

along the diagonal of A. The values α and β are chosen randomly subject to
the restrictions α ∈ (0, 1] and β ∈ [0, 10].

2. Place up to 40 stable, fast-decaying oscillators (same form as above) along the
diagonal of A. The number of fast-decaying oscillators is chosen randomly,
modulo the restrictions α ∈ (1, 5] and β ∈ [0, 10].

3. Place ten slowly decaying, stable, real eigenvalues along the diagonal of A.
These eigenvalues are of the form λ = −α with α ∈ (0, 1].

4. The rest of the entries on the diagonal are filled with fast-decaying, real eigen-
values λ = −α with α ∈ (1, 5].

5. Fill in the upper triangular portion of A with random values lying in the
interval [0, 0.25].

By constructing A in this way, we are able to specify its eigenvalues, guaranteeing
a stable system with oscillatory dynamics and multiple timescales of interest.

Here we consider a particular choice of A with a much more complex impulse
response than was seen in the 3 × 3 example discussed previously. After an initial
period of non-normal transient growth, the system simultaneously decays and oscil-
lates (Figure 3.2). The decay rate is fairly constant from t = 20 to t = 100, though
there is growing evidence of multifrequency interaction, in the form of beating (am-
plitude modulation). Around t = 100, the decay rate begins to slow down and the
presence of beating is clear. The beating behavior begins to fade as the decay rate
slows down to its final value, and by t = 200, it appears that we have returned to a
constant decay rate and oscillation at a single, fixed frequency.

Using DMD analysis, we can corroborate this behavior. We consider impulse
responses ending at T = 50, T = 150 and T = 250. For each case, we use the last
20 snapshots of the simulation for DMD. At T = 50, the spectrum is dominated
by a real eigenvector with a decay rate α = 0.046 (Figure 3.3, left). The beating,
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Figure 3.2: Impulse response of a pseudorandom 100 × 100 system. Non-normal
transient growth is followed by simultaneous oscillation and decay. Around t = 120
there is a clear change in the decay rate, as well as evidence of multifrequency
interaction, in the form of beating (amplitude modulation). Eventually, the effect of
other frequencies decays quickly, with only minimal evidence of beating past t = 200.
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Figure 3.3: (Left) DMD spectra for the impulse response of a pseudorandom
100 × 100 system. The norms of the estimated eigenvectors are plotted against
the corresponding decay rates. For T = 50 the dominant decay rate corresponds
to a real eigenvector at α = 0.046 whereas at T = 150 it corresponds to a com-
plex conjugate pair at α = 0.004. The beating observed in the impulse response
results from the interaction of the α = 0.004 pair with another complex conju-
gate eigenvector pair at α = 0.016. (Right) Error in computing the controllability
Gramian empirically for a pseudorandom 100× 100 system. As predicted by DMD
analysis, a five-dimensional analytic tail leads to convergence by T = 150, while a
two-dimensional tail converges at T = 250. In contrast, without an analytic tail,
the empirical controllability Gramian does not converge until T > 700. By applying
the analytic tail method we achieve a savings of 65% (two-dimensional tail), or even
79% (five-dimensional tail), in storage space for snapshots.

oscillatory behavior is caused by the interaction of two pairs of complex conjugate
eigenvectors, at α = 0.004 and α = 0.016. For T = 150, the spectrum is instead
dominated by the complex conjugate pair at α = 0.004, corresponding to the change
in decay rate discussed previously. The eigenvector pair at α = 0.016 still has a
significant, though reduced, norm here, corresponding to the reduced evidence of
beating. Once we reach T = 250, the slow eigenvector pair at α = 0.004 completely
dominates the DMD spectrum, corresponding to the constant exponential decay and
single frequency oscillation observed at the end of the impulse response.
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Motivated by this DMD analysis, we compute the empirical controllability
Gramian using a five-dimensional and two-dimensional analytic tail. (The DMD
spectra suggest that five and two eigenvectors should accurately describe the
impulse tails at T = 150 and T = 250, respectively.) Indeed, we see that for the
five-dimensional tail, the controllability Gramian converges by T = 150 (Figure 3.3,
right). With a two-dimensional tail, the computation converges by T = 250. Sur-
prisingly, a standard computation of Wc does not converge until we pass T = 700.
This is despite the fact that past T = 250 the impulse response is dominated by
a single pair of eigenvectors. The surprisingly slow convergence of the standard
method highlights the fact that for many systems, an impulse response must be
sampled well into the tail before convergence is achieved, even if by that point the
dynamics are very simple.

3.5.2 Model reduction

The analytic tail method is especially useful for BPOD, as there are tails associ-
ated with both the direct and adjoint impulse responses. We present two examples
demonstrating the benefits of the method. First, we consider the complex Ginzburg-
Landau (CGL) equation, commonly used as a model for fluid flows. A discretization
of the CGL dynamics yields a system that can be analyzed directly using numerical
packages such as Matlab, allowing us to compare the models derived using BPOD
against those generated from exact balanced truncation. We then consider the two-
dimensional flow past a cylinder, computed using an immersed boundary method
(see Section 2.4.3 for details) [36, 158]. This is a much larger computation and
clearly demonstrates the savings achieved with the analytic tail method, as well as
its applicability for the types of large systems that are likely to be encountered in
practice. Unfortunately, due to the size of the problem, exact balanced truncation
cannot be performed, and as such, we use convergence tests to compare the results
of BPOD with and without analytic tails. This is in contrast to the CGL system,
for which a direct comparison to balanced truncation is done.

Linearized complex Ginzburg-Landau (CGL) system

The linearized CGL equation is given by

q̇ = −ν
∂q

∂x
+ µ(x)q + γ

∂
2
q

∂x2
. (3.19)

The evolution of q can be thought of as a model for the growth and decay of a
velocity perturbation in a fluid flow [32, 37]. (For a control-oriented review of the
CGL equation, see [16].) To put (3.19) in the state-space form (3.1), we discretize
as described by Chen and Rowley [30]. We choose a state dimension n = 100, which
is large enough to accurately represent (3.19) but small enough to perform exact
balanced truncation (using Matlab), which we use as a reference for our empirical
methods. We choose a subcritical value µ0 = 0.38 (for which the linearized dynamics
are stable), place a single actuator at x = −1, and place a single sensor at x = 1.
All other parameters are set to the default values used by Chen and Rowley [30],
which were drawn from Bagheri et al. [16].
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The direct impulse response initially decays before undergoing non-normal tran-
sient growth, with �x�2 reaching a peak around t = 11 (Figure 3.4, left). Past this
point, there is exponential decay at a constant rate. Looking at the real part of the
state, we can see that the state also oscillates, with a single, fixed frequency. As
such, we use a single, complex eigenvector to describe the direct impulse response
tail. We assume that the same can be done for the adjoint impulse response.

To form reduced-order models of (3.19), we collect snapshots of the direct and
adjoint impulse responses every ∆t = 0.01. We vary the truncation point T from
20 to 100, at each point using the last 20 snapshots for a DMD computation of the
slow eigenvector and eigenvalue, direct and adjoint respectively. The snapshots are
scaled with fourth-order quadrature weights [130] so that the quadrature sum (3.3)
more accurately approximates the integral expression (3.2). BPOD modes are then
computed, both with and without an analytic tail. We project the dynamics (3.19)
onto these modes to get reduced-order models.

Figure 3.4 (right) shows the error in computing 10-state reduced-order models of
the linearized CGL equation, as a function of T . In addition to comparing the models
to each other, we also compare the transfer function errors to the analytic bounds
given by (3.5) and (3.6). We recall that because BPOD is only an approximation of
balanced truncation, the theoretical upper bound (3.6) may not be satisfied. This
is indeed the case for the standard BPOD models, up to T = 85. In contrast, the
analytic tail models meet this criterion as early as T = 25. To check that this is
not a peculiarity for a model order r = 10, we fix T and plot the transfer function
error as a function of the model order r. Figure 3.5 shows that with T = 25,
the analytic tail models meet the theoretical upper bound for all model orders,
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Figure 3.4: (Left) Impulse response of the CGL equation. An initial decay in the
energy of the system is followed by non-normal transient growth and an eventual
exponential decay. The real part of the state shows similar behavior, with oscillation
at a single, fixed frequency during the exponential decay phase. This suggests that
a single, complex eigenvector dominates the tail. (Right) Transfer function error
for 10-state reduced-order models of the CGL equation, as a function of impulse
response simulation length. All models are computed using BPOD. Without an
analytic tail, the models do not converge until T = 85. With an analytic tail
method, convergence is achieved at T = 25, resulting in a drastic reduction in both
storage space and computation time.
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Figure 3.5: Transfer function error as a function of model order. All models are
computed using BPOD. With an analytic tail applied at T = 25, the theoretical
error bounds for balanced truncation are met for all model orders. With the same
T , standard BPOD models fail to meet the error bounds for any order. As we
increase T to 50, we see that the performance of the standard models begins to
approach that of the analytic tail models, as expected.

while the standard BPOD models fail to meet the theoretical upper bound for any.
However, as expected, with increasing T the performance of the standard BPOD
models (for all model orders) begins to approach that of the analytic tail models.
For T = 100, the errors are nearly indistinguishable (not pictured, for clarity) and
closely approximate the error for exact balanced truncation (within 8 % for the cases
shown).

Linearized two-dimensional cylinder flow

To investigate the flow past a two-dimensional cylinder, we use the numerical method
and flow configuration described in Section 2.4.3. With a cylinder diameter of
1 and a Reynolds number of 100, the flow is globally unstable. This instability
leads to an oscillatory wake, where vortices alternately shed from the upper and
lower shear layers, yielding the familiar Kármán vortex street. As the vortices
shed, they generate unsteady forces on the cylinder, which can be undesirable. To
eliminate these oscillations, we can design and implement feedback controllers based
on reduced-order models. Here we will investigate the benefits of using the analytic
tail method in constructing such models using BPOD.

The BPOD computation requires simulations of the direct and adjoint dynamics,
which are based on a linearization of (2.16), the immersed boundary formulation
of the Navier–Stokes equations. (For details on this linearization, see the article
by Ahuja and Rowley [4].) To simulate these dynamics, we must first identify the
unstable equilibrium. We do so using selective frequency damping [6], yielding the
steady solution shown in Figure 3.6. Furthermore, because BPOD can be applied
only to stable systems, we must also decouple the stable and unstable dynamics.
For the cylinder flow at Re = 100, the direct and adjoint systems each have a
single pair of unstable global modes, which we compute using a standard Arnoldi
iteration [166]. These global modes are shown in Figure 3.7 and are used to project
the linearized and adjoint dynamics onto their stable subspaces, respectively. It is
these restricted, stable dynamics on which we perform BPOD.

To control the cylinder wake, we actuate the flow using a vertical velocity pertur-
bation supported on a disk located downstream of the cylinder. The forcing covers

45



−2 0 2 4 6 8 10 12 14
−2

0
2

x

y

Figure 3.6: Unstable equilibrium for the flow past a cylinder at Re = 100. The flow
field is depicted using contours of vorticity overlaid with velocity vectors.
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Figure 3.7: Unstable global modes for the two-dimensional cylinder flow at Re = 100.
Flow fields are depicted using contours of vorticity overlaid with velocity vectors. (a)
Direct system, real part; (b) adjoint system, real part; (c) direct system, imaginary
part; (d) adjoint system, imaginary part.

a spatial region equal in size to the body, and is placed two diameters downstream
(Figure 3.8). This choice of actuation is based on the work of Noack et al. [116],
which can be used as a benchmark for cylinder control applications. Though it does
not model a physical actuator, the volume forcing is a convenient choice for this
example as it is easy to implement and has an obvious effect on the wake. The
output signals used for feedback control are collected using point sensors placed at
x = 2, 3, and 6. Each sensor measures only the vertical component of the velocity.
(This flow configuration is the same as the one described in Section 2.4.3.)

The direct impulse response for this system, restricted to the stable subspace,
is qualitatively similar to that of the CGL system. Figure 3.9 shows that there is
an initial period of non-normal growth during which the norm of the state grows by
over four orders of magnitude. This is followed by a relatively slow decay. After 1200
convective times (60,000 time steps) the state is still over six times as energetic as the
initial condition. During the initial period of decay (t ∈ [100, 300]), there are slow
oscillations in the kinetic energy. While the slow oscillations die out, there are also
fast oscillations that are present through the end of the impulse response (see the
enlarged inset in Figure 3.9). By t = 500, this fast frequency is the only oscillatory
behavior that can be observed. All other oscillatory behavior has died away. This,
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Figure 3.8: Schematic of input and output for two-dimensional cylinder flow. Actu-
ation is implemented as a disk of vertical force two cylinder diameters downstream
of the body (blue, ◦)). Point sensors measuring the vertical velocity are placed at
x = 2, 3, and 6 (red, ×).
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Figure 3.9: Kinetic energy in stable impulse response for two-dimensional cylinder
flow. There is an initial period of non-normal growth followed by a slow decay. By
t = 500, the decay rate is linear (on a log scale) with a single oscillation frequency,
suggesting that only one complex-conjugate pair of eigenvectors is active.

in addition to the fact that the decay rate is perfectly logarithmic, suggests that the
remainder of the impulse response can be modeled using an analytic tail.

To test this hypothesis, we compute a series of reduced order models using
BPOD, with and without an analytic tail. For such a high-dimensional system, we
cannot compute an exact balanced truncation, so we instead check for convergence.
As more snapshots are used in the standard BPOD computations, more and more of
the long-time behavior is captured, and the models should converge. If the analytic
tail method is correctly capturing the long-time behavior, then the models computed
using an analytic tail will converge to the same answer, but using fewer snapshots.

We run our direct and adjoint impulse response simulations to t = 1200, col-
lecting a snapshot every 50 timesteps (once every convective time unit). (Collecting
snapshots at this rate resolves the fastest frequency observed in the impulse re-
sponses.) All of these snapshots are used to compute a BPOD model of order 16,
using Riemann sum approximations for all integrals. We take this model as the best
approximation of exact balanced truncation. Figure 3.10 (left) shows that the out-
put predicted by this model does in fact match the output from the full simulation,
validating this approximation. (A close inspection reveals small discrepancies be-
tween simulation and model outputs. However, these are expected and result from
the fact that in this multi-domain scheme, the Laplacian operator is not self-adjoint
to numerical precision, as described by Ahuja and Rowley [4].)
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Figure 3.10: (Left) Comparison of true and predicted impulse response outputs.
The vertical velocity at x = 2 is measured in the full simulation and compared
to the output predicted by a BPOD model computed using snapshots collected up
to T = 1200. The agreement shows that the T = 1200 model is converged and
accurately captures the physics of the flow. (Right) Transfer function error for 16-
order models of the two-dimensional cylinder flow, as a function of impulse response
simulation length. Convergence is checked against the T = 1200 BPOD model. The
standard BPOD models converge relatively slowly, whereas the models computed
using a two-dimensional analytic tail have converged to the T = 1200 solution as
soon as T = 400. (For T = 200, the error in the standard computation is 4.26. This
point is omitted from the plot for clarity.)

We then compute 16-state models with direct and adjoint impulse responses
truncated at various T < 1200. Each of these models is compared to the T = 1200
model to check for convergence. The results of this analysis are shown in Figure 3.10
(right). As before, for each choice of T , using the analytic tail method improves the
accuracy of the model. Furthermore, we see that the models computed with an
analytic tail converge much faster than those computed without. With an analytic
tail of dimension two, snapshots only need to be collected up to T = 400. The
computation of the eigenvectors dominating the tail is fairly cheap, requiring a DMD
computation using only the last seven available snapshots. Further savings could
potentially be achieved by considering more vectors in the tail, at little additional
cost.

Table 3.1 gives a quantitative summary of the savings achieved by implement-
ing the analytic tail method. The computation time is dominated by the impulse
responses (one direct, three adjoint), which are each done in serial. Using analytic
tails, we get a linear speedup in the simulation time (67 % savings), which for this
particular computation corresponds to a savings of nearly 300 CPU hours. In com-
puting the Hankel matrix, we achieve a savings of nearly 85 %, or about 70 CPU
hours. While the absolute savings in this step is smaller, it scales roughly quadrat-
ically. This is critical, as constructing the Hankel matrix can easily dominate the
computation time. For instance, using a parallel solver could decrease the simulation
time, while large datasets and/or larger snapshot ensembles would increase the cost
of assembling the Hankel matrix. Computing the SVD of the Hankel matrix (97 %
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Table 3.1: BPOD costs for two-dimensional cylinder flow (in CPU hours).

Task Standard Analytic tail Savings

Impulse response simulations * 447.6 148.0 67.0%
DMD for analytic tail — 0.24 —
Constructing Hankel matrix 83.57 13.24 84.2%
SVD of Hankel matrix 0.093 0.003 97.0%
Constructing modes 34.85 11.76 66.3%
Total 566.1 173.2 69.4%

* Simulations run to T = 1200 for standard method, T = 400 with

analytic tail.

savings) scales cubically, but the SVD time is such a small part of the total cost
that this savings is insignificant. Finally, we also achieve a linear speedup (66 %, 33
CPU hours) in constructing the BPOD modes, which is a linear operation. In total,
by implementing the analytic tail method, we save nearly 400 CPU hours without
any sacrifice in model accuracy.

3.6 Conclusions

There are many features of DMD that can be leveraged for gain, depending on
the particular application. In this chapter, we focused on the fact that DMD is a
snapshot-based algorithm. We used this fact to efficiently compute eigendecomposi-
tions of linear systems. Specifically, we presented a method for analytically treating
the tail of an impulse response, improving accuracy and efficiency when computing
empirical Gramians or using BPOD to compute reduced-order models. When the
long-term behavior of an impulse response is governed by a small number of eigen-
vectors, we can account for the effect of these eigenvectors on the empirical Gramian
analytically. In doing so, we no longer need to sample the impulse response past the
beginning of the tail. This lowers the storage requirement for snapshots and speeds
up ensuing computations. These effects are especially useful for BPOD, as bene-
fits are gained in treating both the direct and adjoint impulse responses this way.
By using DMD to estimate the eigenvectors that dominate the tail, we minimize
the additional cost in applying the analytic tail method, requiring no additional
simulations.

These methods were applied to number of examples, demonstrating their ef-
fectiveness. For two linear systems, the analytic tail method was used to aid in
computing the controllability Gramian empirically. It was also used to more effi-
ciently compute reduced-order models of the linearized, complex Ginzburg-Landau
equation and the linearized flow past a two-dimensional cylinder at a Reynolds num-
ber of 100. In all cases, the use of an analytic tail produced highly accurate results
with significantly fewer snapshots than would be required otherwise. The controlla-
bility Gramians and BPOD-based models, respectively, converged to the values that
were obtained when the impulse responses were sampled far into their tails. These
examples verify that the analytic tail method correctly accounts for the long-term
behavior of the impulse response tails with little additional cost.
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In a sense, computing approximate eigendecompositions is the most direct and
well-understood application of DMD. As an eigendecomposition tool applied to se-
quential snapshots, DMD can be treated using the theory of Krylov subspaces, much
like the Arnoldi iteration [138, 141, 166]. This requires very little of the more general
framework discussed in Chapter 2. The work described in the present chapter shows
that even this restriction of DMD to linear systems can be quite useful in practice. In
the next chapter, we explore the application of DMD to nonlinear systems, making
use of its full generality.
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Chapter 4

Application to oscillatory fluid

flows

Dynamic mode decomposition (DMD) is often said to identify modes based on their
frequency content. This is because each DMD mode is associated with a correspond-
ing DMD eigenvalue, and thus a growth/decay rate and possibly an oscillation fre-
quency too (if the eigenvalue is complex). When DMD is applied to analyze the time
evolution of fluid flows, the modes are spatial structures whose temporal dynamics
are determined by their corresponding eigenvalues. As such, the flow is decomposed
into spatial structures that each oscillate at a single temporal frequency.

This makes DMD a useful tool for analyzing fluid flows that exhibit oscillatory
dynamics. For such flows, DMD identifies spatial structures that correspond to
characteristic flow frequencies. The structures often highlight coherent structures of
interest, which may elucidate the underlying dynamics of the flow. In this chapter
we present two such applications of DMD. First, we analyze a model for separated
airfoil flows, which are characterized by a complex interaction between multiple
flow frequencies. Then we discuss DMD analysis of a shock-turbulent boundary
layer interaction (STBLI), which is characterized by a low-frequency oscillation of
the shock and a corresponding “breathing” in the separation region.

4.1 A canonical separated flow

The separated flow over an airfoil is characterized by up to three distinct natural
frequencies: those of the shear layer, separation bubble, and wake. Previous work
has shown that open-loop forcing at sub- and super- harmonics of these frequencies
can be especially effective in controlling the extent of the separation bubble. Un-
fortunately, an understanding of the mechanisms driving this behavior is far from
complete. As a model for separated airfoil flows, we analyze the high Reynolds
number flow past a finite-thickness flat plate with an elliptical leading edge, in-
ducing separation via a blowing and suction boundary condition rather than angle
of attack. We refer to this configuration as the canonical separated flow. Three-
dimensional large eddy simulations (LES) of the flow are analyzed using DMD and
proper orthogonal decomposition (POD). We compare the results of DMD and POD
for a variety of forcing frequencies, looking for trends in the modal decompositions
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that correspond to control effectiveness. We find that forcing is most effective when
lock-on is achieved in the most energetic modes.

This material presented in this section is the result of joint work with Ehsan
Aram (Johns Hopkins University) and Professor Rajat Mital (John Hopkins Uni-
versity). Ehsan was responsible for the setup and execution of the numerical simu-
lations, as well as the computation of time-averaged properties of the flow, such as
the mean separation bubble height. The LES code used for those simulations was
originally written by Professor Rajat Mittal [107].

4.1.1 Motivation

With ever-increasing demands for improved performance and efficiency, the control
of separated flows has drawn considerable attention. In this work, we are concerned
with the flow over an airfoil, wherein decreased separation can improve the lift-
to-drag ratio [162]. Such flows display highly complex behavior, characterized by
shear layer instability and vortex shedding in the wake, and in some cases periodic
shedding of the separation bubble. In spite of this, much progress has been made
in controlling separation, for instance by implementing zero-net-mass-flux (ZNMF)
actuators. These devices, also known as “synthetic jets,” are favored due to their
relatively simple design. Furthermore, the periodic excitation they produce has been
shown to be more effective than steady forcing [149].

ZNMF actuators are also versatile, in that the forcing frequency can be ad-
justed to suit a particular flow. Much of the research related to ZNMF actuation
is concerned with finding an optimal open-loop forcing frequency. A nondimen-
sional frequency, F

+
jet, can be defined using length and velocity scales associated

with some natural frequency in the flow. (The velocity scale is often taken to
be U∞, the freestream velocity.) For studies where the length is scaled by the
chord length c, a range of values 0.55 < F

+
jet < 5.5 has been reported to be opti-

mal [17, 40, 56, 101, 135, 148, 185]. For the length scales XTE (distance from the
actuator to the trailing edge) and Lsep (length of the separation bubble), optimal
ranges of 0.50 < F

+
jet < 2.0 [68, 119, 147] and 0.75 < F

+
jet < 2.5 [62, 118, 149] have

been reported, respectively. As an extreme example, Amitay et al. [7] found that
for an unconventional airfoil, forcing at F+

jet > 10 outperformed configurations with

F
+
jet < 4. The magnitude of these discrepancies may seem insignificant, but Seifert

et al. [148] reported a corresponding 25 % change in the lift coefficient CL when F
+
jet

was varied between 0.25 and 1.5. Similarly, Wygnanski [185] found a 400 % increase
in the required momentum coefficient Cµ over the same range of F+

jet.

Even taking into account the varying definitions of F+
jet, it is clear that there is

no consensus on its optimal value. This is not a complete surprise, given the highly
complex behavior of these flows. For instance, in a separated airfoil flow where
the mean separation bubble remains detached, there are two dominant frequencies:
those of the shear layer (caused by the separation of the boundary layer from the
body) and the wake. This is typical of a bluff body flow, and studies in this field
typically focus on the latter frequency and not the former [28, 76, 105]. Only Wu
et al. [183] consider both parameters. When the mean flow reattaches, there can be
a third natural frequency, associated with the shedding of the separation bubble.
The lack of agreement on an optimal F+

jet value may indicate a need to consider
all of these frequencies, as well any coupling between them. Certainly it suggests
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a need for an increased appreciation of the rich, nonlinear dynamics driving these
flows. For a nice overview of these issues, see the article by Mittal et al. [106]

Though separated airfoil flows are characterized by up to three natural frequen-
cies, in certain flow configurations some of these may take on the same value. We
refer to such conditions as lock-on states. Kotapati et al. [90] simulated a configu-
ration in which the unforced flow locks onto a single frequency: that is, the shear
layer, separation bubble, and wake frequencies are equal. For this system, actua-
tion at the natural frequency or its first subharmonic results in a coupling of the
separation bubble frequency with a superharmonic of the forcing frequency. On the
other hand, forcing at superharmonics causes the wake and separation bubble to
lock onto a subharmonic of the forcing frequency. It was observed that forcing at
the first superharmonic significantly improves the lift-to-drag ratio, while forcing at
further superharmonics is detrimental. Given the rich system dynamics, it is likely
that more of these lock-on states exist, some of which may have desirable lift and/or
drag properties. By increasing our understanding of the complex interactions be-
tween the shear layer, separation bubble, and wake, we may improve our ability to
exploit these states for control purposes.

4.1.2 Flow configuration and solver

Rather than directly analyze the separated flow over an airfoil, we consider a model
flow we refer to as the canonical separated flow. In this configuration, we place
a finite-thickness flat plate with an elliptical leading edge in a uniform flow, at
an angle of attack of zero (Figure 4.1). Separation is induced through a steady
blowing/suction boundary condition applied at the top of the computational domain.
By using a flat plate geometry, we eliminate the influence of curvature, which has
been shown to significantly affect the nature of the boundary layer [39], as well as the
receptivity of the flow to actuation [69, 70]. Furthermore, by varying the location
of the plate and the amplitude of the blowing/suction boundary condition, we can
specify both the location and extent of the separation bubble, something not possible
by setting the angle of attack and freestream velocity alone [106]. Another advantage
of the canonical separated flow is that it is amenable to both experimental [72] and
computational [10, 90, 106, 172] studies; here we focus on the results of three-
dimensional LES.1

The specific geometry used in this work is defined by a 4:1 elliptical leading
edge and a thickness-to-chord ratio t/c = 0.095. We place the upper surface of
the body 0.15c from the upper wall and the leading edge 0.5c downstream of the
uniform inflow. The body extends to both ends of the domain in the spanwise
direction, with no spanwise variation in its geometry. We consider a domain of size
2.0c× 0.76c× 0.095c (in x, y, and z), discretized using a 512× 256× 32 mesh. The
mesh is Cartesian but non-uniform in x and y; smaller cells are placed near the body
and in the wake to resolve the dynamics of interest. Uniform spacing is used in the
spanwise (z) direction. Grid dependence studies show that neither increasing the
grid resolution nor increasing the size of the domain leads to significant changes in
the simulation results.

Boundary conditions are chosen to allow for experimental implementations of the
canonical separated flow. For instance, we enforce no-slip at the upper and lower

1All LES computations were performed by Ehsan Aram (Johns Hopkins University).
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Figure 4.1: Schematic of the canonical separated flow (not to scale). A finite-
thickness flat plate with an elliptical leading edge is subjected to uniform incoming
flow. A separation bubble is induced by a steady blowing/suction boundary condi-
tion applied along the upper boundary of the computational domain.

boundaries of the domain and on the surface of the body, as if the body were placed
in a wind tunnel. This of course excludes the portion of the upper boundary over
which blowing/suction is applied. In this region, which stretches from x/c = 0.75
to x/c = 1.25 (and spans the entire domain in z), the vertical velocity v varies
roughly sinusoidally with respect to x, with an amplitude of 0.65U∞. (For an exact
specification of this boundary condition, see the article by Kotapati et al. [90].) The
inflow (freestream) velocity is chosen such that Rec = 100, 000. Periodic boundary
conditions are applied in the spanwise direction. At the downstream boundary, a
convective outflow condition minimizes the reflections that can occur when vortices
leave the computational domain [87]; the convection speed is given by the average
streamwise velocity along the boundary. This is the same configuration analyzed by
Aram et al. [10].

The flow is actuated via ZNMF forcing, with a synthetic jet placed on the upper
surface of the body at x/c = 0.6. We use a “slot-only” model for the jet [134], with
a slot width and depth of 0.01c. (In this model the jet cavity is not modeled at
all.) The jet generates a uniform vertical velocity across the bottom of the slot. The
slot velocity varies sinusoidally in time, with an amplitude such that the mean jet
velocity (during expulsion) is v̄j = 0.15U∞. This results in a momentum coefficient
Cµ = 2.25× 10−4.

The dynamics of this flow are governed by the incompressible Navier–Stokes
equations, which we solve using a fractional-step method. To advance in time, we
employ a second-order Adams–Bashforth scheme for the convective terms and an
implicit Crank–Nicolson scheme for the diffusive terms. Spatial derivatives are com-
puted using second-order finite differences. We account for the effect of solid bodies
using a sharp-interface immersed boundary method [107] and model turbulence us-
ing the global dynamic coefficient LES approach introduced by Vreman [178]. This
code has been validated extensively through comparisons with published numerical
and experimental data [107].

54



4.1.3 Results

To investigate the effect of ZNMF forcing on the canonical separated flow, we sim-
ulate the flow for various nondimensional forcing frequencies F+

jet = fc/U∞. Based
on a preliminary analysis, we consider the following ZNMF forcing frequencies:
F

+
jet = 0.00, 2.24, 4.40 and 6.90. These correspond loosely to no forcing (uncon-

trolled flow), forcing at the wake frequency, forcing at the separation bubble fre-
quency, and forcing at the shear layer frequency. Each case is analyzed using both
POD and DMD. We then compare the results, looking for features in the modal
decompositions that correspond to control effectiveness. Specifically, we look for
signs of lock-on involving combinations of the wake, separation bubble, and shear
layer. Such features may provide insight into the underlying physics that govern the
flow.

Separation bubble height

In the canonical separated flow, the goal of ZNMF forcing is to reduce the effects
of separation. There are many ways to measure this effect. Table 4.1 summarizes
the effect of ZNMF forcing on the time-averaged separation bubble, in terms of its
height δ∗ (normalized with respect to the synthetic jet slot width d) and length Lsep

(normalized with respect to the chord c). (These values are computed as in [90].2)
For the remainder of this discussion, we measure control effectiveness in terms of
reduction in the mean separation bubble height.

Energy distribution (POD analysis)

Recall that POD analysis takes a set of velocity fields and from them generates
spatial modes that optimally capture the kinetic energy in the flow. (For more
details on POD, see Appendix A.) Figure 4.2 shows the dominant POD mode for
each of the four forcing frequencies. (Due to the traveling wave nature of the flow,
these modes come in pairs, only one of which is illustrated.) We see that in three of
the four cases (all but F

+
jet = 4.40), the dominant mode displays the same general

structure. The contours of v (vertical velocity) are large elliptical surfaces, extending
across the centerline of the body in a roughly symmetric manner. These occur only in
the region downstream of the body, with no support elsewhere. This is a commonly

2These values were computed by Ehsan Aram (Johns Hopkins University).

Table 4.1: Separation bubble size for various ZNMF forcing frequencies.

F
+
jet Height (δ∗/d) Length (Lsep/c)

0.00 5.4 0.47
2.24 3.0 0.15
4.70* 1.8 0.13
6.92 2.4 0.05

* Data for F+
jet = 4.40 are not available,

but the behavior is very similar to that
of F+

jet = 4.70.

55



(a) F+
jet = 0.00 (b) F+

jet = 2.24

(c) F+
jet = 4.40 (d) F+

jet = 6.90

Figure 4.2: Comparison of dominant POD modes, illustrated using contours of
vertical velocity v. All cases except for F+

jet = 4.40 show the same general structure,
characteristic of a von Kármán vortex street.

observed modal structure in bluff-body wakes and is associated with von Kármán
vortex streets. As such, we can say that in each of these cases, the flow is dominated
by von Kármán vortex shedding.

In contrast, for F+
jet = 4.40, the dominant mode displays none of these character-

istics (Figure 4.2 (c)). There is clear support in the separation bubble region, over
the upper surface of the trailing edge. In the near wake, the contours are smaller
than for the other forcing frequencies and originate from the flow over the upper
surface of the body. Even in the far wake, where these surfaces grow and extend
across the centerline of the body, they are not nearly as large as in the wake modes
that dominate for the other forcing frequencies. Furthermore, the contours of v

never show the same top-bottom symmetry seen in the other cases.
If we consider the secondary POD modes, we find a mode for F

+
jet = 4.40 that

resembles a wake mode (Figure 4.3 (c)). However, the wake structures are much
more irregularly shaped than those found in the wake modes for other forcing fre-
quencies. In addition, for F+

jet = 4.40, we see from Figure 4.4 that the dominant and
secondary mode pairs contain roughly the same amount of energy (about 15 % and
12 % per mode, respectively). This differs from the other cases, where the domi-
nant modes contain at least twice the energy of the secondary ones, if not more. In
fact, comparing to Table 4.1, we see that the reduction in separation bubble height
correlates with the evenness of the POD energy distribution. Thus it appears that
ZNMF forcing is most effective when it leads to a more equitable distribution of
energy in the various modes of the flow.

Lock-on modes (DMD analysis)

Recall from Chapter 2 that DMD analysis decomposes a set of velocity fields into
spatial modes that each oscillate with a single temporal frequency. This can be
used to identify the characteristic frequencies of a flow, as well as the corresponding
spatial structures. In addition, the support observed in a DMD mode can be used
as evidence of lock-on. Because each DMD mode oscillates at a single frequency,
if a DMD mode shows support in two regions of the flow, then those two regions
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(a) F+
jet = 0.00 (b) F+

jet = 2.24

(c) F+
jet = 4.40 (d) F+

jet = 6.90

Figure 4.3: Comparison of secondary POD modes, illustrated using contours of
vertical velocity v. The mode for F

+
jet = 4.40 contains large contours similar to

those observed in Figure 4.2 for other frequencies.
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Figure 4.4: POD energy content. A more even distribution of energy among the
first few POD modes correlates with a decreased mean separation bubble height (see
Table 4.1).

must exhibit oscillations at the same frequency. For instance, if a particular mode
has support in both the wake region and the shear layer region, then we can say the
wake and shear layer are locked-on.

Figure 4.5 shows a comparison of the DMD spectra for the canonical separated
flow with various forcing frequencies applied. (We perform all DMD computations
using sequential series of snapshots, as described in Section 2.3.1.) The separated
flow with no forcing exhibits only approximately harmonic structure, with a fun-
damental forcing frequency corresponding to the wake shedding frequency (Fig-
ure 4.5 (a), blue peak), as evidenced by the structure of the corresponding mode
(Figure 4.6 (a)). In each case where forcing is applied, the DMD spectrum becomes
more strongly harmonic. For forcing at F

+
jet = 2.24 (Figure 4.5 (b)), we observe

harmonics of the forcing/wake frequency. When forcing is applied at F
+
jet = 4.40

(Figure 4.5 (c)), we instead see harmonics of the forcing/separation bubble fre-
quency. Forcing at F

+
jet = 6.90 (Figure 4.5 (d)) produces harmonics of the wake

frequency again.
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Figure 4.5: Comparison of DMD spectra. Spectral peaks corresponding to the
modes depicted in Figures 4.6 and 4.7 are shown in blue and red, respectively. The
spectrum for the unforced flow contains only approximate harmonics, whereas the
spectra for the forced flows are characterized by near-exact harmonics. Only in the
case of F+

jet = 4.40 is the fundamental frequency not associated with a wake mode
(see Figure 4.6).

Looking at the corresponding modes (Figure 4.6), we see that just as in the
POD analysis, all cases except F+

jet = 4.40 produce a wake mode. For each of these
cases, this wake mode corresponds to the fundamental frequency of the system. In
contrast, for F+

jet = 4.40 the fundamental frequency corresponds to a very different
mode shape (Figure 4.6 (c)). This mode resembles the dominant mode observed
in POD analysis (Figure 4.2 (c)), with support over the trailing edge and smaller
elliptical contours in the far wake. Because these structures appear in a single DMD
mode, we can say that these structures oscillate at the same frequency. As such, for
F

+
jet = 4.40, the flow is dominated by lock-on between the wake and the separation

bubble (both as a fundamental frequency and in terms of energy content). For the
other forcing frequencies, the flow is dominated by the wake mode.

If we look at the superharmonic DMD modes (corresponding to the red peaks in
Figure 4.5), we observe lock-on for the other forcing frequencies (Figure 4.7). These
often involve small structures extending from the mid-chord of the body all the way
into the wake region (Figure 4.7 (b)–(d)). Such modes indicate lock-on between the
shear layer and harmonics of the wake, rather than the dominant structures of the
wake. Interestingly, for F

+
jet = 4.40, there is no evidence of a wake mode at any

frequency. This is unlike the POD results, which simply show that the wake mode
has diminished energy content. Thus, for this forcing frequency, the wake mode is a
high-energy structure, but not a temporally oscillatory one. In other words, the time
evolution of the wake is not characterized by a steady oscillation of a von Kármán
vortex street. Recall that the F

+
jet = 4.40 case is the most effective in reducing the
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(a) F+
jet = 0.00 (b) F+

jet = 2.24

(c) F+
jet = 4.40 (d) F+

jet = 6.90

Figure 4.6: Comparison of fundamental DMD modes. Note the similarity to the
dominant POD modes shown in Figure 4.2. All cases except Fjet = 4.40 show
the same general structure, characteristic of von Kármán vortex shedding. For
F

+
jet = 4.40, the location of the spatial support is evidence of lock-on between the

separation bubble and wake.

(a) F+
jet = 0.00 (b) F+

jet = 2.24

(c) F+
jet = 4.40 (d) F+

jet = 6.90

Figure 4.7: Comparison of secondary DMD modes. Except for the case of Fjet =
4.40, these modes are similar to the secondary POD modes shown in Figure 4.3.

mean separation bubble height. We see here that it is also the most unique in terms
of its modal characteristics.

4.1.4 Summary

In this section we applied modal decomposition techniques to analyze the canoni-
cal separated flow, a model for separated airfoil flows. Specifically, we used POD
and DMD to decompose a flow into its high-energy and oscillatory components,
respectively. We performed this analysis for a number of ZNMF forcing frequen-
cies, looking for trends that corresponded to control effectiveness. We found that
the most effective forcing frequency, F+

jet = 4.40, produced the most unique modal
characteristics.
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POD analysis showed that for F
+
jet = 4.40, the energy distribution in the POD

modes was more evenly distributed. In fact, the flatness of the energy distribution
correlated directly with the separation height (the flatter, the smaller the bubble).
The F

+
jet = 4.40 case was the only one not dominated by a wake mode; the wake

mode in this case appeared in the secondary POD modes. DMD analysis found that
F

+
jet = 4.40 was the only case whose spectrum was not dominated by superharmonics

of the wake frequency. Instead, the fundamental frequency of this flow was the
forcing/separation bubble frequency, and no wake mode could be found at all. This
mode shows support in both the separation bubble and wake regions, indicating
lock-on between the two. No other forcing frequency generated lock-on of this
nature.

4.2 Shock-turbulent boundary layer interactions

It is well known that the interaction of a shock wave with a turbulent boundary layer
leads to low-frequency, oscillatory shock motion. While some have argued that these
oscillations are primarily correlated with upstream fluctuations, others have found
evidence that they are primarily correlated with downstream fluctuations; their
origin remains a question. In this section, we present preliminary work in which we
apply DMD to analyze the Mach 2.9 flow over a 24◦ compression ramp. Our goal
is to identify any DMD modes whose frequencies match that of the shock motion.
The spatial support observed in such modes may provide insight into the physics
driving the shock oscillation.

This material is the result of joint work with Stephan Priebe (Princeton Uni-
versity) and Professor Pino Mart́ın (University of Maryland). It is an extension of
the work presented in Priebe and Mart́ın [132] and Priebe [131]. Stephan Priebe
conducted the numerical simulations and provided assistance in non-DMD postpro-
cessing (e.g., computing skin friction coefficient profiles) and visualization of the
three-dimensional results.

4.2.1 Motivation

Shock-turbulent boundary layer interactions (STBLIs) occur in many engineering
applications. For instance, a normal shock may form in the transonic flow over an
airfoil. When the shock meets the airfoil surface, it will interact with the (typically
turbulent) boundary layer, leading to a normal STBLI. STBLIs also occur due to
shocks that form in the flow around high-speed (super- or hyper-sonic) vehicles. For
instance, they can be caused by the deflection of control surfaces, which produces a
compression ramp and an accompanying oblique shock.

The presence of STBLIs often leads to a degradation in performance. A common
example is the engine of a scramjet, in which compression is achieved upstream of
the combustion chamber via a series of shocks. Because each of these shocks ter-
minates within the engine, a series of STBLIs results. This can lead to a number
of undesirable effects, including large-scale unsteady separation and significant fluc-
tuations in pressure and heat transfer at solid surfaces [33, 42, 44, 157]. Unsteady
separation effects contaminate downstream flow, which may affect engine perfor-
mance. Fluctuations in heat transfer have been known to cause damage to vehicle
surfaces [8, pp. 396].
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Unfortunately, the origin of STBLIs is not well-understood. A number of studies
suggest that upstream influences may cause the low-frequency oscillations charac-
teristic of STBLIs. Beresh et al. [22] found that the shock motion resulting from an
STBLI is correlated with upstream fluctuations in the streamwise boundary layer
velocity. Ganapathisubramani et al. [58, 59] found a correlation between spanwise-
constant motion in the separation bubble and global changes in the upstream ve-
locity and suggested that these “superstructures” in the incoming boundary layer
could be responsible for the shock motion. Experimental results by Humble et al.
[82] found similar correlations between unsteadiness in the upstream boundary layer
and unsteadiness due to an STBLI. However, many studies also find that down-
stream influences may be important to STBLI dynamics. Using unsteady pressure
measurements, many have shown that fluctuations near the foot of the shock corre-
late with fluctuations below the downstream separation region, in an out-of-phase
manner [50, 53, 161]. Analogous results relating the shock motion to changes in
the separation bubble have been found using particle image velocimetry (PIV) [128]
and direct numerical simulation (DNS) [184]. Priebe and Mart́ın [132] investigated
the relative importance of upstream and downstream effects. They found that the
shock motion correlates strongly with a breathing of the separation bubble and the
associated flapping of the separated shear layer, whereas correlation with features
of the upstream boundary layer is weaker. However, they also remark that this
relationship may vary depending on the degree of separation.

There have also been numerous efforts to directly model the physics of STBLIs,
rather than simply find correlations. For instance, Piponniau et al. [128] proposed
an entrainment-based model for oscillations in the downstream separation bubble,
which lead to oscillatory motion in the shock. Touber and Sandham [165] used
a linear stability analysis of the mean velocity field to identify an unstable global
mode that may cause the observed oscillations. Using DNS, Priebe and Mart́ın
[132] found a Cf (coefficient of friction) signature that matches that of the unstable
mode computed by Touber and Sandham [165]. Here, we extend this work, looking
to find further evidence of an unstable mode in DNS data. We do so using DMD,
seeking modes whose frequency matches that of the shock motion. A match in the
DMD and global stability modes would validate the hypothesis that the oscillations
observed in STBLIs are caused by the saturation of a linear instability.

4.2.2 Flow configuration and solver

We consider the Mach 2.9 flow over a 24◦ compression ramp. (Other studies consider
STBLIs generated by reflected shocks; the results are analagous.) Figure 4.8 shows
the geometry of the computational domain. The domain is discretized with uniform
spacing in the spanwise (y) direction. In the wall-normal (z) and streamwise (x)
directions, grid points are clustered according to a hyperbolic sine transformation,
with more points allocated near the wall and the compression corner, respectively.
This results in a 1024× 160× 128 mesh (in x, y, and z). For DMD, we downsample
in the spanwise direction, leaving flow variables defined on a 1024 × 40 × 128 grid.
To avoid aliasing, we use following filter, with n = 4:

f i =
1

2n

�
fi−n/2 + 2

�i+n/2−1

j=i−n/2+1
fj + fi+n/2

�
,
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Figure 4.8: Schematic of domain used for DNS of STBLI. (Figure courtesy of
Stephan Priebe.)

where f denotes filtered values and f denotes the original values. On this coarse
grid, we are able to resolve features on the scales found in large eddy simulations
(LES).

The flow is solved using a discretization of the three-dimensional, compress-
ible Navier–Stokes equations. (I.e., we simulate the flow using three-dimensional
DNS.3) A perfect gas is assumed. Inviscid fluxes are discretized using a fourth-
order weighted essentially non-oscillatory (WENO) scheme. Viscous fluxes are dis-
cretized using fourth-order finite differences. We step the flow forward in time using
a third-order, low-storage Runge–Kutta method [181]. A no-slip, isothermal bound-
ary condition is applied at the wall. Supersonic outflow conditions are imposed at
the lid and outlet of the domain. In the spanwise direction, we use periodic bound-
ary conditions. The inflow boundary condition is determined using the results of
an auxiliary DNS. For further details on the computational method, see Wu and
Mart́ın [184] and Priebe and Mart́ın [132].

4.2.3 Preliminary results

Based on the work of Touber and Sandham [165] and Priebe and Mart́ın [132], we
expect the dominant features of the flow near the shock foot to be two-dimensional.
As such, we first consider a DMD analysis of the spanwise-averaged flow field. (We
apply DMD to sequential snapshots of the velocity field, as described in 2.3.1.)
Figure 4.9 shows that while the DMD spectrum is fairly broadband, it does identify

3All DNS computations were performed by Stephan Priebe (Princeton University), as were all
visualizations of three-dimensional data.
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a mode with non-dimensional frequency f
+ = 0.066; this frequency remains nearly

constant even as the snapshot set is varied. (f+ is non-dimensionalized with respect
to the mean separation length and the freestream velocity.) The corresponding
mode is illustrated in Figure 4.10. We observe that along the wall, the sign of the
streamwise velocity changes at and downstream of the shock corner. For instance,
in the imaginary part of the mode, as we move along the wall we see a strong region
of positive velocity perturbation near the mean separation point, weaker negative
velocity perturbations at the corner, and strong positive perturbations downstream
of the corner. This general behavior matches the global stability mode identified by
Touber and Sandham [165].

To better illustrate the contribution of this DMD mode to the flow, we recall
that DMD modes can be considered extensions of global stability modes to nonlinear
dynamics. As such, the delineation between the real and imaginary parts of the
mode is somewhat arbitrary. The contribution of the mode will evolve in time,
transitioning from the real part to the imaginary part and back again, just as the
eigenvector of a linear system would. Figure 4.11 compares the ∆Cf profile from a
particular point in this transition4 to the mean-subtracted profile found by Priebe
and Mart́ın [132], who computed the profile using a conditional averaging approach.
We observe that DMD confirms the key features of the profile, including a large

4The ∆Cf profiles were computed by Stephan Priebe (University of Maryland).
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Figure 4.9: DMD spectrum computed from spanwise-averaged data. The spectral
peak corresponding to the mode depicted in Figure 4.10 is shown in blue. Though
the spectrum is fairly broadband, there is a peak at the expected frequency.
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Figure 4.10: DMD mode computed from spanwise-averaged data, illustrated using
contours of streamwise velocity u. Changes in the sign of the velocity along the wall
match those observed in linear stability modes computed by Touber and Sandham
[165]. (Positive perturbations are shown in red; negative ones are shown in blue.)
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Figure 4.11: Comparison of ∆Cf profiles. The contribution of the identified DMD
mode (red) matches the mean-subtracted profile computed by Priebe and Mart́ın
[132] using conditional averaging (blue).

negative region followed by a large positive region, and smaller positive regions
further downstream. These features are also observed in the global stability mode
computed by Touber and Sandham [165].

Initial computations using the full three-dimensional flow show the same general
features. Again, the DMD spectrum is fairly broadband (Figure 4.12). However,
there is a peak at f

+ = 0.060, near the expected frequency and close to the value
f
+ = 0.066 identified using spanwise-averaged data (Figure 4.9). Figure 4.13 shows

a wall-normal plane from the corresponding DMD mode, taken at the grid point
closest to the wall. We see that generally, the streamwise slices are characterized
by same-sign velocity pertubations on each side of the corner (x/δ = 0). This is
particularly clear in the imaginary part of the mode. For instance, at y/δ = 0.25,
there is a strong positive pertubation from x/δ = −3 to x/δ = −2, as well as from
x/δ = 3 to the end of the domain. This is similar to the behavior observed in the
DMD mode computed from spanwise-averaged data (Figures 4.10 and 4.11).

However, in the three-dimensional DMD mode spanwise variations are also
prevalent. In Figure 4.13, we see strong evidence of streamwise streaks downstream
of the corner, which matches the findings of Priebe and Mart́ın [132]. These streaks
can be seen clearly by plotting iso-contours of the conservative variable ρu, as shown
in Figure 4.14. The spanwise variations near the shock foot (x/δ = −2 to x/δ = 0)
are weaker, but non-trivial. From Priebe and Mart́ın [132], we expect the flow
field in this region to be strongly two-dimensional. This suggests that other DMD
modes, perhaps ones with frequencies close to f

+ = 0.060, should also be consid-
ered, as two-dimensionality may be a cumulative result of many simultaneous mode
oscillations.

4.2.4 Summary

In this section, we used DMD to investigate the interaction of shock waves with
turbulent boundary layers. Such flows are characterized by low-frequency oscilla-
tions, the cause of which is not known. Using DNS of a Mach 2.9 flow over a 24◦

compression ramp, we found a DMD mode whose frequency matches that of the
shock motion. The spatial support of this mode matches flow features observed
previously by Priebe and Mart́ın [132] and Touber and Sandham [165]. The same
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Figure 4.12: DMD spectrum computed from three-dimensional STBLI data. The
spectral peak corresponding to the mode depicted in Figure 4.14 is shown in blue.
As with the spanwise-averaged data (Figure 4.9) the spectrum is fairly broadband,
with a peak appearing at the expected frequency.

(a) Real part

(b) Imaginary part

Figure 4.13: Wall-normal plane from a three-dimensional DMD mode, taken at
grid point closest to the wall and illustrated using contours of u. Each streamwise
slice is characterized by regions of same-sign velocity perturbations upstream and
downstream of the corner (x/δ = 0). The variations in the spanwise direction
indicate the presence of streamwise streaks. (Figure courtesy of Stephan Priebe.)

agreement is observed whether the DMD mode is computed using spanwise-averaged
or three-dimensional flow fields. These initial results support the hypothesis that the
low-frequency oscillations observed in STBLIs result from a saturation of a linear
instability [132, 165].

4.3 Conclusions

This chapter focused on the use of DMD to analyze oscillatory fluid flows. Two
examples were explored: a separated flow and the interaction between a shock wave
and a turbulent boundary layer. In the former, DMD was applied to identify char-
acteristic flow frequencies and their corresponding spatial structures. Trends in the
modal decompositions were found to correlate with the effectiveness of ZNMF ac-
tuation in decreasing the mean separation bubble height. The latter example used
DMD to identify coherent structures corresponding to a known frequency. Features
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(a) Real part (b) Imaginary part

Figure 4.14: DMD mode computed from three-dimensional STBLI data, illustrated
using iso-surfaces of ρu (ρu = 2 in red, ρu = −2 in blue). The shock itself is
fairly two dimensional. Beneath the shock, streamwise streaks are evident. (Figure
courtesy of Stephan Priebe.)

of this mode matched those observed in previous work, confirming behavior found
previously using other methods. Both cases demonstrate the power of DMD as a
tool for analyzing large datasets. While DMD analysis alone cannot explain the
physics governing a complex system, it can provide insight into those physics and
suggest avenues for further study.

66



Chapter 5

Overcoming time resolution

issues via dynamic estimation

The previous two chapters have both demonstrated applications of dynamic mode
decomposition (DMD) to simulation data. Of course, one of the advantages of DMD
is that it can also be applied to experimental data. This was first shown by Schmid
[141] in his 2010 paper. Over the next two chapters, we explore one of the key
challenges in collecting experimental data for DMD: time resolution.

DMD, like most signal processing methods, requires that data be collected at
least twice as fast as any frequency of interest; this is a result of the well-known
Nyquist-Shannon sampling theorem [117, 152]. In fluid applications, DMD is typi-
cally applied to velocity fields, which are typically collected using particle image ve-
locimetry (PIV). PIV hardware imitations make it impossible to satisfy the Nyquist-
Shannon sampling criterion for many fluid flows. On the other hand, point mea-
surements, for instance of velocity or pressure, can be collected on very fast time
scales using standard equipment.

In this chapter, we describe a three-step method that takes advantage of this
fact, leveraging both time-resolved point measurements and non-time-resolved PIV
data to estimate time-resolved velocity fields. First, a variant of linear stochastic
estimation (LSE) is used to obtain an initial set of time-resolved estimates of the
flow field. These estimates are then used to identify a linear model of the flow dy-
namics. Finally, the model is incorporated into a Kalman smoother, which provides
an improved set of estimates. These estimates can be used for DMD computations,
which would otherwise be unable to capture the relevant flow physics.

We verify this method with an experimental study of the wake behind an
elliptical-leading-edge flat plate at a thickness Reynolds number of 3,600. We find
that, for this particular flow, the Kalman smoother estimates are more accurate
and more robust to noise than the initial, stochastic estimates. Consequently,
DMD more accurately identifies coherent structures in the flow when applied to
the Kalman smoother estimates. Causal implementations of the estimators, which
are necessary for flow control, are also investigated. Similar outcomes are observed,
with model-based estimation outperforming stochastic estimation, though the
advantages are less pronounced.

The remainder of this chapter is structured as follows: Section 5.1 motivates
the need for improved estimation techniques in fluid mechanics. In Section 5.2, we
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provide a brief introduction to the theory of stochastic and dynamic estimation.
These estimation techniques are implemented using the numerical methods detailed
in Section 5.3 and demonstrated using the experiment described in Section 5.4.
The results of this experiment are discussed in Section 5.5, and conclusions drawn
therefrom are presented in Section 5.6.

This material is based on the article by Tu et al. [173], and as such, we use the
notation found in that work. All experimental data acquisition was done by John
Griffin (University of Florida) and Adam Hart (University of Florida Research and
Engineering Education Facility), under Professors Louis N. Cattafesta III (Florida
State University) and Lawrence S. Ukeiley (University of Florida). John Griffin was
also responsible for all computations related to stochastic estimation.

5.1 Motivation

Knowledge of the full velocity field can be of great use in identifying and visualizing
spatial structures in a flow. For instance, proper orthogonal decomposition (POD)
can be used to identify structures with high-energy content [96]. However, the data
must be time-resolved in order to elucidate the full dynamics of the flow. Certainly,
if the data do not resolve the time scales of interest, then the corresponding behav-
iors will not be captured. If time-resolved velocity fields are available, structures
of dynamical importance can be identified using methods such as balanced POD
(BPOD) and DMD [137, 138, 141]. Time-resolved, full-field information is also
helpful in forming reduced-order models for closed-loop flow control, or for simply
visualizing a flow. Unfortunately, time-resolved velocity fields are difficult to obtain.

PIV is the standard technique for measuring velocity fields (“snapshots” of a
flow), but time-resolved PIV (TRPIV) systems are costly and thus uncommon.
In addition, such systems are often restricted to low-speed flows due to the larger
time interval needed between snapshots when using a high-speed laser. The required
sampling rates can also limit the spatial extent of the data that can be captured [163].
As such, typical PIV systems are not time-resolved and as a result are often incapable
of resolving the characteristic frequencies of a flow.

On the other hand, many instruments exist for capturing time-resolved “point”
measurements, including hot-wire probes and unsteady pressure sensors. Arrays of
such instruments can be used to take measurements that span large spatial regions,
but these data may not resolve all the spatial scales of interest. The dense arrays
necessary to capture small-scale structures are often too intrusive, and any measure-
ment is limited by spatial averaging on the scale of the sensor’s size. Furthermore,
point measurements can be sensitive to the placement of the instrument, which is
generally predetermined.

In this work, we demonstrate a three-step method that integrates time-resolved
point measurements of velocity, non-time-resolved PIV snapshots, and a dynamic
model to estimate the time evolution of a velocity field. As we only wish to resolve
the dominant coherent structures, we use POD to obtain a low-order description of
the flow. First, a variant of LSE is used to compute an initial set of time-resolved
estimates of the velocity field. We then form a model of the flow physics by combin-
ing an analytic characterization of the flow with a stochastic one identified from the
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initial estimates. The resulting model is used as the basis for a dynamic estimator
called a Kalman smoother, with which a second set of estimates is computed.

Whereas the initial LSE estimates are determined by the point measurements
alone, the Kalman smoother also incorporates the non-time-resolved PIV snapshots.
These two sets of measurements are used to correct an internal, model-based pre-
diction of the estimate. The dynamics of the model prevent the Kalman smoother
estimates from evolving on time scales that are fast with respect to the flow physics,
filtering out measurement noise. Thus, we can leverage knowledge of the flow physics
and a non-time-resolved description of the velocity field to obtain a more accurate
and robust set of estimates.

In many ways, this work builds on that of Murray and Ukeiley [111], Taylor
and Glauser [160], and Tinney et al. [164] (among others), who all used LSE-based
methods to estimate the time evolution of a flow field. The key difference between
our approach and those based solely on LSE is our use of a dynamic model. LSE is
a conditional technique for capturing those features of the flow that are correlated
with a measurement signal, and does not rely on, or provide, a model of the flow
physics. Our approach also differs from the recent work by Legrand et al. [91, 92],
in which a phase-averaged description of a velocity field is obtained directly from
a large ensemble of PIV data. Theirs is a post-processing technique that does not
make use of any other measurement signal.

As a proof of concept, we apply this method in a bluff-body wake experiment.
A finite-thickness flat plate with an elliptical leading edge and blunt trailing edge is
placed in a uniform flow, resulting in oscillatory wake dynamics. (This is the same
flow configuration analyzed in Section 2.4.4.) We collect TRPIV snapshots, from
which we extract the velocity at a single point in the wake, simulating a probe signal.
POD modes are computed from the TRPIV data and a set of basis modes is chosen
for approximating the flow field. The TRPIV snapshots are then downsampled (in
time), and these non-time-resolved data are fed to the dynamic estimator along
with the time-resolved probe signal. This generates an estimated, time-resolved
trajectory for each POD mode coefficient.

The estimation error is quantified using the original TRPIV data, with the fol-
lowing analysis applied to both the initial LSE estimates and the Kalman smoother
estimates. For each TRPIV snapshot, we compute the difference between the es-
timated POD representation of the velocity field and its projection onto the POD
basis. The kinetic energy contained in this difference is then calculated. We collect
the values and find the mean value of the error energy and its distribution. This pro-
cedure is then repeated with various levels of artificial noise injected into the probe
signal, in order to test each method’s sensitivity to noise. Finally, the estimated
flow fields are used to compute DMD modes, testing whether or not the estimates
are accurate enough to identify the oscillatory structures in the flow.

This last computation demonstrates the value of our method in post-processing
analysis, as DMD would not be possible without time-resolved estimates of the
velocity field. Previous work has shown that dynamic estimators and reduced-order
models can also be useful in flow control applications. Gerhard et al. [61] reduced
wake oscillations in simulations of the flow over a circular cylinder using a dynamic
estimator and a low-dimensional Galerkin model. Li and Aubry [93] and Protas
[133] achieved similar results using low-order vortex models. Pastoor et al. [122]
used a vortex model to describe the wake behind a D-shaped body (similar to the
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one analyzed in this work), successfully stabilizing it in experiment using both open-
and closed-loop control. In that work, a Kalman filter was applied to dynamically
estimate the base pressure fluctuations for vortex shedding synchronization. While
the focus in this chapter is reduced-order estimation and not feedback control, we
note that our method can easily be modified for flow control purposes.

5.2 Background

5.2.1 Stochastic estimation

In many instances, we may wish to estimate the value of an event based on the value
of another one. Suppose we would like to use the velocity measurement at one point
in a flow, u(x), to estimate the velocity at another point, u(x�). The conditional
average

û(x�) =
�
u(x�)|u(x)

�
(5.1)

provides the expected value of u(x�) given the measurement u(x) [120, Chapter 2].
We can estimate the conditional average by measuring u(x�) repeatedly and aver-

aging over those values that occur whenever u(x) is near a nominal value u∗(x) [74],
but this procedure would have to be repeated for all potential values of u(x). (I.e.,
it would only give us �u(x�)|u(x) = u∗(x)�.) Adrian [1] introduced stochastic esti-
mation to the turbulence community, approximating the conditional average (as a
function) with the power series

�
ui(x

�)|ui(x)
�
≈ Aij(x

�)uj(x) +Bijk(x
�)uj(x)uk(x) + . . . , (5.2)

where summation over repeated indices is implied. In the case of LSE, only the
linear coefficients Aij are retained. These can be computed from the two-point,
second-order correlation tensor Rij(x�) [2].

Similar procedures exist for higher-order estimates, making use of higher-order
two-point correlations. While Tung and Adrian [175] found that higher-order esti-
mation procedures did not provide much additional accuracy, later studies showed
that this is not always the case. For instance, quadratic estimation can be more
effective when the estimation of a given quantity (e.g., velocity) is based on the
measurement of another (e.g., pressure) [110, 113].

Other studies achieved improved performance by accounting for time delays be-
tween the conditional and unconditional variables [74]. Ewing and Citriniti [55] de-
veloped a multi-time LSE technique in the frequency domain that was a significant
improvement over single-time LSE. This multi-time formulation also incorporated
global analysis tools, namely POD, that yielded low-dimensional representations
of the turbulent jets being studied. The multi-time approach was later translated
into the time domain and used to predict future pressure values from past measure-
ments [176]. Durgesh and Naughton [51] demonstrated the existence of an optimal
range of delays when they estimated the POD mode coefficients of a bluff-body wake
in a non-causal, post-processing fashion.

We note that the stochastic estimation of POD coefficients from measurements
is typically referred to as modified LSE (mLSE), or more recently, modified linear
stochastic measurement. The latter name is used to distinguish this as a measure-
ment (state) estimation as opposed to a plant estimation (system identification),

70



which would also be typical from a controls perspective [63]. In this work, we use
the term “LSE” as it is more prevalent in the literature.

It is important to note that stochastic estimation does not involve any modeling
of a system’s dynamics. Rather, it simply provides a statistical estimate of a ran-
dom variable given the knowledge of other random variables [2]. We can think of
stochastic estimation as a static mapping, computed using a pre-existing dataset,
that yields the most statistically likely value of some unknown (conditional) variable,
given some other measured (unconditional) data. For a fluid flow, such a method
can produce visual representations of the flow field, but cannot suggest, without
further analysis, what events should be observed or how they might be related to
the underlying flow physics [35]. Furthermore, in LSE, the estimated values will
lie in a subspace whose dimension is limited to the number of measurements. This
is especially important when using a small number of measurements to predict a
high-dimensional variable, such as a velocity field. Depending on the application, it
can be either a limitation or an advantage, unnecessarily restricting the estimates
or capturing only the features of interest. The use of a static map can also lead
to uniqueness issues, as a particular measurement value will always yield the same
estimate. For instance, a pressure sensor may measure the same value at two points
in time, leading to identical estimates, even though the corresponding velocity fields
are different. Increasing the number of sensors can decrease the likelihood of this
happening but is not always feasible.

We note that there exist “multi-time” variants of LSE that incorporate not only
current measurements, but also past ones. (See Section 5.3.1 for details on multi-
time LSE.) Like standard LSE, such methods do not explicitly rely on dynamic
models. However, by making use of past measurements, they in effect include dy-
namics. The use of multiple temporal measurements also enlarges the estimation
subspace and helps in dealing with uniqueness issues (in the same way that using
multiple probes does).

5.2.2 Dynamic estimation

Dynamic estimators are a fundamental topic in control theory. They estimate a
system’s state using a model of its dynamics along with real-time measurement
updates. The measurement updates are used to correct the trajectory of the model,
which will drift from the true trajectory due to parameter uncertainty, unmodeled
dynamics, and external disturbances (process noise). This is in contrast to static
estimation techniques, including stochastic estimation, which use a fixed relationship
to estimate the system state from a set of measurements. The static estimation
approach does not take advantage of the fact that the equations governing a system’s
evolution are often known.

In this work, we focus on the Kalman filter and smoother, both standard subjects
in the study of estimation. (For a more in-depth discussion, see any standard text
on estimation, for instance the book by Simon [154].) Suppose we are interested in
the evolution of a system described by a linear model

ξk = Fξk−1 + dk ξ ∈ RNs

ηk = Hkξk + nk η ∈ RNo ,
(5.3)
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where ξ is a vector of Ns state variables, η is a vector of No measurements of
the state, d represents process noise, and n represents sensor noise. At any given
iteration k, we assume that we can observe the measurement ηk. From this, we
would like to estimate the value of ξk, which is otherwise unknown.

The dimension of η may be smaller than that of ξ, meaning that even without
sensor noise, the matrix H relating the two may not be invertible. However, if the
system is observable, we can use knowledge of the system dynamics F and the time
history of η to produce an estimate ξ̂ that converges, in the case of no noise, to the
true value ξ. In the presence of noise, the Kalman filter will minimize the expected
value of the error �

ξk − ξ̂k

�T �
ξk − ξ̂k

�
.

The Kalman filter is a causal filter, meaning that only measurements made up to
and including iteration k are available in forming the estimate ξ̂k. In some situations,
we may also have access to measurements occurring after iteration k, for instance in a
post-processing application. We can use that information to improve our estimate of
ξk. This yields a non-causal filter, generally referred to as a smoother. In this work,
we use a variant of the Kalman smoother developed by Rauch, Tung, and Striebel,
known as the RTS smoother [cf., 154, Section 9.4.2]. The RTS smoother is a fixed-
interval smoother, meaning that all measurements taken over a fixed time interval
are used to estimate the state evolution within that interval. Algorithmically, it
consists of a forward pass with a Kalman filter followed by a backward, smoothing
pass. The specifics of the Kalman filter and RTS smoother algorithms are described
in Section 5.3.2.

5.3 Numerical methods

In this section, we detail the various numerical methods used in our estimation
procedure. These methods include stochastic estimation techniques and dynamic
estimation techniques. (For details on modal decomposition techniques, used here
to approximate the flow field and investigate flow physics, see Chapter 2 (DMD)
and Appendix A (POD).) We also provide a summary of our three-step dynamic
estimation procedure, laying out how the numerical methods listed above are used
to form a dynamic estimator for experimental applications.

5.3.1 Modified stochastic estimation

Stochastic estimation is a means of approximating a conditional average using a
knowledge of unconditional statistics. Adrian and Moin [3] proposed a stochastic
estimate of the conditional average by means of a Taylor series expansion

âi(t) = �ai(t)|pj(t)� ≈ Aijpj(t) +Bijkpj(t)pk(t) + . . . , (5.4)

where ai is the ith POD coefficient, pj is the jth probe measurement, �·� is the
expected value, and âi is the estimate of the conditional average. The stochastic
estimation coefficients Aij , Bijk, and so on are determined by minimizing the mean-
square error of the estimate �

(âi(t)− ai(t))
2
�
,
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which requires solving a set of linear equations [74]. (We note that in some situations,
for instance in the case of periodic flows, additional assumptions may be necessary
to uniquely determine the estimation coefficients.)

The particular form of stochastic estimation given in (5.4), in which the time-
varying POD coefficient is the conditional variable, is referred to as modified stochas-
tic estimation. This approach can be more favorable than estimating a full PIV ve-
locity field, typically consisting of thousands of data points, because the dominant
behavior of many flows can be captured by a handful of POD modes. The estimated
POD coefficients, paired with the corresponding modes, yield low-dimensional esti-
mates of velocity fields.

Modified stochastic estimation has been applied by Bonnet et al. [24] and Taylor
and Glauser [160] for linear estimates, Naguib et al. [113] and Murray and Ukeiley
[112] for quadratic stochastic estimation, and Durgesh and Naughton [51] for linear
estimates using time delays. Here, we use modified stochastic estimation in two
ways. First, we use it to obtain initial estimates of time-resolved POD coefficients
from non-time-resolved PIV measurements and time-resolved point measurements.
Based on these initial estimates, it is used again to estimate model parameters that
are later used as part of a dynamic estimator.

Single-time-delay modified linear stochastic estimation

In mLSE, only the linear term in (5.4) is retained. Then given the value of the probe
measurements, the estimate is

âi(t) = Aijpj(t− τ), (5.5)

where a constant time delay τ is introduced to account for a potential lead or lag
between the conditional and unconditional variables. This increases the correlations
between a(t) and p(t) for some systems [35, 74, 140]. To calculate the coefficients
Aij , the mean-square error of the estimates must be minimized, which requires
solving the equation

AT = [PP]−1 [aP] , (5.6)

where

AT =





A1,i

A2,i
...

ANp,i




, [PP] =





p1p1 p1p2 · · · p1pNp

p2p1 p2p2 · · · p2pNp

...
...

. . .
...

pNpp1 pNpp2 · · · pNppNp




, and

[aP] =





aip1

aip2
...

aipNp




.

Np is the number of probe measurements and time dependence in the above equa-
tions is neglected for brevity. Overbars denote time averages. (These equations are
standard in the LSE literature; a derivation can be found in Durgesh and Naughton
[51].)
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Multi-time-delay modified linear stochastic estimation (MTD-mLSE)

The equation (5.5) is the “single time” form of mLSE. However, a single delay may
increase the correlation between certain pairings of the unconditional and condi-
tional variables but not others. In general, we can account for multiple time delays,
summing the correlations over several values of τ [51, 176]:

âi(t) = Aijkpj(t− τk). (5.7)

The use of multiple time delays, rather than a single one, is advantageous if the exact
time delay is not optimal for all pairings, unknown, or not resolved well enough in
time. It also effectively incorporates dynamics, as the estimates now depend on
a time history of measurements. Multi-time-delay mLSE (MTD-mLSE) has been
developed for purely negative time delays, requiring only past data [176], as well as
for two-sided delays that also use future data [51].

The latter method is applied in this work to estimate the time-dependent POD
coefficients a(t), and is hereafter referred to as MTD-mLSE, unless distinguished
as the purely negative delay version. While using both past and future data may
strengthen correlations, it comes at the cost of yielding a non-causal process. As
such, two-sided MTD-mLSE cannot be used in real-time estimation or flow control
applications. For a derivation of the MTD-mLSE algorithm, we refer the reader to
Durgesh and Naughton [51].

We note that (5.5) provides a static map from the measurement p(t) to the
estimate â(t). When computing the coefficients Aij , we make sure to average over
large datasets, mitigating the effects of sensor noise. However, in using those coef-
ficients to compute an estimate, the static map will respond directly to the probe
measurements (without averaging), making the estimates sensitive to noise. In con-
trast, (5.7) takes into account a history of the probe measurement. This increases
the robustness of the method to sensor noise, as the inclusion of a measurement
history will offset the effect of instantaneous aberrations in the probe measurement.

5.3.2 Dynamic estimation

Model identification

Our goal is to use a dynamic estimator to estimate the state of a bluff-body wake ex-
periment. We assume that a time-resolved velocity probe signal is available, as well
as PIV velocity fields captured at a slower, non-time-resolved sampling frequency.
To implement a dynamic estimator, we need a model for the time evolution of the
system. A high-fidelity numerical discretization of the Navier–Stokes equation is far
too computationally intensive for this purpose, and would in any case be difficult
to match to the experiment. As such, we develop an empirically derived, low-order
model. We focus on POD-based models, as the first r POD modes optimally capture
the kinetic energy contained in a set of snapshots, for any model order r.

From a large, statistically independent ensemble of PIV snapshots, we can com-
pute a single set of well-converged POD modes. For the model identification pro-
cedure, we assume only non-time-resolved data are available. (See Section 5.4.3 for
a detailed description of the particular dataset used for this computation.) We fix
a desired model order r based on the energy content of the modes, which can be
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determined from the POD eigenvalues. These r modes form a basis for our low-order
model.

Due to noise and low spatial resolution, methods such as Galerkin projection can
be difficult to apply when using experimentally acquired velocity fields. As such we
take a stochastic approach in identifying a dynamic model. First, we collect a set of
non-time-resolved PIV snapshots synchronously with a time-resolved probe signal.
The PIV data are projected onto the POD basis to get a non-time-resolved set of
POD coefficients {aNpsk}, where Nps is the ratio of the probe and PIV sampling
rates. (We note that here, the notation ak denotes a vector of POD coefficients
corresponding to a time tk, not to be confused with the previous use of ai to denote
the ith element of a.) These coefficients are used along with synchronous probe
measurements as “training data” to calculate the linear coefficients for MTD-mLSE,
as described above in Section 5.3.1. The MTD-mLSE coefficients are then applied
to the full, time-resolved probe signal, providing a set of time-resolved estimates of
the POD coefficients, {âk}.

We then apply LSE to these vectors, recalling that LSE estimates the expected
value of a conditional variable as a linear function of an unconditional variable. If
we take âk to be the conditional variable and âk−1 to be the unconditional variable,
then we can use LSE to identify a linear, discrete-time dynamical map:

âk ≈ �âk|âk−1� ≈ FLSEâk−1. (5.8)

So long as the MTD-mLSE estimates of the POD coefficients are accurate enough,
then the resulting model will capture enough of the true dynamics to be used as the
basis for a Kalman filter.

Finally, we note that it can be shown that the solution to the above LSE problem
is the same as the least-squares/minimum-norm solution to the problem

B = FLSEA,

where the columns of B are the vectors {âk}mk=1 and the columns ofA are the vectors
{âk}m−1

k=0 , collected over all runs. (The proof is simple and omitted here.) As such,
FLSE can be computed by simply taking the Moore-Penrose pseudoinverse of A.1

However, the analogy to LSE provides an additional interpretation to the dynamics
it defines, as it provides a linear estimate of the most statistically likely value of âk
given a value of âk−1, according to the ensemble defined by A and B. Based on this
interpretation, this modeling procedure can naturally be extended using quadratic
stochastic estimation (QSE), or even higher-order methods, for which there are no
analogs to the pseudoinverse.

The bluff-body wake studied in this work is dominated by a Kármán vortex
street. A computational study of a very similar flow shows that this behavior is
captured well by the first two POD modes alone, which by virtue of their similarity
to the dominant DMD modes, have purely oscillatory dynamics [172]. To take ad-
vantage of this knowledge in developing a model, we decouple the dynamics into two
parts: an analytic, oscillatory component describing the Kármán vortex shedding,
and a stochastic component describing the dynamics of all the other POD modes.

1As mentioned at the end of Section 2.6.2, this is equivalent to linear inverse modeling.
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This yields a system with dynamics

âk =

�
Fosc 0
0 FLSE

�
âk−1, (5.9)

where Fosc is a 2× 2 matrix

Fosc =

�
λ
re −λ

im

λ
im

λ
re

�
. (5.10)

We choose λ = λ
re + iλ

im such that arg(λ) is equal to the shedding frequency
(identified using an autospectrum of the probe signal), and such that �λ� is close
to one, indicating nearly perfectly oscillatory dynamics. (In practice we choose
�λ� = 0.999 to ensure stable dynamics.) The stochastic dynamics FLSE are identified
using the method discussed above.

We note that in practice, the oscillatory dynamics can be captured directly by
the stochastic modeling procedure. This negates the need for an a priori knowledge
of the dynamics. For more complex systems, this approach may not suffice, though
one could attempt to use more sophisticated system identification tools, for instance
the eigensystem realization algorithm (ERA) [85], the auto-regressive Markov (AR-
MARKOV) algorithm [5, 83], or observer Kalman identification (OKID) [86, 127].
However, we emphasize that the point of dynamic estimation is to leverage knowl-
edge of a system’s dynamics to estimate its state. As such, the need for a model
should not be seen as a hindrance. If a model is not available, this simply indicates
that dynamic estimation may not be an appropriate method for the task at hand.

Kalman filter

We use the procedure detailed in the preceding section to model the bluff-body wake
as a dynamical system

ak = Fak−1 + dk

ηk = Hkak + nk,
(5.11)

where a is a vector of POD coefficients, η is some measured quantity, d is process
noise, and n is sensor noise. The matrix F is the block diagonal matrix given
in (5.9). The measurement matrix Hk can be varied according to the timestep.
At times when a non-time-resolved PIV snapshot is available, we choose Hk = I,
allowing access to the POD coefficients of that snapshot. Otherwise, we let Hk be a
row vector containing the vertical velocity of each POD mode at the probe location.
This makes ηk a POD approximation of the probe signal.

We assume that d and n are white, zero-mean, and uncorrelated, with covari-
ances Q and R. This yields the equations

E[did
T
j ] = Qiδij

E[nin
T
j ] = Riδij

E[din
T
j ] = 0.

Here Q and R are user-defined matrices, which we can consider to be design pa-
rameters. Their relative magnitudes weigh the relative accuracy of the model versus
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the sensor and can be used to account for the effects of noise on the system. If we
have a very noisy sensor, we want to rely more heavily on the model and we make
R large to penalize the sensor noise. On the other hand, if we have an inaccurate
model, then we would do better by simply following the sensor, and we increase Q to
penalize process noise. For this particular experiment, we let the covariances Q and
R vary in time according to which measurement is available. A higher penalty is
given to the noisy probe signal, whereas the PIV data (when available) are assumed
to be very accurate.

We initialize the Kalman filter with the values

â+f,0 = E[a0]

P+
f,0 = E[(a0 − â+0 )(a0 − â+0 )

T ],

where P is the covariance of the estimation error. The filter is then updated using
the following (standard) equations, for k = 1, 2, . . . [154, Section 5.1]:

P−
f,k = FP+

f,k−1F
T +Qk−1 (5.12)

Kf,k = P+
f,kH

T
kR−1

k (5.13)

â−f,k = Fâ+f,k−1 (5.14)

â+f,k = â−f,k +Kf,k

�
ηk −Hkâ

−
f,k

�
(5.15)

P+
f,k = (I−Kf,kHk)P−

f,k. (5.16)

Kalman smoother

The Kalman filter is a causal estimation technique, using only past and current data
in forming a state estimate. In a pure post-processing application, we can make
use of data at future timesteps to further improve the estimate. Such non-causal
filters are referred to as smoothers. We focus here on fixed-interval smoothing, in
which data are available over a fixed interval (here, the duration of the experiment).
Specifically, we use a variant of the Kalman smoother called the Rauch–Tung–
Striebel (RTS) smoother. RTS smoothing consists of a forward pass over the data
using a standard Kalman filter (as described above), followed by a backward pass
with the RTS smoother.

We assume that the data are available from timesteps 0 to Nt. After performing
a forward pass with a Kalman filter, the smoother is initialized with the values

âs,Nt = â+f,Nt

Ps,Nt = P+
f,Nt

.
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We then interate over k = Nt − 1, . . . , 1, 0 [154, Section 9.4.2]:

I−
f,k+1 =

�
P−

f,k+1

�−1
(5.17)

Ks,k = P+
f,kF

TI−
f,k+1 (5.18)

Ps,k = P+
f,k −Ks,k

�
P−

f,k+1 −Ps,k+1

�
KT

s,k (5.19)

âs,k = â+f,k +Ks,k

�
âs,k+1 − â−f,k+1

�
. (5.20)

5.3.3 Dynamic estimator implementation

As depicted by the flow chart in Figure 5.1, the goal in this work is to leverage the
spatial coverage of PIV data with the temporal resolution of point measurements to
improve the accuracy of reduced-order flow field estimates. The estimation proce-
dure can be broken into three general tasks:

1. Compute an initial set of stochastic estimates.

(a) Collect PIV data synchronously with time-resolved probe measurements.
The PIV data need not be time-resolved. From the PIV data, compute
the dominant POD modes, for instance using (A.8) to select modes based
on their energy content. This yields a set of r basis vectors {φj}r−1

j=0, to
be used in approximating the flow field.

(b) Project the PIV vector fields onto the selected POD modes, yielding a
non-time-resolved history of the POD coefficients a(tNpsk), where Nps

is the ratio of probe and PIV sampling rates. Pair each set of POD
coefficients with its corresponding set of probe measurements. Using the
POD coefficients as the conditional data and a downsampled subset of the
probe measurements as the unconditional data, compute the coefficients
in the matrix A for MTD-mLSE.

(c) Apply the MTD-mLSE coefficients to the full set of time-resolved probe
data. This yields a time-resolved estimate of the time history of the POD
coefficients, â(tk).

2. Identify a model using the initial estimates.
Combine physical intuition with the initial, stochastic estimates to form a
dynamic model for the evolution of the POD coefficients. For instance, the
procedure described in Section 5.3.2 can be used for suitable, well-behaved,
oscillatory wakes.

3. Compute an improved set of estimates using a model-based dynamic estimator.
Use the dynamic model constructed above to implement a Kalman smoother.
Apply the Kalman smoother, using the time-resolved probe data and non-
time-resolved PIV velocity fields (when available) as measurement updates.
The time history of the Kalman smoother’s state provides a time-resolved,
low-order estimate of the velocity field.
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Figure 5.1: Flow chart of dynamic estimator implementation. (Figure courtesy of
John Griffin.)

5.4 Experimental setup

5.4.1 Facility and instrumentation

We use TRPIV to measure the velocity in the near wake behind a flat plate model
with an elliptical leading edge and blunt trailing edge. (This is the same flow con-
figuration analyzed in Section 2.4.4.) The experiments are conducted in an Aerolab
wind tunnel at the University of Florida Research and Engineering Education Fa-
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cility.2 This open-return, low-speed wind tunnel has a test section that measures
15.3 cm×15.3 cm×30.5 cm in height, width, and length, respectively. The test sec-
tion is preceded by an aluminum honeycomb, an anti-turbulence mesh screen, and a
9:1 area-contraction section. An upstream centrifugal fan, driven by a variable fre-
quency motor, controls the airspeed. The test section velocity is set by referencing
the static and stagnation pressures from a Pitot-static tube placed at the inlet of the
test section. The pressure differential is read by a Heise ST-2H pressure indicator
with a 0–2 in-H2O differential pressure transducer. For the experimental results
that follow, the leading edge of the model is placed a few millimeters downstream
of the test section entrance, as seen in Figure 5.2.

The two-dimensional flat plate model has a 4:1 (major axis-to-minor axis) ellip-
tical leading edge, transitioning to a flat portion at the minor axis of the ellipse and
terminating abruptly with a flat trailing edge. Unlike other two-dimensional bluff
bodies with similar wake dynamics (e.g., a cylinder), the lack of surface curvature at
the trailing edge simplifies the measurement of the near wake region. This geometry
allows the PIV laser sheet to illuminate the entire region behind the trailing edge
without mirrors or complex laser alignment. The thickness-to-chord ratio is 7.1 %,
with a chord of 17.9 cm and a span of 15.2 cm. For this analysis, the freestream
velocity U∞ is set to 4.2 m/s, which corresponds to a Reynolds number of 3,600
based on the plate thickness h.

A Lee Laser 800-PIV/40G Nd:YAG system capable of up to 40 W at 10 kHz is
paired with appropriate optics to generate a laser sheet for PIV measurements. As
shown in Figure 5.2, the light sheet enters the test section through a clear floor. The
vertically oriented light sheet is aligned with the midspan of the model and angled
such that the rays of light run parallel to the trailing edge without grazing the
surface. This alignment prevents unwanted, high-intensity surface reflections and is

2Experimental data acquisition and processing was done by John Griffin (University of Florida)
and Adam Hart (University of Florida Research and Engineering Education Facility).
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(x, y)/h = (2.24, 0.48)

Figure 5.2: Schematic of experimental setup. A laser light sheet for PIV measure-
ments illuminates the region behind the blunt trailing edge of a flat plate model.
A probe measurement of v� is extracted from the TRPIV wake measurements at
x/h = 2.24 and y/h = 0.48. (Figure courtesy of John Griffin.)
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necessary for well-illuminated flow near the trailing edge, where particle densities
can be low.

We image the seeded flow with an IDT MotionPro X3 camera and a 60 mm
Nikon lens. The camera has a maximum resolution of 1,280 × 1,024 and a sampling
rate of 500 Hz for integration of all pixels. A sampling frequency of 800 Hz is
achieved by reducing the number of pixels captured for each image, such that the
effective image resolution is 600 × 1,024. The laser and cameras are synchronized
by a Dantec Dynamics PIV system running Dantec Flow Manager software. The
seeding for the freestream flow is produced by an ATI TDA-4B aerosol generator
placed upstream of the tunnel inlet. The seed material is olive oil, and the typical
particle size is 1 µm.

LaVision DaVis 7.2 software is used to process the PIV data, using the following
procedure: first, local minimum-intensity background frames are subtracted from
the raw image pairs. This step increases the contrast between the bright particles
and the illuminated background by reducing the influence of static background in-
tensities and noise bands. Then, surface regions and areas with poor particle density
are masked (ignored) before computing multigrid cross-correlations. The process-
ing consists of three passes with 64 × 64 pixel2 interrogation windows and 75 %
overlap, followed by two refining passes with 32 × 32 pixel2 interrogation windows
and 50 % overlap. In between passes, outliers are reduced by applying a recursive
spatial outlier detection test [179]. The final vectors are tested for outliers via the
universal outlier spatial filter [180] and the multivariate outlier detection test [71],
an ensemble-based technique. Holes or gaps left by vector post-processing, which
comprise less than 6 % of the total vectors over all ensembles, are filled via gappy
POD [54, 112]. The final spatial resolution of the PIV measurements is approxi-
mately 8 % of the trailing edge thickness.

5.4.2 Data acquisition

We acquire ten records of TRPIV images at a rate of 800 Hz. Each record comprises
nearly 1,400 sequential image pairs. To obtain a coarsely sampled (in time) set of
velocity fields, we simply take a downsampled subset of the original TRPIV data.
This is intended to mimic the capture rate of a standard PIV system, which for many
flows is not able to resolve all of the characteristic time scales. Typical sampling
rates for such commercially available systems are on the order of 15 Hz. For the
estimation results that follow, one out of every 25 sequential velocity fields is used for
estimation, which corresponds to a sampling rate of 32 Hz. The Nyquist frequency
based on this reduced sampling rate is 16 Hz and well below the shedding frequency
of about 90 Hz.

We also acquire a time-resolved probe signal by extracting the vertical velocity v

from a single point in the TRPIV velocity fields. Because this probe originates from
within the velocity field, the probe data are acquired synchronously with the coarsely
sampled velocity fields and span the time intervals between them (Figure 5.3). This
simulates the type of signal that would be measured by an in-flow sensor like a hot-
wire probe. However, in-flow probes are intrusive and may interfere with attempts
to take simultaneous PIV measurements, in addition to potentially disturbing the
natural flow. Furthermore, such probes are not feasible in real-world applications.
To emulate a more realistic flow control setup, other experiments similar to this one
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PIV snapshots

Probe signal

Time

Figure 5.3: Cartoon of data acquisition method. Probe data is collected syn-
chronously with TRPIV snapshots. The TRPIV are downsampled to get a non-
time-resolved dataset (red). This subset of the TRPIV data is used to develop static
and dynamic estimators. (The cartoon does not depict actual sampling rates.)

have used non-intrusive, surface-mounted pressure sensors to perform stochastic
estimation [51, 111], as well as Kalman filter-based dynamic estimation [121, 122].
Based on their success, the methods developed here can likely be extended to work
with surface-mounted sensors as well.

The dynamic estimators in this work rely, at least partially, on the correlation
between point measurements and the time-varying POD coefficients. As such, the
time-resolved probe measurements must correlate to structures within the flow field
in order for the estimation to work properly. Consequently, the outcome of the
estimation can be sensitive to the placement of the sensors [35]. Motivated by the
work of Cohen et al. [34], we place our sensor at the node of a POD mode (see
Figure 5.2 for the sensor location). In particular, we choose the point of maximum
v-velocity in the third POD mode (Figure 5.6 (d)), as a heuristic analysis determined
that the dynamics of this mode were the most difficult to estimate.

5.4.3 Data partitioning

Here, we describe the division of the TRPIV data into two partitions: one for
implementation and the other for validation. The first partition consists of five
TRPIV records that we use to implement the estimation procedure described in
Section 5.3.3. We refer to these records as “training sets.” The remaining five records
are reserved for error analysis and validation of the resulting dynamic estimator.

There are only two instances in which we make use of the full TRPIV records.
The first is in the POD computation, where the time-resolved aspect of the records
is actually not utilized. The key assumption here is that the POD modes computed
from the time-resolved velocity fields are the same as those generated from randomly
sampled velocity fields. This is valid in the limit of a large, statistically independent
snapshot ensemble. For the remainder of the estimator implementation, we consider
only the downsampled subset of the training sets. The second place that we use time-
resolved velocity fields is in our error analysis. Here, we make use of the 800 Hz
TRPIV data as a basis of comparison for our estimates of the time-resolved velocity
field.
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5.5 Results and discussion

The results of the experiment described in Section 5.4 are discussed below. This
discussion is broken into two main parts. First, we analyze the dynamics of the
wake flow, using POD, DMD, and standard spectral analysis methods. An effort is
made to identify key characteristics of the wake, including the dominant frequencies
and any coherent structures. In doing so, we allow ourselves access to the TRPIV
velocity fields, taken at 800 Hz.

Then the PIV data are downsampled, leaving snapshots taken at only 32 Hz.
These velocity fields are combined with time-resolved point measurements of veloc-
ity (again at 800 Hz) for use in estimating the time-resolved flow field. We compare
the results of MTD-mLSE on the POD coefficients to those of dynamic estima-
tion using a Kalman smoother. As a proof of concept, we also investigate causal
implementations of the estimators, which are necessary for flow control applications.

5.5.1 Wake characteristics

Global/modal analysis

At a thickness Reynolds number of Reh = 3,600, the wake behind the flat plate
displays a clear Kármán vortex street, as seen in Figure 5.4. POD analysis (of the
first four training set records, out of five total) shows that 79.6 % of the energy in
the flow is captured by the first two modes (Figure 5.5). Each subsequent mode
contributes only a small fraction more energy, with the first seven modes containing
85.0 % in total. As such, for the remainder of this analysis, we take these seven
modes as our POD basis. (Though seven modes are required to accurately describe
the state, wake stabilization may be possible using fewer [61, 88].)

The structure of the dominant modes, illustrated in Figure 5.6 (b), (c), demon-
strates that they capture the dominant vortex shedding behavior. The lower-energy
modes also contain coherent structures, though without further analysis, their phys-
ical significance is unclear. All but the third mode (Figure 5.6 (d)) resemble modes
computed by Tu et al. [172] for a simulation of a similar flow. However, the modes
computed here are not all perfectly symmetric or antisymmetric, as might be ex-
pected [41, 115]. While it is possible to enforce symmetry by expanding the snapshot
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Figure 5.4: Instantaneous spanwise vorticity field computed from PIV data (scaled
by the ratio of the freestream velocity U∞ to the plate thickness h). A clear Kármán
vortex street is observed.
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Figure 5.6: Spanwise vorticity of POD modes computed from TRPIV fields. The
modes are arranged in order of decreasing energy content. Most resemble modes
computed by Tu et al. [172] in a computational study of a similar flow. (a) Mean flow;
(b), (c) dominant shedding modes; (d) unfamiliar structure, with v-velocity probe
location marked by (◦); (e), (g) antisymmetric modes; (f), (h) spatial harmonics of
dominant shedding modes.

ensemble [155], we choose not to do so, taking the lack of symmetry in the modes
to indicate a possible lack of symmetry in the experiment.

DMD analysis of the time-resolved velocity fields (from the first training set
record) reveals that the flow is in fact dominated by a single frequency. The spectrum
shown in Figure 5.7 has a clear peak at a Strouhal number Sth = 0.27 (based on
U∞ and h), with secondary peaks at the near-superharmonic frequencies of 0.52 and
0.79. The dominant frequency is in good agreement with that measured by Durgesh
and Naughton [51]. The corresponding DMD modes (Figure 5.8) show structures
that resemble the POD modes discussed above. Because DMD analysis provides a
frequency for every spatial structure, we can clearly identify the harmonic nature
of the modes, with the modes in Figure 5.8 (a) corresponding to the fundamental
frequency, those in Figure 5.8 (b) corresponding to its first superharmonic, and those
shown in Figure 5.8 (c) corresponding to its second superharmonic.

Furthermore, because DMD identifies structures based on their frequency con-
tent, rather than their energy content (as POD does), these modes come in clean
pairs. Both DMD and POD identify similar structures for the dominant shedding
modes (Figures 5.6 (b), (c), 5.8 (a)), but the superharmonic pairs identified by
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Figure 5.7: DMD spectrum computed from TRPIV velocity fields. Clear harmonic
structure is observed, with a dominant peak at Sth = 0.27, followed by superhar-
monic peaks at 0.52 and 0.79. Peaks corresponding to the modes shown in Figure 5.8
are highlighted in blue.
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Figure 5.8: Spanwise vorticity of DMD modes computed from TRPIV velocity fields.
The real and imaginary components are shown in the top and bottom rows, respec-
tively. Note the similarity of these modes to the POD modes depicted in Figure 5.6.
(a) Dominant shedding modes; (b) temporally superharmonic modes, spatially anti-
symmetric; (c) further superharmonic modes, spatial harmonics of dominant shed-
ding modes.

DMD do not match as well with their closest POD counterparts. For instance, the
POD mode shown in Figure 5.6 (e) closely resembles the DMD modes shown in
Figure 5.8 (b), whereas the mode shown in Figure 5.6 (g) does not. Similarly, Fig-
ure 5.6 (h) depicts a mode resembling those in Figure 5.8 (c), while Figure 5.6 (f)
does not.

Interestingly, the third POD mode (Figure 5.6 (d)) is not observed as a dominant
DMD mode. This suggests that the structures it contains are not purely oscillatory,
or in other words, that it has mixed frequency content. As such, its dynamics are
unknown a priori. This is in contrast to the other modes, whose dynamics should
be dominated by oscillations at harmonics of the wake frequency, based on their
similarity to the DMD modes. This motivates our placement of a velocity probe at
the point of maximum v-velocity in the third POD mode [34], in an effort to better
capture its dynamics. This location is shown in Figures 5.2 and 5.6 (d).
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Point measurements

Figure 5.9 shows a time trace of the probe signal collected in the flat plate wake.
We recall that there is no physical velocity probe in the wake. Rather, we simulate a
probe of v-velocity by extracting its value from the TRPIV snapshots (see Figure 5.2
or 5.6 (d) for the probe location). Because PIV image correlations are both a spatial
average across the cross-correlation windows and a temporal average over the time
interval between image laser shots, PIV probe measurements typically do not resolve
the fine scale structures of turbulence. To simulate a more realistic probe, Gaussian
white noise is artificially injected into this signal, at various levels. We define the
noise level γ as the squared ratio of the root-mean-square (RMS) value of the noise
to the RMS value of the fluctuating probe signal:

γ =

�
n
�
RMS

v
�
RMS

�2

, (5.21)

where the prime notation indicates a mean-subtracted value. This noise level is
the reciprocal of the traditional signal-to-noise ratio. Note that the noise level only
reflects the amount of artificially added noise and does not take into account any
noise inherent in the velocity probe signal. We consider six noise levels, ranging
from 0.01 to 0.36, in addition to the original signal (γ = 0), focusing on the extreme
noise levels in the following discussion. Figure 5.9 shows a comparison of the original
signal to artificially noisy signals. We see that though the addition of noise produces
random fluctuations, the dominant oscillatory behavior is always preserved.

A spectral analysis of the probe data, seen in Figure 5.10, confirms that the
shedding frequency is still detected in the presence of the artificially added noise.
This is to be expected, as the addition of white noise only adds to the broadband
spectrum. The dominant peaks in the autospectra lie at Sth = 0.27, in agreement
with the dominant DMD frequency. This confirms our previous characterization of
the dominant DMD (and POD) modes as structures capturing the dominant vortex
shedding in the wake.

The autospectra also show clear harmonic structure, again confirming the be-
havior seen in the DMD spectrum. However, as the broadband noise levels increase,
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Figure 5.9: Measurement of v� taken in the wake at x/h = 2.24 and y/h = 0.48,
the point of maximum v in the third POD mode (Figure 5.6d). The values are
extracted from the TRPIV snapshots. Noise is artificially injected to simulate a
physical velocity sensor, with the noise level γ defined in Equation (5.21). In all
cases, clear oscillatory behavior is observed.
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Figure 5.10: Autospectra of probe signals shown in Figure 5.9. Clear harmonic
structure is observed, with a dominant peak at Sth = 0.27, which agrees well with the
dominant DMD frequency. Superharmonic structure is also seen, again confirming
behavior observed using DMD analysis (compare with Figure 5.7).

the third and fourth harmonics of the wake frequency become less prominent rela-
tive to the noise floor. This loss of harmonic structure carries certain implications
for estimation. Most notable is that the fluctuations associated with these higher
harmonics do not correlate as strongly with the time-varying POD coefficients. Con-
sequently, the flow field estimates based on the noisy probe signals may not capture
the corresponding harmonic structures as well. The inclusion of noise is designed to
be a test of estimator robustness. Future work will apply the same general static
and dynamic estimators presented here, but with pressure and shear stress sensors,
which are inherently noisy (perhaps in a non-Gaussian way).

5.5.2 Low-dimensional flow-field estimation

Optimal delay interval for MTD-mLSE

We find that with τ
∗ = 0, MTD-mLSE estimation of the first two POD coefficients

is poor, unless multiple probes are used.3 Here, τ
∗ is the non-dimensional time

delay, defined as
τ
∗ = τU∞/h. (5.22)

This follows the results of Durgesh and Naughton [51], who conducted a very similar
bluff-body wake experiment. The cause lies in the fact that there is often a phase
difference between the probe signal and the time history of one or more of the POD
coefficients, decreasing the magnitude of the LSE cross-correlations.

Durgesh and Naughton [51] were able to significantly improve their estimates by
using MTD-mLSE, which accounts for possible phase mismatches. For that reason,
we use the same method in this work. In this variant of MTD-mLSE, to estimate
the flow field at a given moment in time, we make use of probe data collected prior
to that moment, as well as after. That is, to estimate the flow field at time t, we
use probe data collected at times t± τj , for a range of delays τj satisfying

τ
∗
j ≤ τmaxU∞/h. (5.23)

Durgesh and Naughton [51] also demonstrated that an optimum bound τ
∗
max

ex-
ists for estimating the unknown POD coefficients. In order to determine the optimal

3Stochastic estimation computations were performed by John Griffin (University of Florida).
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value, an estimation error must be computed and evaluated. For the present study,
the flow field is approximated using the first seven POD modes. The corresponding
vector a(tk) of POD coefficients encodes a low-dimensional representation of the
velocity field at time tk, with a corresponding kinetic energy �a(tk)�22 (see (A.7)).
We wish to quantify the error between the true coefficients ak and the estimated
POD coefficients â(tk). One way to do so is to simply compute the kinetic energy
contained in the difference of the two corresponding velocity fields. If we normalize
by the mean kinetic energy of the snapshot set, this gives us an error metric

e(tk) =
�â(tk)− a(tk)�22�

�a(tk)�22
�

=

�r
i=1

�
âi(tk)− ai(tk)

�2

�r
i=1

�
ai(tk)2

� . (5.24)

This can be interpreted as the fraction of the mean kinetic energy contained in the
estimation error.

In finding the optimal delay interval for MTD-mLSE, we use only downsampled
PIV data (from the first four training set records) to compute the MTD-mLSE
coefficients. The estimation error is then evaluated by taking another PIV record
(the fifth training set record) and estimating its POD coefficients {âk}. These
other PIV velocity fields are also projected onto the POD modes to get their true
coefficients {ak}, which we then compare to the estimated coefficients. The mean
energy in the error e is calculated from these coefficients for values of τ∗max ranging
from 0 to 12. The results are plotted in Figure 5.11.

The minimum value of e occurs for a delay interval with τ
∗
max = 2.48. However,

we note that due to the shallow valley around the minimum seen in Figure 5.11,
similar estimator performance is expected for delays ranging between 1.7 and 3.0
(roughly). Note that the case of τ

∗
max = 0 empirically demonstrates that mLSE

without any time delay yields poor estimates in this experiment (as suggested by
theory).
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Figure 5.11: Mean energy in the MTD-mLSE estimation error, for various symmetric
time delay intervals. An optimal value of τ∗max is observed.
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Kalman smoother design

The model for the Kalman smoother is identified using the method described in
Section 5.3.2. We recall that this model consists of two decoupled submodels. The
first describes the dynamics of the two dominant POD modes, which are assumed to
be oscillatory. Figure 5.10 shows autospectra computed from the time-resolved probe
data, which we use to determine the oscillation frequency. The second submodel
describes the dynamics of the remaining five modes and is identified using the initial
set of MTD-mLSE estimates.

Once the model has been obtained, the Kalman smoother is initialized with the
values

â+f,0 = a0

P+
f,0 = 5I,

where I is the identity matrix. We assume that the initial set of POD coefficients a0
is known, as this is a post-processing application where the PIV data are available
at certain (non-time-resolved) instances. We use the noise covariances as tuning
parameters and take their values to be

Qk =





1 0
1

0.004
0.5

0
. . .





and

Rk =

�
2× 104 when only probe data are available

1× 10−10I when PIV data are available.

(These values are chosen based on tests of the Kalman smoother using the training
set data.) We heavily penalize the time-resolved velocity signal to mitigate the
effects of noise (large Rk), while the PIV data are assumed to be very accurate
relative to the model (small Rk). In addition, the diagonal matrix Qk is designed
to account for the observation that the lower-energy POD modes are more sensitive
to noise in the probe signal, with the third mode more sensitive than the rest.

Error analysis

We now compare the performance of two estimators: a static MTD-mLSE estima-
tor with an optimal time delay interval and a dynamic Kalman smoother, both
described above. We apply each estimator to five PIV records designated for esti-
mator validation. (These records were not used in any way in the development of
the estimators.) The estimates of the POD coefficients are evaluated using the error
metric e defined in (5.24).

The aggregate results are shown in Figure 5.12. By definition, e is non-negative,
giving it a positively skewed distribution. As such, the spread of these values is
not correctly described by a standard deviation, which applies best to symmetric

89



distributions. To account for this, the error bars in Figure 5.12 are adjusted for
the skewness in the distribution of e [81]. We observe that for all noise levels, the
mean error achieved with a Kalman smoother is smaller than that of the MTD-
mLSE estimate. Furthermore, the rate of increase in the mean error is slower for
the Kalman smoother than for the MTD-mLSE estimate, and the spread is smaller
too. As such, we conclude that not only does the Kalman smoother produce more
accurate estimates (in the mean), but it is also more robust to noise.

This robustness comes in two forms. The first is that for a given amount of noise
in the signal, the expected value of the estimation error has a wider distribution for
MTD-mLSE than for a Kalman smoother. Secondly, as the noise level is increased,
the MTD-mLSE estimation error increases more rapidly, indicating a higher sensi-
tivity to the noise level. This is expected, as MTD-mLSE does not have access to
the PIV updates; it is making estimates using less data than the Kalman smoother.

The time evolution of the estimates further emphasizes this advantage. Fig-
ure 5.13 (a) compares the true history of the second POD coefficient to the cor-
responding MTD-mLSE and Kalman smoother estimates, for the worst-case noise
level γ = 0.36. We see that for this particular mode, the Kalman smoother esti-
mates are generally more accurate, deviating less from the true coefficient values. In
particular, there is very little error during the instances surrounding a PIV update.
This is even more obvious when we consider the evolution of e, which incorporates
the errors in all seven mode coefficients (Figure 5.13 (b)). Here, we see that for the
Kalman smoother alone, local minima in the error line up with the availability of
PIV data, indicated by the dashed, vertical lines. (While decreases in the stochastic
estimation error sometimes line up with PIV updates, this trend is not observed in
general.)

Again, this is not unexpected, as the stochastic estimates are computed using
only the probe signal. In contrast, the Kalman smoother also assimilates PIV veloc-
ity fields when they are available, driving the error to nearly zero at each assimilation
step. The effects of this improvement are felt for many timesteps following and prior
to the PIV update. As such, it is clear that a driving factor in the improved perfor-
mance of the Kalman smoother is its ability to take advantage of information that
MTD-mLSE cannot, in the form of infrequently available PIV velocity fields.

0 0.1 0.2 0.3
0

0.5

1

 

 

γ

e

Non-causal MTD-mLSE
Kalman smoother

Figure 5.12: Mean and distribution of the energy in the estimation error, for various
levels of sensor noise (as defined in Equation (5.24)). The error energy is normalized
with respect to the average energy contained in the (mean-subtracted) velocity field.
The Kalman smoother estimates are both more accurate and less sensitive to noise.

90



−1

0

1

 

 

−10 −5 0 5 10
0

1

tU∞/h

â
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Figure 5.13: (a) Time history of the second POD coefficient (j = 1), along with
the corresponding Kalman smoother and MTD-mLSE estimates; (b) time history
of the energy in the estimation error. The vertical, dashed lines mark times when
PIV data are available. The square symbols mark the time instance depicted in
Figures 5.14 and 5.15. We observe that the Kalman smoother estimates are more
accurate overall. Specifically, local minima in the error occur at instances of PIV
data assimilation. The MTD-mLSE estimates do not make use of these data, and
thus do not show the same general behavior.

These results are confirmed by comparing the estimated vorticity fields, for both
γ = 0 and γ = 0.36. Figure 5.14 shows an instantaneous vorticity field and its
projection onto the first seven POD modes. (This particular instance in time is
denoted by square markers in Figure 5.13.) This projection is the optimal represen-
tation of the original vorticity field using these POD modes. We observe that the
high-energy structures near the trailing edge are captured well, while the far wake
structures tend to be more smoothed out. With no noise, the MTD-mLSE estimate
of the vorticity field (Figure 5.15 (a)) matches the projected snapshot quite well.
The spacing and shape of the high-energy convecting structures in the Kármán vor-
tex street are correctly identified. However, when the probe signal is contaminated
by noise with γ = 0.36, the estimated vorticity field shown in Figure 5.15 (b) bears
little resemblance to the projection. In fact, the only structures that match are
features of the mean flow (Figure 5.6 (a)). Not only are the downstream structures
captured poorly, but spurious structures are also introduced. On the other hand,
the Kalman smoother estimates match the projected snapshot for both clean and
noisy probe data (Figure 5.15 (c), (d)).
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Figure 5.14: Comparison of spanwise vorticity fields. (a) True PIV snapshot; (b)
projection onto a seven-mode POD basis. The first seven POD modes capture the
location and general extent of the vortices in the wake, but cannot resolve small-scale
features.
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Figure 5.15: Comparison of estimated spanwise vorticity fields. Without noise, both
the MTD-mLSE and Kalman smoother estimates match the POD projection shown
in Figure 5.14b. The addition of noise to the probe signal causes the MTD-mLSE
estimate to change dramatically, resulting in a large estimation error. In contrast,
the Kalman smoother estimate remains relatively unchanged. (a) MTD-mLSE with
γ = 0; (b) MTD-mLSE with γ = 0.36; (c) Kalman smoother with γ = 0; (d) Kalman
smoother with γ = 0.36.

Estimation-based global/modal analysis

As a further investigation into the relative merits of MTD-mLSE and Kalman
smoother estimation, we use the estimated velocity fields to perform DMD anal-
ysis. We recall that DMD analysis requires that the Nyquist-Shannon sampling
criterion is met, for which the sampling rate must be at least double the highest
frequency of interest. The DMD modes from the true TRPIV data are shown in
Figures 5.7 and 5.8. The key results from the DMD analysis of the estimated flow
fields (for both the MTD-mLSE and Kalman smoother estimates) are shown in Fig-
ure 5.16. Only the minimum and maximum noise levels are considered in this modal
analysis.

The fundamental frequency Sth = 0.27 is captured well by estimation-based
DMD for both estimators, for both noise levels. The corresponding modes match
as well, and illustrations are therefore omitted. (Refer to Figure 5.8 (a) for typical
mode structures associated with Sth = 0.27.) For the superharmonic frequencies,
however, the estimation-based DMD modes differ in structure, both among the
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various estimation cases (across methods, for varying noise levels) and in relation
to the DMD modes computed directly from TRPIV data (Figure 5.8).

As seen in Figure 5.16, both the MTD-mLSE and Kalman smoother estimates
capture the first superharmonic (Sth ≈ 0.53) well when no noise is added to the
probe signal. However, the Kalman smoother–based mode more accurately cap-
tures the expected antisymmetric distribution seen in Figure 5.8. When the noise
level is increased to 0.36, both of the estimate-based modes deviate from the cor-
responding TRPIV-based mode, but less so for the Kalman smoother. This is not
unexpected, as the Kalman smoother estimates are less sensitive to the addition of
noise (Figure 5.12).

In contrast, both estimators perform poorly in capturing the DMD mode corre-
sponding to the second superharmonic (Sth ≈ 0.79). Without any artificial noise,
the MTD-mLSE and Kalman smoother–based modes are similar to each other and
bear some resemblance to the expected mode shape. However, for γ = 0.36 neither
displays the correct vorticity distribution nor captures the right frequency. This
decreased accuracy for higher harmonics is not unexpected, as the corresponding
fluctuations in the probe signals correlate less and less with the POD coefficients as
the noise floor increases.

We note that because our estimates are limited to a subspace spanned by only
seven POD modes, so are any estimate-based DMD computations. That is, any be-
havior not captured by the first seven POD modes will not be captured by estimate-
based DMD analysis either. Because the dominant POD modes correspond to the
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Figure 5.16: Estimation-based DMD modes. Computations of the first and second
superharmonic wake modes are shown on the top and bottom rows, respectively. In
general, the Kalman smoother results more closely resemble those shown in Fig-
ure 5.8. For both estimation methods, using a noisier probe signal leads to poorer
results. This is especially pronounced for the second superharmonic mode. (a)
MTD-mLSE with γ = 0; (b) MTD-mLSE with γ = 0.36; (c) Kalman smoother
with γ = 0; (d) Kalman smoother with γ = 0.36; (e) MTD-mLSE with γ = 0; (f)
MTD-mLSE with γ = 0.36; (g) Kalman smoother with γ = 0; (h) Kalman smoother
with γ = 0.36.
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highest-energy structures, the estimate-based DMD analysis will also be biased to-
ward high-energy, and typically low-frequency, fluctuations. In this work, we observe
that the dominant POD modes are quite similar to the dominant DMD modes. As
such, it is no surprise that estimate-based DMD computations are successful in
identifying the fundamental shedding mode and its harmonics.

5.5.3 Causal implementation

The Kalman smoother and MTD-mLSE methods discussed previously are non-
causal, requiring future data to estimate the state. This makes them unsuitable
for applications that require real-time estimates, such as estimation-based flow con-
trol. However, both methods have clear causal counterparts. We recall that the RTS
Kalman smoother algorithm consists of a forward, Kalman filter estimation followed
by a backward, smoothing correction. By simply not performing the smoothing op-
eration and limiting ourselves to a Kalman filter, we can perform a causal, dynamic
estimation that integrates time-resolved point measurements with non-time-resolved
PIV snapshots. Similarly, the MTD-mLSE coefficients can easily be computed us-
ing one-sided delays only, eliminating the use of future data. We note that in most
applications, online processing of PIV velocity fields is currently not feasible, due
to computational limitations. However, such systems do exist, though they are gen-
erally limited to acquisition rates on the order of 10 Hz [11, 187]. This makes an
accurate estimation procedure, which estimates the state of the system between the
slow PIV updates, even more critical.

Figure 5.17 shows that overall, the causal implementations are more error-prone
than the non-causal ones (compare to Figure 5.12). However, the same trends are
observed in comparing the dynamic and stochastic estimates: dynamic estimation
yields a lower mean error, a narrower error distribution, and a slower increase in the
error with respect to γ. As before, this is not surprising, as the dynamic estimator
make uses of not only the point measurements, but also full-field PIV data (when
available).

When no online PIV system is available, then the best we can do is to estimate
the state using the time-resolved point measurements alone. Figure 5.18 shows that
when a Kalman filter is implemented without access to any PIV information, the
mean estimation error is nearly the same as that of the MTD-mLSE estimator. For
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Figure 5.17: Mean and distribution of the energy in the estimation error for causal
estimation. The same trends are observed as in the non-causal estimation (see
Figure 5.12), with the Kalman filter estimates more accurate and less sensitive to
noise than the MTD-mLSE estimates.
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Figure 5.18: Mean and distribution of the energy in the estimation error for causal
estimation using only point measurements. Without access to any PIV data, the
Kalman filter is only marginally more effective than MTD-mLSE. The only benefit
is a slight decrease in the sensitivity to noise.

any particular noise level, the distribution is smaller, but only marginally so. The
increase in error with respect to noise level is comparable for both methods. As
such, we can see that the assimilation of PIV measurements provides a significant
benefit, even though it only occurs on relatively slow time scales.

5.6 Conclusions

The difficulty of acquiring time-resolved velocity fields is one of the main challenges
in applying DMD to experimental data. In this chapter, we showed that dynamic
estimation is a viable approach in dealing with this problem, as the three-step
estimation procedure presented here proves to be effective in estimating the time-
resolved velocity field of a bluff-body wake. Rather than estimate the flow field
directly using MTD-mLSE, we use MTD-mLSE to aid in identifying a stochastic
model for the lower-energy structures in the flow. This stochastic model is then
combined with an analytic model of the dominant vortex shedding in the wake. The
result is used to implement a Kalman smoother, whose estimates of the flow field are
shown to be more accurate and robust to noise than the stochastic estimates used in
the modeling process. A DMD analysis of the Kalman smoother estimates identifies
the same coherent structures observed in an analysis of TRPIV data, showing that
the estimates correctly capture the oscillatory dynamics of the flow. Similar trends
are observed for a Kalman filter implementation, which would be suitable for flow
control, whereas the Kalman smoother is limited to post-processing applications.

A potential limitation of this approach is that it requires the availability of a
low-order model of the flow physics. For sufficiently complex flows, obtaining such
a model may be nontrivial, or even prohibitively difficult. In the next chapter, we
present an alternative approach to solving the time resolution issue, making use of
ideas from compressed sensing. By turning to a statistical approach, we eliminate
the need for a dynamic model. However, the compressed sensing framework presents
its own unique challenges.
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Chapter 6

Towards a compressed DMD

algorithm

As discussed in the previous chapter, in order for dynamic mode decomposition
(DMD) to provide meaningful results, it must be applied to data collected twice as
fast as any frequency of interest [117, 152]. This is often not possible in practice,
particularly for fluid flow experiments. (See Chapter 5 for details.) In this chapter,
we deal with this limitation by combining ideas from DMD and compressed sensing.
Given a vector-valued signal, we take measurements randomly in time (at a sub-
Nyquist rate) and project the data onto a low-dimensional subspace. We then
use compressed sensing/sparse approximation algorithms to identify the dominant
frequencies in the signal and their corresponding modes. The result is an algorithm
that, like DMD, produces spatial modes that each correspond to a single frequency,
doing so using sub-Nyquist-rate data.

We demonstrate this method using two examples. First, we test the method us-
ing a canonical dataset. For these simple data, the dominant frequencies and modes
are identified using �1 minimization techniques. Second, we apply the method to
particle image velocimetry (PIV) data collected from the flow past a two-dimensional
cylinder. For these more complex data, we identify the dominant frequencies and
modes using a greedy algorithm called orthogonal matching pursuit (OMP) [167,
169]. In each case, our method correctly identifies the characteristic frequencies and
oscillatory modes dominating the signal.

The remainder of this chapter is structured as follows: Section 6.1 provides an
introduction to compressed sensing concepts, motivating the amalgamation of DMD
and compressed sensing concepts. In Section 6.2 we describe the implementation of
our numerical method. Examples demonstrating the capabilities of the method are
presented in Section 6.3. Finally, we summarize our results and discuss directions
for future work in Section 6.4.

This work was inspired by conversations with Professor J. Nathan Kutz (Uni-
versity of Washington), who also provided guidance as the project proceeded. The
two-dimensional cylinder experiment was run by Jessica Shang (Princeton Univer-
sity) and Professor Alexander J. Smits (Princeton University).
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6.1 Motivation

Many dynamical systems exhibit oscillatory behavior; fluid mechanical systems are
no exception. As demonstrated in Chapter 4, DMD is an effective tool for analyz-
ing such systems. Not only can DMD identify characteristic flow frequencies, but
the corresponding modes may elucidate features of the underlying fluid mechanics.
Unfortunately, DMD requires data that satisfy the Nyquist-Shannon sampling cri-
terion [117, 152], which may not always be available in practice. In Chapter 5, we
dealt with this limitation by using a dynamic estimator to estimate a time-resolved
history of the fluid velocity field, performing DMD not on the raw data, but on
the velocity field estimates. This procedure required identifying a model for the
flow field dynamics. For flows more complex than the bluff body wake discussed in
Chapter 5, it may be unclear how to identify such a model.

In the signal processing community, there has been a growing emphasis on deal-
ing with time resolution issues using a method called “compressed sensing” [25, 27,
45].1 Compressed sensing relies on the fact that many signals of interest are actu-
ally sparse in frequency space. If we sample such signals randomly in time, then
we can reconstruct them accurately using �1 minimization techniques or greedy al-
gorithms, even if the samples are taken at a sub-Nyquist-rate. (For a review of
compressed sensing theory, we refer the reader to [18] and [26].) This approach
has proven successful in a number of applications, including dynamic MRI [57, 98],
facial recognition [182], imaging [46, 136], and radar[77, 129].

While typically applied to scalar-valued signals, compressed sensing algorithms
readily extend to vector-valued signals. As such, in theory these methods could be
applied directly to PIV data collected from fluids experiments. However, in reality
this is not feasible; the fine resolution needed to accurately resolve pertinent flow
features makes PIV data too large for standard compressed sensing algorithms. But
despite their frequent representation as high-dimensional vectors, many fluid flows
actually evolve in a low-dimensional subspace.

We propose a method for computing oscillatory modes from sub-Nyquist rate
PIV data that combines concepts from DMD and compressed sensing. Recall from
Section 2.2 that DMD is closely related to proper orthogonal decomposition (POD):
the DMD modes are linear combinations of POD modes and the DMD eigenvalues
come from the POD projection of a linear operator. Here, we use POD projections
to represent high-dimensional PIV data using low-dimensional vectors. We then
perform compressed sensing on these vectors of POD coefficients, lifting the resulting
modes to the original space by taking linear combinations of POD modes, just as
in DMD. Not only does this method rely on POD in the same way that DMD does,
but POD bases are also optimal for reconstructing datasets (see Appendix A for
more details on POD).

We demonstrate this method through two extended examples. In the first, we
construct a canonical dataset in which we superpose two Gaussian spatial fields
oscillating at different frequencies. We add noise to the signal to test the robustness
of our method. By construction, the signal is almost exactly sparse (it is heavily
dominated by two frequencies), so a compressed sensing approach is reasonable.
However, we choose the amplitudes of these Gaussian fields such that the resulting

1Compressed sensing is also known as “compressive sampling” or “compressive sensing” and is
closely related to “sparse approximation”/“sparse reconstruction”/“sparse recovery” methods.
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POD modes mix together the oscillatory structures. In the second example, we
apply our method to experimental PIV data collected from the flow past a two-
dimensional cylinder. This flow is dominated by a single frequency (the cylinder
shedding frequency), but the data are not precisely sparse, only approximately so.
Each of these examples poses different challenges for our method, but in both cases,
we successfully identify the correct frequencies and modes.

6.2 Numerical method

In this section we introduce the basic concepts of compressed sensing and describe
how we apply those concepts to compute oscillatory spatial modes from sub-Nyquist-
rate data. First, we describe how compressed sensing can be used to reconstruct
scalar signals. Then we show how it can be extended to vector-valued signals. For
high-dimensional vectors, standard compressed sensing methods may be inefficient;
we propose the use of POD to reduce the dimension of the problem and avoid this
bottleneck. Finally, we describe strategies for collecting data samples suitable for
compressed sensing and then summarize our numerical method.

6.2.1 Scalar signals

The field of compressed sensing has undergone astounding growth since the foun-
dational works by Donoho [45], Candes et al. [27], and Candes and Tao [25] were
published in 2006. We review the key concepts here. (For more a more in-depth
introduction to these topics, we refer the reader to [18] and [26].) Consider a signal
f ∈ Rn. For instance, f could consist of n sequential measurements taken from a
hot-wire velocity probe. We assume that these measurements are taken at a rate
such that f captures all dynamics of interest.

Typically, f will not be sparse in the standard basis for Rn (consisting of
(1, 0, 0, . . .), (0, 1, 0, . . .), and so on). That is, a large number of these basis vectors
are required to accurately describe f . We say that f is compressible if there exists a
basis Ψ such that the representation of f in Ψ is approximately sparse. Specifically,
we say that f is k-sparse in the basis Ψ if

f = Ψf̂ , (6.1)

where Ψ ∈ Rn×n and f̂ ∈ Rn, with f̂ having only k nonzero values. (The less
precise descriptor “compressible” requires only that f̂ have few large coefficients
relative to the number of small ones.) The potential for savings is clear: rather than
storing n values to describe the signal f , we can get away with storing only the k

nonzero elements of f̂ . This is the principle on which JPEG-2000 compression is
built [26, 159].

Now suppose that we do not have access to the full signal f . Instead, all we
know is an m-dimensional linear measurement

g = ΦT f , (6.2)
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where Φ is an n×m matrix. We can think of the columns of Φ as waveforms that
we use to measure f . For instance, if Φ contains sinusoids, then g contains Fourier
coefficients.

We are interested in the case where m � n, i.e., the undersampled case, for
which (6.2) is underdetermined. As such, we cannot solve for f from a knowledge of
g; the solution, if it exists, is not unique. But suppose we substitute for f using (6.1),
giving us

g = ΦTΨf̂ . (6.3)

Though f̂ is also an n-dimensional vector, it only has k nonzero elements. A stan-
dard approach in compressed sensing is to determine f̂ by solving the following
optimization problem:

min
f̂∈Rn

��f̂
��
1

subject to g = ΦTΨf̂ . (6.4)

Thus out of all vectors f̂ that are consistent with our measurement g, we are inter-
ested in finding the one with the smallest �1 norm.

We choose the �1 norm because it promotes sparsity and can be solved using a
linear program. Compared to the more common �2 norm, used for instance in solving
least-squares problems, the �1 norm more harshly penalizes nonzero elements in f̂ ,
which we know to be a sparse vector. In theory we would like to minimize the
�0 norm of f̂ , but that minimization problem is NP-incomplete and numerically
unstable [18]. As such, we use the �1 norm as a computationally tractable proxy.

It was shown in [45] and [27] that in some cases, solving (6.4) can recover f̂
exactly (if it is k-sparse) or very accurately (if it is compressible). Much of the com-
pressed sensing literature deals with finding conditions on Φ and Ψ for which these
results hold. For instance, the columns of Φ and Ψ should be chosen to be max-
imally incoherent. Many proofs also rely on ΦTΨ obeying the restricted isometry
property. These topics are outside the scope of this discussion and furthermore are
most applicable to situations in which we have freedom to choose the measurement
matrix. In this work, we restrict ourselves to the case that Ψ describes a Fourier
basis and that Φ is a subset of the standard basis (see Section 6.2.2 for more details).
A more relevant theoretical result is that solving (6.4) yields the best k-sparse ap-
proximation to f̂ even if f̂ is not exactly k-sparse (e.g., if it is only compressible) [26].
Furthermore, this procedure is robust to measurement noise [26].

Closely related to compressed sensing is the field of sparse approximation. Just
as in compressed sensing, the goal of sparse approximation methods is to find the
best sparse representation of a k-sparse or compressible signal. However, rather than
solve an �1 minimization problem, sparse approximation methods make use of greedy
algorithms. These algorithms are iterative: upon each iteration they add another
basis vector (column of Ψ) to the support of f̂ . By construction, the resulting
estimate of f̂ will be sparse, as j iterations will yield j nonzero basis coefficients;
the rest are assumed to be zero. There are many different greedy algorithms used
for sparse approximation. In this chapter, we deal only with orthogonal matching
pursuit (OMP), due to its simplicity [167, 169]. (CoSaMP is a similar algorithm
that is also popular [114].) The theoretical guarantees on OMP are similar to those
for compressed sensing: under certain technical conditions (again outside the scope
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of this work), OMP exactly reproduces k-sparse vectors and closely approximates
compressible ones [167].

6.2.2 Choice of basis, measurement

Much of the theoretical research on compressed sensing deals with characterizing
matrices Φ and Ψ for which the method will succeed. In this work, we are motivated
by practical concerns, and as such are restricted in our choices of Φ and Ψ. Because
we are concerned with oscillatory temporal behavior, we choose Ψ such that f
contains Fourier coefficients. From (6.1), we see that this means Ψ is the matrix
representation of the inverse discrete Fourier transform (DFT).

For ease of implementation, we assume that our measurement g simply cor-
responds to values of f sampled at particular instances in time. Suppose that f
corresponds to a fast hot-wire probe signal. The first element of f is the value of
the probe signal at time t = 0. The second element is the value at t = ∆t, the third
element corresponds to t = 2∆t, and so on. Now suppose that for our measurement
g, we sample our probe signal at t = 0. Then the first column of Φ is (1, 0, 0, 0, . . .)T .
If we wait until t = 2∆t to get our next sample, then the second column of Φ is
(0, 0, 1, 0, . . .)T . Thus we see that Φ is a subset of the standard basis: each column
contains only zeroes, except for one entry with value 1. We can think of our mea-
surement waveforms as Dirac delta functions. As it turns out, delta functions and
sinusoids are maximally incoherent, an important property for compressed sensing
to work [26].

6.2.3 Vector-valued signals

In this work we are concerned with vector-valued signals F ∈ Rn×p. (In the com-
pressed sensing literature, such signals are referred to as “multiple-measurement
vectors” [29, 38, 52, 100, 168, 170].) As before, n corresponds to the number of tem-
poral measurements; p is the number of values measured at a given instant in time.
If F corresponds to a rake of hot-wire sensors, then p is the number of hot-wires. If
F corresponds to PIV velocity fields, then each field is reshaped into a row vector
and p is the number of grid points in the velocity field multiplied by the number of
velocity components measured (typically two). In this case, we observe that rows
(of F) correspond to points in time and columns to points in space.

We assume that there exists a basis Ψ in which the representation of F is sparse.
Since F is a matrix, we must be careful in defining what we mean by “sparse.” For
a vector-valued signal, we rewrite (6.1) as

F = ΨF̂, (6.5)

where F̂ ∈ Rn×p. For the simple case p = 1, for which (6.5) reduces to (6.1),
sparsity requires that there f have few large elements. When p > 1, the elements of
f correspond to rows of F, so we require that there be few rows of F with large norm.
Letting G be a vector-valued measurement analagous to g, we can rewrite (6.4) as

min
F̂∈Rn×p

��F̂
��
1,q

subject to G = ΦTΨF̂, (6.6)
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where G ∈ Rm×p and the mixed norm � · �1,q of a matrix M is defined as

�M�1,q �
n−1�

i=0

�������




p−1�

j=0

|Mi,j |q



1/q

�������
. (6.7)

This norm can be interpreted as taking the �q norm of each row, stacking these
values in a vector, and then taking the �1 norm of the vector of �q norms. The choice
of q weights the relative importance of nonzero entries that occur in the same row
versus those that occur in different ones. For instance, if q = 1, then we have an �1

equivalent of the Frobenius norm for matrices and all nonzero elements are penalized
equally. However, in some applications we may expect that only a few rows of F̂
will contain nontrivial entries, but within those rows we may have no expectation
of sparsity. In this case we would choose q > 1 to decrease the penalty on nonzero
elements within rows. (For other examples demonstrating the use of compressed
sensing with mixed norms, see [29, 38, 52, 100, 168, 170].) Recall from 6.2.2 that in
this work we choose Ψ to be the DFT basis. Then each row of F̂ corresponds to a
particular frequency. Our notion of row sparsity is then natural, as it corresponds
to a signal dominated by a small number of frequencies.

We note that one could theoretically perform compressed sensing on the columns
of F individually, treating each as a scalar signal. Each computation would yield a
sparse coefficient vector f̂ . However, there would be no guarantee that the sparse
elements would occur in the same entries across computations. For a Fourier basis,
that means that while each computation would identify a small number of dominant
frequencies, these frequencies might vary from computation to computation. This
is an advantage of the vector-valued approach: sparsity is enforced using all of the
data simultaneously.

6.2.4 Efficiency through POD projection

In practice, solving the optimization problem (6.6) can be computationally pro-
hibitive when the matrix F is large. For PIV velocity fields, the dimension p cor-
responds to the number of grid points multiplied by the number of velocity com-
ponents. This can easily exceed 105, which is the case for the data analyzed in
Chapter 5. Fortunately, many fluid flows evolve in relatively low-dimensional sub-
spaces. We can take advantage of this to make compressed sensing feasible for PIV
data.

Consider a vector-valued signal F where each row corresponds to a PIV velocity
field. (We reshape each velocity field into a row vector and concatenate each velocity
component to get a single vector describing the entire flow field.) The transposed
matrix FT is often referred to as a “snapshot” matrix in the DMD and POD lit-
erature, as each of its columns describes a snapshot of the flow field at an instant
in time.2 We can compute the POD modes of FT using the method of snapshots,
as described in Section 2.3.1. The projection of FT onto the first r POD modes is

2We note the convention in fluid mechanics is that each column of the snapshot matrix corre-
sponds to an instant in time. For compressed sensing, the convention is reversed: each row of the
signal matrix corresponds to a particular instant.
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given by
PrF

T = UrU
T
r F

T
, (6.8)

where Ur ∈ Rp×r is a matrix whose columns are POD modes. We refer to the r×n

matrix
AT

r � UT
r F

T (6.9)

as the matrix of POD coefficients.3 We can project a vector-valued measurement G
in the same way, yielding the POD coefficient matrix

BT
r = UT

r G
T
, (6.10)

where Br ∈ Rm×r. (Recall, n is the number of time points, m is the number of
samples in time, p is the size of the data vector, e.g., the number of grid points, and
r is the number of POD modes.)

Since F has a sparse representation in Ψ, so should Ar; Ar describes the same
behavior in a different coordinate system. Then we can write

Ar = ΨÂr, (6.11)

where Âr ∈ Rn×r, and we can apply compressed sensing to Ar by solving

min
Âr∈Rn×r

��Âr

��
1,q

subject to Br = ΦTΨÂr. (6.12)

By using the mixed norm � · �1,q, we enforce row sparsity, meaning that only a few

rows of Âr should contain nontrivial values.
Recall that we are interested in computing spatial modes that correspond to

oscillatory frequencies. We can find such modes by using Âr to linearly combine
the POD modes. The matrix Âr has rows that each correspond to a frequency and
columns that each correspond to a POD mode. Then each column of the product
UrÂT is a spatial field corresponding to a particular frequency. These are the
equivalent of DFT modes, computed using sub-Nyquist-rate data.

In an abstract way, this method is quite similar to DMD. Recall that DMD is
closely related to POD, with the DMD modes computed as a linear combination
of POD modes (see Remark 1 in Section 2.2). The rest of the DMD procedure
can be considered a computation to determine the proper coefficients for this lin-
ear combination. The result is a set of modes that each correspond to a particular
frequency (and growth rate). Similarly, by construction, the columns of UrÂT

r are
linear combinations of POD modes. We can consider the compressed sensing proce-
dure as a computation to determine the right coefficients for this linear combination.
However, unlike DMD, because we assume that Ψ is a DFT basis, the compressed
sensing modes are purely oscillatory; there are no growth rates.

6.2.5 Sampling strategy

The allure of compressed sensing is that it can somehow circumvent the Nyquist-
Shannon sampling criterion. A key requirement is that the signal of interest must
be compressible, but this is not uncommon; many signals are dominated by a few

3Again, we use the compressed sensing convention: rows of Ar correspond to instants in time.
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characteristic frequencies. The other unique aspect of compressed sensing is that
it relies on random sampling. Results on whether or not a compressible signal
can be recovered generally focus on the number of measurements required, with no
constraints on the sampling other than that it is random. However, not all random
sampling strategies will work. For instance, if we happen to sample a scalar signal
at only zero crossings, then we have g = 0, and there is obviously not enough
information to reconstruct a nontrivial signal. Furthermore, in practice a truly
random sampling may not be possible due to physical constraints; the minimum
time between samples is a common limitation.

In this work we develop sampling strategies based on physical intuition. We
assume the elements of the nominal signal f correspond to times t = 0, t = ∆t,
t = 2∆t, and so on, with ∆t small enough that f captures all dynamics of interest.
(For simplicity we refer to scalar signals in this discussion, though everything extends
to vector-valued signals.) Motivated by applications to PIV data, we assume that
the closest any two samples can be in time is smin∆t. We know from the Nyquist-
Shannon sampling criterion that if we sample f at a fixed rate corresponding to
smin∆t, we may alias the signal and be unable to recover any oscillations with
frequencies faster than 1/(2smin∆t). Thus, we do not expect that any (even if
random) subset of those samples will suffice for compressed sensing.

Instead, we assume that though we have a minimum separation between samples,
we have enough accuracy to sample any element of f , so long as it is not within smin

samples of the previous one. That is, we are not interested in the fastest possible
uniform sampling, which is given by data collected at times t = 0, t = smin∆t,
t = 2smin∆t, and so on. Rather, we make use of the fact that we can collect data at
t = t

∗ and t = t
∗ + (smin + j)∆t for any j. Intuitively, this allows us to sample all

phases of our signal, even though we cannot do so in a frequency-resolved manner.
Applying this strategy in a random manner (letting j vary randomly), the sampled
signal should contain as much information as a truly random sampling (as is usually
considered in compressed sensing).

We propose two possible sampling strategies based on this intuition:

1. Minimum/maximum separation strategy

(a) Define a minimum separation between samples smin.

(b) Define a maximum separation between samples smax.

(c) Sample the signal f such that the time between samples is given by j∆t,
where j is random and uniformly distributed between smin and smax.

2. Perturbed clock strategy

(a) Define a nominal separation between samples savg.

(b) Define the maximum allowable perturbation in the sample separation
spert.

(c) Sample the signal f such that the time between samples is given by (savg+
j)∆t, where j is random and uniformly distributed between −spert and
spert.

In both strategies, the parameters can be adjusted so that no samples are collected
faster than allowed by the maximum sampling rate. The parameters should be
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chosen such that the maximum spacing between samples is as large as 1/fmin, where
fmin is a characteristic slow frequency. This ensures that all phases of the signal can
be sampled.

6.2.6 Summary of method

We summarize the steps of our method here.

1. Select a random sampling strategy (see Section 6.2.5).

2. Use this strategy to generate a “chirp signal” of 1’s and 0’s, where a 1 corre-
sponds to a time when a sample should be collected. When the chirp signal
has value 0, no data should be collected.

3. Set up a triggering system such that data are only collected when the value of
the chirp signal is 1.

4. Collect data according to the chirp signal.

5. Compute POD modes from the data.

6. Choose a set of r POD modes to represent the data, for instance setting a
threshold for the amount of energy captured by the modes (as in Chapter 5).
This defines the matrix Ur.

7. Project the data onto the POD modes, resulting in a matrix of sampled POD
coefficients Br.

8. Solve the optimization (6.12), where n is determined by the time elapsed
between the first and last data samples.

9. Compute the compressed sensing modes as the columns of UrÂT
r .

We note that for especially long signals (large n), the optimization (6.12) can be
replaced with a greedy algorithm such as OMP. In that case, only the nontrivial
rows of Âr will be computed, but the computation of the compressed sensing modes
as a linear combination of POD modes is unchanged.

6.3 Results

In this section we present two extended examples that demonstrate the capabilities
of the method described above. The first deals with a numerical dataset that we
construct, designed to test various features of our method. The second applies our
method to data collected from a fluid flow experiment. In both cases, we are able to
correctly identify the charactersitic frequencies and oscillatory modes that dominate
the signal of interest, using only sub-Nyquist-rate samples.
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6.3.1 Canonical dataset

The vast literature on compressed sensing leaves very little doubt that �1 minimiza-
tion and greedy algorithms can in fact reconstruct compressible signals. Thus the
features of our method that require verification are the sampling strategy and the
use of a POD projection. As a test, we consider a dataset of the form

f(t) = sin(ω1t)v1 + sin(ω2t)v2 + 0.1n(t). (6.13)

We choose frequencies ω1 = 1.3 and ω2 = 8.48 and draw the elements of n inde-
pendently from a uniform distribution on the open interval (0, 1). The vectors v1

and v2 are the oscillatory spatial modes that we want to recover using compressed
sensing. For illustrative purposes, we choose the Gaussians

v1 = 2 exp

�
−(x− 0.5)2

2(0.6)2
− (y − 0.5)2

2(0.2)2

�

v2 = exp

�
−(x+ 0.25)2

2(0.6)2
− (y − 0.35)2

2(1.2)2

�
,

where x and y are spatial coordinates. Figure 6.1 shows a visualization of these
modes.

By construction, this dataset is compressible, consisting of two dominant os-
cillations and low-amplitude broadband noise. It is thus suitable for compressed
sensing. Furthermore, we see from Figure 6.2 that the POD modes are not aligned
with the oscillatory ones. Rather, each POD mode combines features of both oscil-
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Figure 6.1: True oscillatory modes for canonical dataset. (Left) v1; (right) v2.
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Figure 6.2: POD modes of canonical dataset.
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latory modes. This is by design; for our method to work properly, it must correctly
combine the POD modes such that these features are correctly isolated.

We generate a nominal signal F whose columns are given by f(k∆t) for k =
0, 1, . . . , n−1, with ∆t = 0.05 and n = 8001. The signal is sampled with a minimum
spacing smin = 60 and a maximum spacing smax = 75, resulting in 117 total samples.
Since the fastest frequency in the signal is ω2 = 8.48 and the underlying timestep is
∆t = 0.05, the sample spacing that satisfies the Nyquist-Shannon sampling criterion
is sNyq = 7. Thus we see that we are at best sampling at eight times slower than
required by the Nyquist-Shannon sampling criterion. Figure 6.3 shows a plot of
sin(8.48t) overlaid with points corresponding to the random sampling. It is clear
that using traditional techniques, there is not enough data to reconstruct the original
signal.

Figure 6.4 shows the result of solving (6.12), using the software package cvx [66,
67] to compute Âr. We see that using compressed sensing, we correctly identify the
two dominant frequencies, with less than 2.5 % error in each case. As expected,
the rest of the frequencies have neglibible energy, a result of the �1 minimization.
In addition, we see in Figure 6.5 that the correct oscillatory modes are identified.
There are some aberrations, but for the most part the compressed sensing modes
resemble the original Gaussians (Figure 6.1), rather than the POD modes shown
in Figure 6.2. We note that because this method relies on random sampling, if we
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Figure 6.3: Random sampling for canonical dataset. The first six sample points are
plotted over a sine wave with frequency ω2 = 8.48. Clearly, the sample points do
not resolve the fastest oscillations in (6.13).
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Figure 6.4: Compressed sensing spectrum computed from canonical dataset. The
compressed sensing computation very accurately identifies the expected frequencies.
(The true frequencies are denoted by red, dashed lines.)
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Figure 6.5: Compressed sensing modes for canonical dataset. Comparing to Fig-
ures 6.1 and 6.2, it is clear that compressed sensing has correctly combined the POD
modes to recover the original oscillatory modes.

repeat the experiment, the aberrations are sometimes larger or smaller. However,
we can decrease the likelihood of such errors by simply taking more samples (either
by sampling faster or by taking a longer signal). Overall, Figures 6.4 and 6.5 show
that our method is capable of identifying oscillatory structures in a spatial signal
using sub-Nyquist-rate data, even in the presence of noise.

6.3.2 Flow past a two-dimensional cylinder

The low Reynolds number flow past a two-dimensional cylinder leads to sustained
oscillations in the wake. The resulting wake structures are known collectively as
a von Kármán vortex street. It is well known that a von Kármán vortex street is
dominated by a single characteristic frequency. Thus while the flow may not be
exactly sparse (in frequency space), it is an example of the type of flow that one
might want to investigate experimentally using compressed sensing techniques. As
such, it provides a valuable test of our method.

We conduct a cylinder flow experiment in a recirculating, free-surface water
channel at a Reynolds number Re = 413.4 The cylinder used in the experiments is
made of anodized aluminum and has diameter D = 9.5 mm and length L = 260 mm.
To eliminate the effect of surface waves, we suspend the cylinder in the test section
using an acrylic plate placed over the upper boundary of the water channel.

We generate a laser sheet using a Nd:YAG laser (Litron Nano L 50-50) and
illuminate the cross-section at the mid-span of the cylinder. The sheet is imaged
from below the water channel with a hybrid CCD/CMOS camera (LaVision, Imager
sCMOS). The laser and the camera are synchronized with a programmable timing
unit. We acquire acquire 8000 image pairs with a delay of 8000 µs between exposures,
at an overall sampling frequency of 20 Hz. For seeding, we use neutrally buoyant
hollow ceramic spheres with an average diameter of 10 µm.

PIV velocity fields are computed with a spatial cross-correlation algorithm using
LaVision DaVis 8.1.2 software. The fields are processed using four passes with 50 %
overlap: one pass with a 128 × 128 pixel interrogation window, one pass with a
64 × 64 pixel window, and two passes with a 32 × 32 pixel window. This results
in velocity fields with 2160 × 1280 pixel resolution, with a cylinder diameter of
approximately 128 pixels.

4Experimental data were acquired and processed by Jessica Shang (Princeton University).
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For Re = 413, a sampling rate of 20 Hz easily resolves the wake shedding fre-
quency. Thus we can use the time-resolved PIV data to compute DMD modes and
eigenvalues. These provide a basis of comparison for our method, as they are in effect
the true oscillatory modes and frequencies that we are trying to approximate using
compressed sensing. The resulting DMD spectrum is shown in Figure 6.6. We ob-
serve that there is a dominant frequency at fwake = 0.889. There are also harmonic
peaks in the spectrum at approximately 2fwake and 3fwake. We note that the peaks
in the spectrum are somewhat broad, and that the harmonic peaks are significantly
lower than the dominant one. Thus while we can identify three spectral peaks, one
could argue that the flow is in fact dominated by a single frequency. The DMD
modes corresponding to the wake frequency show strong coherence (Figure 6.7 (a)),
as do those corresponding to 3fwake (Figure 6.7 (c)). The modes corresponding to
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Figure 6.6: DMD spectrum computed from the flow past a two-dimensional cylinder
using time-resolved PIV data. Peaks corresponding to modes shown in Figure 6.7
are highlighted in blue. There is a dominant spectral peak at f = 0.889 Hz, cor-
responding to the wake shedding frequency. Superharmonics of this frequency also
appear in the spectrum, but with much lower power.
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Figure 6.7: DMD modes computed from the flow past a two-dimensional cylinder,
illustrated using contours of vorticity. The modes resemble those shown in Fig-
ures 2.9 and 5.8. This is expected, as all are computed from PIV data of bluff body
wakes.
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2fwake show features reminiscent of the top-bottom anti-symmetric modes seen in
Figures 2.9 and 5.8, but here the structures are less coherent.

Figure 6.8 shows the energy distribution among POD modes computed from
the time-resolved PIV data. We see that the flow is dominated by a single pair
of POD modes. There is a sharp drop-off in energy content thereafter, with 12
modes required to capture 75 % of the energy contained in the dataset. We choose
these first 12 modes as our low-dimensional basis for compressed sensing.5 From Fig-
ure 6.9 (a) and (b), we see that the dominant POD modes resemble the DMD modes
corresponding to the wake shedding frequency (Figure 6.7 (a)). The remainder of
the first six modes contain coherent structures, but do not resemble DMD modes.
However, if we consider even lower energy modes, we do find some that resemble
higher-frequency DMD modes; these POD modes are shown in Figure 6.10.

For the compressed sensing computation, we downsample the time-resolved PIV
data, rather than acquiring a new dataset using a trigger. We sample the data using
the minimum/maximum separation strategy, choosing smin = 50 and smax = 70, in
comparison to sNyq = 10. This results in 33 total samples, out of the original
n = 2000. Due to the similarity of the first POD mode and the dominant DMD
mode, we expect that a time history the first POD coefficient will contain oscillations
at the wake shedding frequency. Figure 6.11 shows the sample points overlaid on
this history. We see that again, the sample points are so infrequent that traditional
methods would not be able to reconstruct the original signal.

For this larger computation, we perform compressed sensing using OMP rather
than �1 minimization. We compute the first ten DFT modes using this greedy
approach; the resulting spectrum is shown in Figure 6.12. Once again, a dominant
peak is identified, here corresponding to the wake shedding frequency. The error in
this frequency is again less than 2.5 %. Unfortunately, the harmonic peaks observed
in the DMD spectrum (Figure 6.6) do not appear here. This is the case even as
we vary the sampling rate and the total number of samples. However, if we look
again at Figure 6.6, we see that this may be caused by the broad peak around

5In practice, we would compute the POD modes using only the sampled data, and not the time-
resolved data. However, for this flow we do not expect the POD basis to change much if computed
from the sampled data, due to the strong attraction of the dynamics onto the low-dimensional POD
subspace.
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Figure 6.8: POD energy content for the flow past a two-dimensional cylinder. The
first two modes dominate, followed by a slow roll-off in energy content. 12 modes
are required to capture 75 % of the energy in the dataset. (Left) Energy fraction
per mode; (right) cumulative energy fraction.
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Figure 6.9: First six POD modes computed from the flow past a two-dimensional
cylinder, illustrated using contours of vorticity. The dominant two modes
((a) and(b)) resemble the DMD modes corresponding to the wake shedding fre-
quency (Figure 6.7 (a)). The next four modes contain coherent structures, but do
not resemble DMD modes.
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Figure 6.10: DMD-like POD modes computed from the flow past a two-dimensional
cylinder, illustrated using contours of vorticity. These two modes resemble the
higher-frequency DMD modes shown in Figure 6.7 (b). However, they contain very
little energy. (Left) Mode 8, 0.646 % energy; (right) Mode 9, 0.579 % energy.

fwake = 0.889 Hz. OMP iteratively finds basis vectors that contribute significantly
to the dataset. While the harmonic peaks may stand out in the spectrum, the
relatively low height of these peaks makes it difficult to identify them compared to
the frequencies in the broad peak around fwake. As such, it is not a failure of our
method that these peaks are not identified; our method correctly characterizes the
system as having only one dominant frequency.

The dominant OMP mode is depicted in Figure 6.13. We see that OMP cor-
rectly pairs the dominant PODmodes with the wake shedding frequency, as expected
based on DMD analysis. (Recall that the dominant POD modes closely resemble the
dominant DMD modes.) Though the OMP modes do not exactly match the DMD
modes (Figure 6.7), they capture the main coherent structures. We note that in
theory, one could compute the POD modes using non-time-resolved data and then
independently measure the dominant flow frequency using a hot-wire (which is much
faster than PIV and can resolve the wake shedding frequency). One could then pair
these together to arrive at the same conclusions as we get using OMP. However,
the compressed sensing/OMP approach identifies the oscillatory modes and corre-
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Figure 6.11: Random sampling for the flow past a two-dimensional cylinder. The
first eight sample points are plotted over the time history of the first POD coefficient.
We see that the sample points clearly do not resolve the fastest oscillations in this
signal.
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Figure 6.12: OMP spectrum for the flow past a two-dimensional cylinder. OMP
correctly identifies the wake shedding frequency. (The true frequency is denoted by
a red, dashed line.)
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Figure 6.13: Dominant OMP mode for the flow past a two-dimensional cylinder,
illustrated using contours of vorticity. Comparing to Figures 6.7, we see that OMP
identifies the general structure of the true oscillatory mode.

sponding frequency directly from the data and does not require a priori knowledge
of the flow dynamics (aside from an intuition that the signal is compressible). As
such, it is generalizable to more complex flows, where it may not be obvious how to
pair the dominant POD modes with characteristic flow frequencies.
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6.4 Conclusions

We have demonstrated a method for computing oscillatory spatial modes from sub-
Nyquist-rate data. This method combines concepts from compressed sensing, for-
mulated for vector-valued signals, and DMD. The result is a method that is similar
to the DFT, as the modes each correspond to a particular oscillatory frequency, but
no temporal growth or decay. An interesting future direction would be to relax this
assumption, either by choosing a more general basis Ψ or by adaptively searching
for the correct growth/decay rates. Doing so would yield a method that could truly
be called “compressed DMD.”

We demonstrated the capabilities of our method using both numerical and ex-
perimental data. The compressed sensing computations were done using �1 min-
imization and greedy algorithms (specifically OMP), respectively. In both cases,
the correct frequencies and spatial modes were identified. This verifies not only the
compressed sensing approach, but also the random sampling strategies proposed in
Section 6.2.5.
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Chapter 7

Conclusions and future

directions

This thesis details a number of scientific contributions related to dynamic mode
decomposition (DMD). Some of these are direct contributions to the understanding
of DMD, whereas others make use of DMD as a means to other ends. In this chapter,
we summarize the main findings and describe future directions in which this work
can be extended.

7.1 Summary

There is presently a lack of clarity regarding the differences between DMD and
Koopman spectral analysis, as evidenced by the fact that the terms “DMD mode”
and “Koopman mode” are often used interchangably in the fluids community. A
key contribution of this thesis is the introduction of a precise definition of DMD
(see Chapter 2) based solely on linear algebra. From this definition, we were able to
develop a theoretical framework that encompasses a more general class of datasets
than the existing theory. In particular, we used this framework to understand the
potential benefits and pitfalls of applying DMD to rank-deficient datasets. We also
developed variants of the standard DMD algorithm that extend it to non-sequential
time-series. Through numerical examples, we demonstrated the effectiveness of these
algorithms in increasing computational efficiency and reducing the effects of noise,
respectively. While extensions of the DMD algorithm have been discussed among
DMD practioners for some time, such methods have generally been implemented in
an ad hoc manner. Ours is the first attempt to build a general, theoetical framework
from which such extensions arise naturally.

We also explored a variety of ways in which DMD can be applied. In Chapter 3,
we made use of DMD as a snapshot-based method for identifying eigenvectors. This
allows for efficient estimation of the slowly decaying eigenvectors that dominate the
impulse responses of linear systems. Using those eigenvectors, along with their cor-
responding eigenvalues, we can model the long-term behavior of impulse responses
analytically, avoiding the need for long impulse response simulations. We took ad-
vantage of this in developing a variant of balanced proper orthogonal decomposition
(BPOD) that offers both increased accuracy and decreased computational cost.
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Chapter 4 explores the use of DMD as a way to investigate the physics of os-
cillatory fluid flows. Two examples were discussed: a model for separated airfoil
flows and shock-turbulent boundary layer interactions (STBLIs). In the former, we
ran multiple simulations of a separated flow, varying the frequency at which we
applied zero-net-mass-flux forcing. We analyzed each case using proper orthogonal
decomposition (POD) and DMD, looking for trends in the modal characteristics
that correlated with control effectiveness. We found that a decrease in the height of
the mean separation bubble was correlated with a more even distribution of energy
among the POD modes. We also saw that the most effective control was achieved
when the flow was dominated by lock-on between the wake and separation bubble.
In the STBLI example, the goal was to identify coherent structures that might elu-
cidate the cause of low-frequency oscillations in the shock. We found that the DMD
mode corresponding to the shock motion frequency resembles previously identified
structures, suggesting a linear instability may lead to the observed oscillations. Both
examples leveraged DMD as a tool to process large datasets and identify structures
of physical interest.

Though DMD is a powerful tool, it is limited by the fact that it requires data
samples that satisfy the Nyquist-Shannon sampling criterion. While not problematic
for numerical simulations, in experiments it is often impossible to acquire such data.
For instance, DMD is typically applied to snapshots of fluid velocity fields, which are
typically captured using particle image velocimetry (PIV). Standard PIV systems
have capture rates on the order of 15 Hz, which can easily be exceeded in flows of
interest. (Faster PIV systems exist, but are expensive and thus relatively rare.)

In Chapter 5 we proposed a method that overcomes this limitation using dy-
namic estimation. We made use of fast, localized velocity measurements and slowly
acquired PIV data to estimate the time evolution of a bluff-body wake. We found
that by using a dynamic estimation approach, we outperformed stochastic estima-
tion techniques, which are commonly used in the fluids community. Not only are the
dynamic estimation results more accurate in the mean, but they are also more ro-
bust to noise. We applied DMD to the time-resolved velocity field estimates, finding
that DMD based on the dynamically estimated snapshots more accurately identifies
oscillatory structures in the flow. This approach allowed for DMD analysis of a fluid
flow for which the natural frequencies (around 90 Hz) far exceed those accessible
with typical PIV sampling rates.

We took a different approach in Chapter 6, using compressed sensing concepts
to overcome sampling rate limitations. Both �1 minimization and greedy algorithms
(specifically orthogonal matching pursuit) were implemented. To make these algo-
rithms tractable for large datasets, we first projected the data onto POD modes. We
also proposed strategies for random sampling that take into account measurement
limitations. The overall method was applied to both a numerical and an experimen-
tal dataset (the flow past a two-dimensional cylinder). In both cases, the correct
frequencies and oscillatory spatial modes were identified, using only sub-Nyquist-
rate data and in the presence of noise.
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7.2 Suggestions for future work

While the work presented in this thesis has answered a number of questions about
DMD, it has also led to a number of new ones. For instance, while the theory
discussed in Chapter 2 is independent of Koopman operator theory, it still allows
for the interpretation of DMD modes as an approximation of Koopman modes (when
they are computed from linearly independent data). There are a number of questions
related to this approximation that merit further study. These include the following:

• How good is the DMD approximation of Koopman modes? Rowley
et al. [138] suggest that if we can identify modes and eigenvalues that sat-
isfy (2.21), then these modes and eigenvalues are indistinguishable from the
true Koopman modes and eigenvalues, given the available data. Suppose we
could compute the true Koopman modes and eigenvalues. How would the
DMD approximation compare? Is there a way to measure the approxima-
tion error without knowing the true Koopman decomposition, perhaps using
properties of the underlying dynamical system? (We note that Bagheri [14]
studies the relationship between DMD and Koopman eigenvalues for a two-
dimensional cylinder flow; it remains to be seen if one could generalize those
findings.)

• Are there canonical examples for which DMD and Koopman spec-
tral analysis differ greatly? Given that there is currently no guarantee
on the accuracy of DMD as an approximation to Koopman spectral analy-
sis, there may exist examples for which the two methods produce drastically
different results. If such examples exist, it would be important to try and
identify the causes of the differences, for instance using properties of the data
or the underlying dynamics. Once these causes are identified, one could cre-
ate canonical examples that illustrate the potential pitfalls in approximating
Koopman decompositions using DMD.

A number of future directions also arise from the applications of DMD discussed
in Chapers 3–5:

• Can the analytic tail method be extended to the eigensystem real-
ization algorithm (ERA)? Ma et al. (2011) [99] showed that reduced-order
models computed using the ERA are theoretically equivalent to those com-
puted using BPOD. As such, it seems natural that the analytic tail method
discussed in Chapter 3 should also extend to the ERA. Preliminary work sug-
gests that this is a nontrivial exercise, due to the fact that the ERA is an
adjoint-free method.

• Can DMD analysis of the canonical separated flow be used to write
down a coupled-oscillator model of the dynamics? The canonical sepa-
rated flow is characterized by a number of distinct frequencies, which interact
and synchronize to varying degrees depending on the flow configuration. As
such, it seems natural to model its dynamics using a coupled-oscillator model,
perhaps with individual oscillators for the wake, separation bubble, shear layer,
and actuator. One could use DMD analysis, similar to that described in Sec-
tion 4.1, to posit how these oscillators should be coupled.
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• Do DMD modes outperform POD modes for Galerkin projection of
the Navier–Stokes equations? DMD modes are favored for their ability to
capture nonlinear dynamics. As such, one might think that they would be a
good choice of basis for Galerkin projection. In flows where the DMD modes
differ from the POD modes, it would be informative to investigate the relative
performance of reduced-order models computed using one set of modes versus
the other.
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Appendix A

Background on POD

Proper orthogonal decomposition (POD) is a data analysis method that identifies
the dominant structures in a dataset [78, 96, 155]. More precisely, suppose we
wish to project the dataset {ξk}mk=0 onto an r-dimensional subspace. Let Pr be the
corresponding projection operator. Then the first r POD modes form the orthogonal
basis that minimizes the sum-squared error

m�

k=0

�ξk − Prξk�
2
.

The image of each projection is spanned by the POD modes, with Image(Pk) ⊂
Image(Pk+1) for all k. As such, POD modes are naturally ordered, with a smaller
mode index indicating a larger contribution to the accuracy of the projection. We
can also say that the POD modes are ordered in terms of their energy content (where
we equate the L2 inner product to energy).

When analyzing an incompressible fluid flow, we generally take the data elements
to be mean-subtracted velocity fields at given instants in time. That is, we let
ξk = u�

k = u�(tk). These elements are commonly referred to as “snapshots.” Each
velocity field is discretized and reshaped into a one-dimensional vector, and then
stacked in a data matrix

X =



u�
0 u�

1 · · · u�
m



 . (A.1)

The POD modes can then be computed efficiently using the “method of snap-
shots” [155], as described in Section 2.3.1. For convenience, we summarize the
method here, including a matrix of inner product weights for generality.

The first step in the method of snapshots is to solve the (m + 1) × (m + 1)
eigenvalue problem

XTMXW = WΣ2
, (A.2)

where M is the matrix of inner product weights. This matrix typically contains grid
weights, for instance the scaled identity matrix I dx dy dz. Including M allows us
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to interpret the vector norm as the integrated kinetic energy:

��u�
k

��2 = (u�
k)

TMu�
k =

�� �
u
�(x, y, tk)

2 + v
�(x, y, tk)

2 + w
�(x, y, tk)

2
�
dx dy dz.

Having solved (A.2) for W and Σ, the matrix of POD modes is computed via

Φ = XWΣ−1
, (A.3)

where the POD mode φj is given by the j + 1th column of Φ. (In this thesis, we
start our indexing from zero, and as such, the “first” mode corresponds to j = 0,
the “second” to j = 1, and so on.)

The modes form an orthonormal set, satisfying the identity

φT
j Mφi = δij , (A.4)

where δij is the Kronecker delta function. As such, the projection of a snapshot u�
k

onto the first r POD modes is given by

Pru
�
k = Φrak, (A.5)

where Φr contains only the first r columns of Φ, and

ak = ΦT
r Mu�

k. (A.6)

We refer to ak as the vector of POD coefficients corresponding to the snapshot
u�
k. For a spatially discretized velocity field, the dimension of a POD mode φj is

the number of spatial dimensions times the number of grid points. In contrast, ak
has only dimension r.

We observe that due to the orthogonality of the POD modes (see (A.4)), the
energy in any POD approximation of a velocity field is simply given by

��Pru
�
k

��2 = aTkΦ
T
r MΦrak = aTk ak = �ak�22. (A.7)

The kinetic energy captured by the projection itself can be computed as

m�

k=0

�Prξk�2 =
r−1�

j=0

σj , (A.8)

where the values σj are the singular values lying on the diagonal of Σ. If all of the
singular values in Σ are included in the right-hand sum, then the above equation
yields the maximum possible energy that can be captured by a POD projection.
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and G. Tadmor. Model-based control of vortex shedding using low-dimensional
Galerkin models. AIAA Paper 2003-4262, 33rd AIAA Fluid Dynamics Con-
ference and Exhibit, June 2003.

[62] J. L. Gilarranz and O. K. Rediniotis. Compact, high-power synthetic jet
actuators for flow separation control. AIAA Paper 2001-0737, 39th AIAA
Aerospace Sciences Meeting and Exhibit, January 2001.

[63] M. N. Glauser, H. Higuchi, J. Ausseur, and J. Pinier. Feedback control of
separated flows. AIAA Paper 2004-2521, 2nd Flow Control Conference, June
2004.

[64] S. V. Gordeyev and F. O. Thomas. A temporal proper decomposition (TPOD)
for closed-loop flow control. Exp. Fluids, 54(3), March 2013.

[65] P. J. Goulart, A. Wynn, and D. Pearson. Optimal mode decomposition for
high dimensional systems. In Proceedings of the 51st IEEE Conference on
Decision and Control, December 2012.

[66] M. Grant and S. P. Boyd. Graph implementations for nonsmooth convex pro-
grams. In V. Blondel, S. P. Boyd, and H. Kimura, editors, Recent Advances in
Learning and Control, volume 371 of Lecture Notes in Control and Information
Sciences, pages 95–110. Springer-Verlag, 2008.

[67] M. Grant and S. P. Boyd. CVX: Matlab software for disciplined convex pro-
gramming, version 2.0 beta. http://cvxr.com/cvx, September 2012. URL
http://cvxr.com/cvx.

123

http://cvxr.com/cvx
http://cvxr.com/cvx


[68] D. Greenblatt and I. Wygnanski. Parameters affecting dynamic stall con-
trol by oscillatory excitation. AIAA Paper 1999-3121, AIAA Fluid Dynamics
Conference, June 1999.

[69] D. Greenblatt and I. Wygnanski. Parameters affecting dynamic stall control by
oscillatory excitation. AIAA Paper 2002-3271, 1st Flow Control Conference,
June 2002.

[70] D Greenblatt and I Wygnanski. Effect of leading-edge curvature on airfoil
separation control. J. Aircraft, 40(3):473–481, May 2003.

[71] J. Griffin, T. Schultz, R. Holman, L. S. Ukeiley, and L. N. Cattafesta III.
Application of multivariate outlier detection to fluid velocity measurements.
Exp. Fluids, 49(1):305–317, July 2010.

[72] J. Griffin, M. Oyarzun, L. N. Cattafesta III, J. H. Tu, C. W. Rowley, and
R. Mittal. Control of a canonical separated flow. AIAA Paper 2013-2968,
43rd AIAA Fluid Dynamics Conference, June 2013.

[73] M. Grilli, P. J. Schmid, S. Hickel, and N. A. Adams. Analysis of unsteady
behaviour in shockwave turbulent boundary layer interaction. J. Fluid Mech.,
700:16–28, June 2012.

[74] Y. G. Guezennec. Stochastic estimation of coherent structures in turbulent
boundary-layers. Phys. Fluids A-Fluid, 1(6):1054–1060, June 1989.

[75] K. Hasselmann. PIPs and POPs: the reduction of complex dynamical-systems
using Principal Interaction and Oscillation Patterns. J. Geophys. Res.-Atmos.,
93(D9):11015–11021, September 1988.

[76] Y. Y. He, A. W. Cary, and D. A. Peters. Parametric and dynamic modeling
for synthetic jet control of a post-stall airfoil. AIAA Paper 2001-0733, 39th
AIAA Aerospace Sciences Meeting and Exhibit, January 2001.

[77] M. A. Herman and T. Strohmer. High-resolution radar via compressed sensing.
IEEE T. Signal Proces., 57(6):2275–2284, June 2009.

[78] P. Holmes, J. L. Lumley, G. Berkooz, and C. W. Rowley. Turbulence, Coherent
Structures, Dynamical Systems and Symmetry. Cambridge University Press,
2012.

[79] H. Hotelling. Analysis of a complex of statistical variables into principal com-
ponents. J. Educ. Psychol., 24:417–441, September 1933.

[80] H. Hotelling. Analysis of a complex of statistical variables into principal com-
ponents. J. Educ. Psychol., 24:498–520, October 1933.

[81] M. Hubert and E. Vandervieren. An adjusted boxplot for skewed distributions.
Comput. Stat. Data An., 52(12):5186–5201, August 2008.

[82] R. A. Humble, G. E. Elsinga, F. Scarano, and B. W. van Oudheusden. Three-
dimensional instantaneous structure of a shock wave/turbulent boundary layer
interaction. J. Fluid Mech., 622:33–62, March 2009.

124



[83] D. C. Hyland. Neural network architecture for online system identification and
adaptively optimized control. In Proceedings of the 30th IEEE Conference on
Decision and Control, December 1991.

[84] M. Ilak and C. W. Rowley. Modeling of transitional channel flow using bal-
anced proper orthogonal decomposition. Phys. Fluids, 20(3), March 2008.

[85] J. N. Juang and R. S. Pappa. An eigensystem realization-algorithm for modal
parameter-identification and model-reduction. J. Guid. Control Dynam., 8(5):
620–627, 1985.

[86] J. N. Juang, M. Phan, L. G. Horta, and R. W. Longman. Identification of ob-
server/Kalman filter Markov parameters: Theory and experiments. Technical
memorandum 104069, NASA, 1991.

[87] H.-J. Kaltenbach, H. Fatica, R. Mittal, T. S. Lund, and P. Moin. Study of flow
in a planar asymmetric diffuser using large-eddy simulation. J. Fluid Mech.,
390:151–185, July 1999.
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