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Physical human–robot interaction tasks require robots that can detect and react to external perturbations caused by the
human partner. In this contribution, we present a machine learning approach for detecting, estimating, and compensating
for such external perturbations using only input from standard sensors. This machine learning approach makes use of
Dynamic Mode Decomposition (DMD), a data processing technique developed in the field of fluid dynamics, which is
applied to robotics for the first time. DMD is able to isolate the dynamics of a nonlinear system and is therefore well suited
for separating noise from regular oscillations in sensor readings during cyclic robot movements. In a training phase, a
DMD model for behavior-specific parameter configurations is learned. During task execution, the robot must estimate
the external forces exerted by a human interaction partner. We compare the DMD-based approach to other interpolation
schemes. A variant, sparsity promoting DMD, is particularly well suited for high-noise sensors. Results of a user study
show that our DMD-based machine learning approach can be used to design physical human–robot interaction techniques
that not only result in robust robot behavior but also enjoy a high usability.

Keywords: physical human–robot interaction; dynamic mode decomposition; model learning; external perturbation;
usability in human–robot interaction

1. Introduction

The development of autonomous robots that adequately in-
teract with their surroundings requires an accurate, reliable,
and efficient sensing technology.Acquired sensory informa-
tion needs to be included in the decision-making process in
order to adapt to the current situation, or more generally, to
influences from the environment. In particular, close contact
physical interaction and cooperation between robots and
humans require adequate sensory inputs. In such scenarios,
forces and torques that are applied by the human partner
can significantly perturb the execution of a robot’s motor
skills, resulting in a failure of the cooperative task. These
external perturbations need to be estimated and addressed
in the decision-making process to ensure a stable, safe, and
successful execution of motor skills.

Hence, recent control approaches employ force sensing
technology to realize compliant robot motions.[1,2]
Impedance control in particular has been successfully ap-
plied to physical human–robot interaction. In the typical
impedance control setup, a force–torque sensor mounted at
the end effector is used to measure external perturbations
and interactions with the environment. Mounting the sens-
ing device in such a way restricts the compliant behavior
to forces acting on the end effector. Various methods have
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been proposed to extend the ‘sensitivity’ to the entire robot
body.[3]

However, extending the sensitivity also makes it diffi-
cult to differentiate between natural variations in the sensor
readings and external perturbations that need to be detected.
In particular, during the execution of dynamic motions,
e.g. walking or running, the sensors will have continuously
varying readings that stem from the contact forces with
the ground. In these situations, it can be challenging to
discriminate between human inflicted perturbations, natural
variation of the readings due to the execution of the behav-
ior, and sensor noise. Also, in order to detect the degree
by which an external perturbation occurred, we need to
be able to calculate the difference between the expected
state, referred to as the zero state, of the sensor readings and
the current value.[4] As already pointed out, the zero state
is constantly changing during the execution of dynamic,
physical tasks. As a result, it becomes difficult to generate
accurate estimates of the external perturbations acting on
the robot.

In this paper, we present an alternative sensing approach
that is based on machine learning. We are particularly in-
terested in sensing human perturbation in dynamic tasks, in
which a robot is physically interacting with the environment
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and a human partner at the same time. The proposed ap-
proach focuses on learning probabilistic, behavior-specific
models of regular oscillations in sensor readings during
motor skill execution. These models are used to (1) identify
perturbations by detecting irregularities in sensor readings
that cannot be explained by the inherent noise or the ex-
ecuted task and (2) to generate a continuous estimate of
the amount of external perturbation. Due to the data-driven
nature of the approach, no detection threshold needs to be
provided by the user.

The presented perturbation filters can be regarded as
virtual force sensors that produce a continuous estimate
of external forces. In contrast to other approaches, pertur-
bation filters can be used to extract accurate and reliable
force estimates even from low-cost sensors. To this end,
we use Sparsity-promoting Dynamic Mode Decomposition
(SDMD) to learn a model of the system dynamics during
the robot execution of a specific motor skill. During human–
robot interaction, the model is then used to determine the
existence and amount of irregularities in the sensor read-
ings. By modeling the correlations as well as the time-
dependent variation in the original sensor values, our filter
can robustly deal with uncertainties in estimating the human
physical influence on the robot. During task execution, the
estimated perturbation value can be used to compensate for
the external forces or infer the intended guidance of a human
interaction partner. Experiments on a real robot show that
learned models can be used to accurately determine even
small disturbances.

2. Related work

In recent years, natural and intuitive approaches to
human–robot interaction have gained popularity. Various
researchers have proposed the so-called soft robotics
paradigm: compliant robots that ‘can cooperate in a safe
manner with humans.’[5] An important robot control
method for realizing such a compliance is impedance
control.[6] Impedance control can be used to allow for
touch-based interaction and human guidance. To this end,
impedance controllers require accurate sensing capabilities,
in the form of force–torque sensors.

The ability to sense physical influences is at the core of
recent advances made in the field of HRI.[7] For example,
Lee et al. [8] use impedance control and force–torque sen-
sors in order to realize human–robot interaction during pro-
gramming by demonstration tasks. Wang et al. [9] present a
robot adapting its dancing steps based on the external forces
exerted by a human dance partner. Ben Amor et al. [10] use
touch information to teach new motor skills to a humanoid
robot. Touch information is only used to collect data for
subsequent learning of a robotic motor skill. Robot learning
approaches based on such kinesthetic teach-in have gained
considerable attention in the literature, with similar results
reported in [11] and [12]. A different approach aiming at

joint physical activities between humans and robots has
been reported in [13]. Ikemoto et al. use Gaussian mixture
models to adapt the timing of a humanoid robot to that
of a human partner in close-contact interaction scenarios.
The parameters of the interaction model are updated using
binary evaluation information obtained from the human.
This approach significantly improves physical interactions,
but is limited to learning timing information.

Stückler et al. [14] present a cooperative transportation
task where a robot follows the human guidance using arm
compliance. In doing so, the robot recognizes the desired
walking direction through visual observation of the object
being transported. A similar setting has been investigated
by Yokoyama et al. [15]. They use a HRP-2P humanoid
robot with a biped locomotion controller and an aural human
interface to carry a large panel together with a human.
Forces measured with sensors on the wrists are utilized to
derive the walking direction. Similarly, Bussy et al. [16]
also use force–torque sensors on the wrists to adapt the
robot behavior during object transportation tasks. Lawitzky
et al. [17] also shows how load sharing and role allocation
can be used to balance the contribution of each interaction
partner depending on the current situation.

None of the approaches using force–torque sensors ad-
dresses the problem of uncertainty in the measurements,
in particular, during the execution of dynamic tasks with
many contacts. As a result, all of these approaches assume
high-quality sensing capabilities and low-speed execution
of the joint motor task. We propose a new filtering algorithm
that can learn the natural variation in sensor values as a
motor skill is executed. Using predictive models learned by
dynamic mode decomposition (DMD), the filtering algo-
rithm also estimates the perturbation which best explains
an observed set of new sensor values.

3. Approach

In our approach, the robot recognizes and automatically
distinguishes between strength and direction of external
perturbations which may be caused by a human interac-
tion partner. An overview of the approach can be seen in
Figure 1. First, we record training data for a behavior with
different parameter configurations, e.g. walking with vary-
ing step lengths, in a controlled environment without ex-
ternal perturbations. The training data are used to learn a
behavior-specific perturbation filter. Given the sensor val-
ues over time, the filter identifies the occurrence and degree
of human perturbation using Gaussian process regression
(GPR) and DMD.

During motor skill execution, external forces are detected
by calculating the probability of the observed sensor values
under a probabilistic model of the behavior. If the observed
values cannot be explained by the natural variation in sen-
sor readings, an event is triggered. Subsequently, an itera-
tive optimization procedure is used to identify the behavior
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Figure 1. An overview of the presented machine learning approach.An external perturbation is filtered using a previously learned predictive
model of behavior parameters. After detecting a perturbation, its strength and direction are estimated in the behavior parameter space. The
resulting perturbation value can be used for generation of an adequate reaction.

parameters which best explain the observed values. Finally,
the difference between the current behavior parameters and
optimized behavior parameters is used to calculate a nu-
merical perturbation value. The perturbation value is a
continuous estimate of the external forces acting on the
robot.

In the following, we will describe each step of our ap-
proach in more detail. Subsequently, we will discuss how
perturbation detection, model learning, and perturbation
estimation are computed in order to allow a whole variety
of HRI scenarios.

3.1. Recording training data

The first step in our approach is to record the training data
that reflect the evolution of sensor values during regular
execution of a motor skill. It is important to record several
executions of the behavior, since motor skills can often be
executed with different parameters, e.g. varying the step
lengths during walking. However, since we use machine
learning methods, we will later see that the number of re-
quired training data can be limited to about five examples.

Each recorded example contains training data sampled
with 100 Hz for one repetition of the modeled robot behav-
ior. In our specific case of training a perturbation filter for
walking, we record both the center of mass (CoM) and the
proper acceleration of the robot for four seconds. Acquiring
training data requires less than one minute in total.

3.2. Phase estimation

Since we are dealing with time-varying data, it is important
to estimate the phase of the robot during the execution of
a motor skill. Depending on the phase, e.g. the left leg is
lifted and the variance in the sensor readings can change
drastically. To determine the current phase, a time window
of sensor values is captured and temporally aligned to the

training data. To this end, we use the dynamic time warping
technique (DTW).[18] DTW is a time series alignment al-
gorithm for measuring the similarity between two temporal
sequences X = (x1, . . . , xN ) and Y = (y1, . . . , yM ) of
length N ∈ N and M ∈ N. In our specific case, the goal
is to find the optimal correspondence between the sensor
data Y recorded during the training phase and the currently
observed sequence X, where M is much larger then N .

Due to this significant difference in length of X and Y,
we formulate our task as finding a subsequence

Y(a∗ : b∗) = (ya∗ , ya∗+1, . . . , yb∗) (1)

with 1 ≤ a∗ ≤ b∗ ≤ M , where a∗ is the starting index
and b∗ is the end index that optimally fit to the corre-
sponding subsequence X. This technique is also known
as subsequence dynamic time warping (SDTW).[19] To
find the optimal subsequence, we first have to calculate the
accumulated cost matrix D, which for SDTW is defined as

D(n, 1) =
n∑

k=1

c(xk, y1), n ∈ [1 : N ],

D(1, m) = c(x1, ym), m ∈ [2 : M],
D(n, m) = min{D(n − 1, m − 1), D(n − 1, m),

D(n, m − 1)} + c(xn, ym)

where c is a local distance measure, which in our case is
defined as c = |x − y|. The goal of the SDTW algorithm is
to determine the path with minimal overall costs C ending
at (b∗, M), where b∗ is given by

b∗ = argmin
b∈[1:M]

D(N , b). (2)

To determine the warping path p∗ = (p1, . . . , pL) start-
ing at p1 = (a∗, 1) and ending at pL = (b∗, M), a dynamic
programming recursion is used. As illustrated in Figure 2,
the resulting path p∗ represents the optimal subsequence
of X in Y. As a result, SDTW can be used to estimate the
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Figure 2. Given the recorded data (black) and the partial
observation (red), we calculate the optimal warping path p∗
between a∗ and b∗.
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Figure 3. After estimating the current phase of the behavior, the
deviation between the measured and predicted sensor values can
be used to detect external influences. Left: There is no external
perturbation. Right: An external perturbation is detected.

current state of a behavior using a subset of temporally mea-
sured sensor values which are mapped to the recorded data.
In more detail, we use the subsequence p∗ as prediction of
sensor values at the current state.

3.3. Perturbation detection

Due to uncertainties in the real world, a motor skill is never
executed twice in exactly the same way. To accommodate
for natural noise in the behavior, we use learned, behavior-
specific information about the temporal evolution of sensor
variances.

Different approaches can be used to learn such a proba-
bilistic model. One solution is to use GPR.[20]An important
advantage of GPR is the ability to learn a probabilistic model
from a small set of training data. When using large data-
sets, training a GP often becomes computationally demand-
ing. Various solutions have been proposed in the literature
to cope with these situations such as pseudo-inputs [21]
and sample selection.[22] Details on how to train a GP for

perturbation detection, as well as a periodic kernel that is
well suited for the tasks considered in this paper can be
found in our earlier publication.[23]

In the remainder of this paper, we are going to employ a
simpler solution which is computationally less expensive,
can easily be implemented, and in practice produces similar
results. More specifically, we are going to compute the
standard deviation σ for each time step of the recorded data
separately.

Given a probabilistic model as described above, we can
detect a perturbation by calculating the likelihood of the
current sensor readings. In our implementation, we trigger a
detection when the sensor values are outside of the standard
deviation σ . Figure 3 shows an example for a regular and a
disturbed execution of a behavior.

3.4. Modeling robot dynamics using DMD

We are using DMD in order to teach a predictive model to
describe the change in sensor values under different behav-
ior parameters. DMD is a novel data processing technique
from the field of fluid dynamics, which was introduced in
[24] and [25]. This method presents a modal decompo-
sition for nonlinear flows and features the extraction of
coherent structures oscillating at a single frequency and
growth/decay rate. The basic idea is that DMD computes a
linear model which approximates the underlying nonlinear
dynamics. Once DMD obtains the dynamics of an unknown
system, they can be used to simulate sensor values under
different parameter conditions.

An equidistant temporal snapshot sequence N + 1 of a
vector of an observable (e.g. velocity field) x = (u1, . . . ,

uM )∗ ∈ C
M×1 which is stacked into two matrices K1 =

[x0 . . . , xN−1] ∈ C
M×N and K2 = [x1 . . . , xN ] ∈ C

M×N ,
where m � n is assumed. The matrices K1 and K2 are
shifted by one time step �t and can be linked via the map-
ping matrix (system matrix) A ∈ C

M×M such that K2 =
AK1 = K1S + reT

N with the residual vector r ∈ C
M×1 and

the N th unit vector eN ∈ C
N×1.

Since the data are obtained from experiments, the system
matrix A is unknown and for a very large system, it is
computationally impossible to solve the eigenvalue prob-
lem directly as well as to fulfill the storage demand.[26]
The idea is to solve an approximate eigenvalue problem
by projecting A onto an N -dimensional Krylow subspace
in order to compute the eigenvalues and eigenvectors of
the resulting low-rank operator as described in [27]. One
type of Krylow methods is the Arnoldi algorithm which
needs no knowledge of A for the following variant: xN =
a0x0 + a1x1 + · · · + aN−1xN−1 + r . The final snapshot xN

can be expressed as a linear combination of the previous
ones [x0, . . . , xN−1]. The weighting factors [a0, . . . , aN−1]
are computed such that the residual r is minimized (least-
squares problem) in order to form the companion matrix



Advanced Robotics 335

S =

⎛
⎜⎜⎜⎜⎜⎝

0 a0
1 0 a1

. . .
. . .

...

1 0 aN−2
1 aN−1

⎞
⎟⎟⎟⎟⎟⎠

∈ C
N×N . (3)

In [24], the author describes a more robust calculation,
also referred to as standard DMD, which is achieved by
applying a singular value decomposition on K1 such that
K1 = U�W ∗. The full-rank matrix S̃ ∈ C

N×N is de-
termined on the subspace spanned by the orthogonal basis
vectors U of K1, described by S̃ = U∗K2W�−1. Solving
the eigenvalue problem, S̃μ = λμ leads to a subset of
complex eigenvectors μ. The DMD modes are defined by
� = Uμ, which implies a mapping of the eigenvectors from
lower μ ∈ C

N×N to higher � ∈ C
M×N dimensional space.

The complex eigenvalues λ contain growth/decay rates δ =
�[log(λ)]/�t and frequencies f = �[log(λ)]/(2π�t) of
the corresponding DMD modes �. The discrete temporal
evolution of the DMD modes is governed by the Vander-
monde matrix

Vand =

⎡
⎢⎢⎢⎣

1 λ1 · · · λN−1
1

1 λ2 · · · λN−1
2

...
...

. . .
...

1 λN · · · λN−1
N

⎤
⎥⎥⎥⎦ . (4)

The DMD modes � must be scaled in order to perform
a data recalculation of the first snapshot sequence K1 =
�DαVand . The analysis of Vand consequently shows that
the first snapshot x0 is independent of temporal evolution
since λ0 = [λ0

1, . . . , λ
0
N ]∗ = 1. The scaling factors α =

[α1 . . . αN ]∗ are calculated by solving �Dα = x0, where
Dα = diag{a}.

The standard DMD is based on the linearization of the last
snapshot, which is assumed to correspond to the underlying
nonlinear dynamics. However, due to various reasons, the
linearization fails with respect to a negligible small resid-
ual r in some cases. For example, huge data-sets may be
problematic, especially when computational effort does not
suffice. A memory-efficient variant that requires as few as
two snapshots in memory at a given time was described in
[28]. In [29], the authors describe different modifications of
the standard DMD including a non-sequential time series
approach, where the evolution operator is built up on the
linearization of data pairs of consecutive snapshots.

Another variant uses the combination of Proper Orthog-
onal Decomposition (POD) and DMD as described in [30].
First, the POD extracts spatial coherent structures (topos),
which are ranked by their associated fluctuating energy con-
tent. Second, the DMD is applied to the temporal weighting
coefficients (chronos) of the POD. By changing the observ-
able to the chronos, the linear operator no longer acts on
the data space (e.g. velocity field). This reduces the dimen-
sion of the residual vector r ∈ C

N+1×1. Furthermore, the
frequency spectra can be directly linked to the kinetic energy

spectra, which was only possible for perfectly permanent
flow regimes in standard DMD.

The standard DMD algorithm provides a rank-N solu-
tion, which means that the approximate eigenvalues agree
with the number of snapshots in K1. It turns out that by
adding additional snapshots which do not increase the vec-
tor space, (they do not contribute any new information to
the system), the number of approximate eigenvalues still
increases. In [31], the authors developed a low-rank version
of the standard DMD algorithm that provides a specified
rank l solution with l < N . This means that when increasing
the number of additional snapshots to a given data-set that
do not expand the vector space, the number of approximate
low-rank eigenvalues stays constant.

However, the low-rank DMD modes do not represent
a subset of their standard DMD counterparts. In order to
avoid this drawback, a new method was developed so as to
find a subset of DMD modes that influences the quality ap-
proximation most.[31] Therefore, a new solution to find the
scaling vector α was introduced.[32] Here, the scaling vec-
tor α is obtained by considering the temporal growth/decay
rates of the DMD modes in order to approximate the entire
data sequence K1 optimally. Consequently, the problem can
be brought into the following constellation

min
α

J (α) = ∣∣�W ∗ − μDαVand
∣∣2
F . (5)

This expression is a convex optimization problem which
can be transformed into

J (α) = α∗ Pα − q∗α − α∗q + s (6)

where P := (μ∗μ) ◦ (Vand V ∗
and), q := diag(Vand W�∗μ)

and s := trace(�∗�). Its solution leads to the following
equation:

α = ((μ∗μ) ◦ (Vand V ∗
and))−1diag(Vand W�∗μ). (7)

For a detailed step-by-step description, the reader is re-
ferred to [32]. However, the key challenge is to identify
a subset of DMD modes that captures the most important
dynamic structures in order to achieve a good-quality ap-
proximation. SDMD [32] was developed in order to solve
this problem. The sparsity structure of the scaling vector α

is fixed in order to determine the optimal values of the non-
zero amplitudes. Therefore, the objective function J (α) is
extended with an additional term such that

min
α

J (α) + γ

N∑
i=1

|αi | , (8)

where γ denotes a regularization parameter that indicates
the focus on sparsity of α. As a result, instead of scaling
the whole spectrum of available modes, the SDMD only
concentrates on the most dominant modes for the entire
series by setting the amplitudes of the negligible modes
to zero. Larger values of γ increase the focus on sparsity
(less extracted DMD modes) as illustrated in Figure 4 for
an exemplary robot data-set with 51 samples. The higher
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Figure 4. Regularization parameter and its influence on non-
zero amplitudes. Top: Curve progression of the regularization
parameter γ . Bottom: Number of non-zero amplitudes (N z) as
function of γ where the black cross marks γ = 0.36 resulting in
22 non-zero amplitudes.

Figure 5. Left: Eigenvalues λi from standard DMD (black circles)
and the subset of eigenvalues from sparsity-promoting DMD (red
crosses). Right: Amplitudes αi of standard DMD (black circles)
and sparsity-promoting DMD (red crosses).

the value of γ (red curve), the lower the number of non-
zero amplitudes N z (blue curve) and the more the SDMD
concentrates on the low-frequency modes. For the exam-
ple presented here, γ = 0.36 which results in N z = 22,
compared to 50 standard DMD-modes. The results of the
eigenvalue and amplitude distribution for both algorithms
are displayed in Figure 5 left. Eigenvalues in the interior of
the unit cycle are strongly damped and hence they influence
early stages of the time evolution.

As already mentioned, the data presented here originate
from low-cost sensors which may be affected by distur-
bance. Hence, forcing a low number of non-zero amplitudes
in α can reduce the influence of noise in the approximation.
As shown in Figure 5 right, the SDMD emphasizes 22 non-
zero amplitudes. Furthermore, differences of the scaling
vector α are noticeable for some modes due to different
scaling approaches of DMD and SDMD.

For our implementation of DMD in a human–robot in-
teraction scenario, the snapshot data N + 1 is represented
by the sensor data recorded during training data acquisition.

Each column of the snapshot matrices, K1 and K2, contains
a fixed number of sensor values, i.e. the longitudinal CoM.

3.5. Calculating a continuous measure of perturbation

If the deviation between measured and predicted sensor
values is larger than the allowed variance σ , we assume
that an external perturbation is influencing the execution of
the behavior. However, the question remains: how strong is
the external perturbation?

To estimate the strength of the perturbation, we simu-
late different behavior parameters using the learned DMD
model and select the one that produces sensor values similar
to our current readings. For this task, we make use of the
previously described SDTW method. As mentioned, the
SDTW finds the optimal warping path p∗ for a currently
measured subsequence X to a previous recorded data-set
Y. Whenever a perturbation is detected, we perform itera-
tive optimization by generating predictions using a DMD
model and calculating the warping costs using SDTW. The
goal of this optimization process is to identify the behavior
parameter that would best explain the currently observed
sensor values. Optimization is performed using a stochastic
optimization technique, i.e. Covariance Matrix Adaptation
Evolution Strategy (CMA-ES). The warping costs C gen-
erated by SDTW are used as objective function. Figure 6
shows the warping costs C calculated during a walking task.
The behavior parameter which produces least costs C is
regarded as the true behavior parameter if human forces are
taken into account. By calculating the difference between
the behavior parameter used to control the robot and the
behavior parameter identified by the learned model, we
calculate a continuous perturbation value. The perturbation
value is an estimate of the external (human) forces acting
on the robot.

4. Experiments

In the following experiments, DMD, SDMD, and classical
interpolation schemes were used to learn several distinct
models of a robot’s walking behavior. We evaluate and
compare the quality of each of these models. The best model
is then used to detect and estimate external perturbations
during a human–robot interaction task.

4.1. Prediction quality

For the evaluation of DMD and SDMD, we make use of a
walking data-set recorded on a Nao robot. The longitudinal
CoM was recorded for a walking behavior with five different
equidistant step lengths between − cm and +4 cm. The
data are recorded with 100 Hz for four seconds. Both the
DMD and SDMD algorithms were applied on this data-set,
resulting in four DMD modes. Given the learned models,
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Figure 6. External perturbations which differ in strength and direction are increasing the overall warping costs C during behavior execution.
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Figure 7. DMD is used to generate new sensor values for unknown parameter settings. Left: The training data consist of five equidistant
samples of the longitudinal CoM during walking. Right: The longitudinal CoM is interpolated with an interval of 0.01cm resulting in
predictions for 800 possible parameter configurations.

the goal is to generate new sensor values for step lengths
that were not recorded during training.

Figure 7 shows the five training samples of the longi-
tudinal CoM and the generated model which was interpo-
lated with an interval of 0.01 cm. To evaluate the precision
of the generated data, we additionally recorded test sam-
ples with step lengths in an interval of 1cm and measured
their mean relative error (MRE) w.r.t. the corresponding

generated data. We also compared the results with a set
of classical interpolation schemes. For the CoM, Figure 8
shows that DMD scores the highest accuracy among all
methods. SDMD reduces the number of used modes to three
and results in a slightly less accurate model.

As an alternative to using the CoM for perturbation es-
timation, and as an example of a noisy low-cost sensor,
we also recorded the robot’s longitudinal acceleration and
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classical interpolation schemes. Left: The DMD shows the highest
accuracy for the CoM. Right: In the presence of high noise, which
is the case for proper acceleration estimates, SDMD produces
higher accuracy than DMD or classical interpolation schemes.

applied the same data generation techniques as above.Again,
the original DMD uses all extracted modes to predict new
sensor values. However, these predictions are corrupted by
the fact that some of these extracted modes mainly contain
noise. As a result, the prediction performance of DMD
deteriorates to about the same level as classical interpo-
lation schemes. In contrast, SDMD concentrates on the
three DMD modes that best approximate the sensor data.
In this case, one mode was set to zero which apparently
contained strong noise. From this, we can conclude that for
rather noisy sensors, SDMD-based models will exhibit a
better prediction quality than DMD-based models. For the
following experiments, we use the DMD model in conjunc-
tion with the CoM because of its minimal MRE across all
conditions.

4.2. Perturbation detection

In the following experiments, we detect external perturba-
tions while the robot performs a walking behavior with a
step length of 0.5cm for 35 seconds. While the robot walks,
the human perturbs the robot by touching and pushing it
as shown in Figure 9. Figure 9(a) and (c) shows slight
pushes, which just marginally disturb the walking behavior.
We also applied strong pushes as shown in Figure 9(b) and
(d). Especially, the strong push from the back shown in
Figure 9(d) significantly affected the robot’s stability during
walking.

We use the DMD model to generate the predicted sensor
values for the current step length. During behavior execu-
tion, the longitudinal CoM is measured with 100H z and
saved in a sliding window with 10 measurements. To esti-
mate the current walking phase, we calculate the optimal
warping path from this subsequence in the predicted data
using SDTW. The resulting path is used as time-dependent
prediction of the longitudinal CoM for the currently mea-
sured values. Figure 11 shows the measured and predicted
longitudinal CoM for the external perturbations a–d as
shown in Figure 9. A perturbation is detected when the
measured longitudinal CoM is outside the variance of the
predicted one.

4.3. Perturbation estimation

If a perturbation is detected, we have to find another behav-
ior parameter and its corresponding sensor evolution, which
has minimal mapping costs C for the SDTW. Figure 12
shows the overall costs C for all possible step lengths of our
DMD model during the peeks of the external perturbations
as shown in Figure 9(a)–(d). As can be seen, backward
pushes (Figure 9 top row) result in minimal mapping costs
for negative step lengths, whereas forward pushes (Figure 9
bottom row) lead to positive step lengths. As a result, the

(a) Slight push backward. (b) Strong push backward. (c) Slight push forward. (d) Strong push forward.

Figure 9. The human touches and pushes the robot during the execution of a walking behavior. The estimated perturbation values differ
in strength and direction and reflect the amount of force applied on the robot.
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Figure 11. Perturbation detection during walking using the
robot’s longitudinal CoM. Top Left: Slight push backward. Top
Right: Strong push backward. Bottom Left: Slight push forward.
Bottom Right: Strong push forward.

parameters with minimal costs can be seen as behavior
parameters which counteract the external perturbation. Fi-
nally, the perturbation value is calculated from the differ-
ence of the current step length of 0.5 cm and the predicted
step length. Since the behavior parameter is specified in cm,
the measuring unit for the perturbation value is also in cm.
The perturbation value for the complete behavior execution
is shown in Figure 10.

4.4. Other scenarios

Generally, our approach can be used in scenarios where a
robot has to detect and react to external perturbations. As

0

0.05

0.1

0.15

0.2

0.25

C

a

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

Step Length [cm]

C

c

−4 −2 0 2 4

d

b

Figure 12. The overall costs C for all possible parameters during
the peaks of the external perturbations a-d. The step length which
produces the minimal costs (black crosses) is the predicted step
length which is used to calculate the perturbation value.

investigated in a previous publication [23], it can be used
to follow the human guidance in a cooperative transporta-
tion task as shown in Figure 13. A video can be found on
Youtube1. Furthermore, our approach can be used to imple-
ment collision detection and safety constraints. In addition,
the method can also be used to measure the weight of a car-
ried object during a manipulation task. In general, behavior-
specific filtering allows for a variety of close-contact
interactions with the environment.

4.5. Sensitivity analysis

In order to evaluate the sensitivity of the perturbation filter
and the quality of the produced perturbation values, we
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Figure 13. During a cooperative transportation task, a humanoid robot continuously estimates the amount and direction of external
perturbations in order to follow the human guidance.

Table 1. Comparison of perturbation values when applying
different forces to the robot during walking in place.

Applied force [N] Perturbation value [cm]

1.8 0.9579
1.5 0.5507

1 0.1707
−1 −0.2443
−2 −0.4507
−3 −0.5579
−4 −0.8279
−5 −2.1586
−6 −2.2021

conducted an experiment in which we applied different
forces on the robot. In the experimental setup, a string is
used to attach a weight to the robot thereby applying a
specific force. The robot then walks in place and the pertur-
bation value is measured using the introduced perturbation
filter approach. Table 1 shows the variation of the perturba-
tion value for different applied forces (in Newton). Positive
values for the applied force correspond to forward pushes,
while negative values correspond to pulling the robot from
the back. Forces beyond the [1.8 N ,−6 N ] range caused
the robot to fall over.

Until −4N , the perturbation values decrease in an ap-
proximately linear fashion. At around −5 N, the perturba-
tion values jump to about −2.2 cm. According to our ob-
servations, forces beyond −4 N introduce significant shake
into walking gait of the robot rendering the behavior unsta-
ble. As can be seen from the table, the calculated perturba-
tion values provide a reasonable estimate of the amount of
external perturbation acting on the robot. Also, the pertur-
bation values are measured in the parameter space of the
behavior and can therefore readily be used to counteract the
measured external influences.

5. User study

In order to investigate the usability of our approach, we
used the well-known System Usability Scale (SUS) cre-
ated by John Brooke [33]. SUS is a 10-item questionnaire
for quickly measuring a system’s usability with a score
ranging from 0 to 100. The SUS questionnaire is a method to

effectively determine a system’s usability even with a
smaller number of test subjects.[34]

20 male and 9 female subjects (ages 13 − 18, mean =
15.28) participated in this user study. All participants were
high-school students and were divided into two groups. The
first group consisted of 21 students who had never before
interacted with the NAO robot. This group will be referred
to as beginners. The second group containing 8 students had
participated on a one day NAO workshop before and, thus,
will be referred to as experts. The total time per participant
including instructions, experiment, and questionnaire was
about 10 minutes.

5.1. Experimental conditions

In the experiment, the walking model described above was
evaluated. Subjects had to steer the robot by physically
touching and guiding it to several target positions. As a
starting condition, the robot walks in place with a step
length of zero centimeters. Next, the subjects were asked to
steer the robot along its longitudinal axis to three specified
points on the floor by physically pushing the robot forwards
and backwards, as illustrated in Figure 14. In order to ac-
complish this task, a forward-to-backward and a backward-
to-forward transition had to be completed. While walking
toward the target points, the robot could be accelerated and
decelerated.

While walking backward, the CoM is strongly moved
toward the front of the robot. Moreover, this effect is fur-
ther increased by the human guidance. In consequence, a
backward-to-forward transition strongly affects the robot’s
stability and is more challenging than a forward-to-
backward transition. Considering this, the first waypoint
was defined before the robot, the second behind it, and the
third was the robot’s starting point. This design results in
an increasing interaction difficulty during the experiment.

5.2. Evaluation

As suspected, most of the participants perceived the
backward-to-forward transition as more challenging what
often led to falling over of the robot. In this case, the subject
was allowed to try the complete experiment once again.
During the second execution, nearly all subjects were able to
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Figure 14. The experimental conditions. First, the subjects have
to lead the robot forward to the blue marker and fulfill a forward-to-
backward transition. Next, they have to lead the robot backward to
another blue marker and fulfill a backward-to-forward transition.
Finally, they have to lead the robot back to its initial position.

All Beginners Experts

Worst Imag.

Poor

OK

Good

Excellent

Best Imag.
SUS Rating

Figure 15. The results of the SUS questionnaire. Obviously, the
usability depends to the users? knowledge of the robot platform.
The overall rating is between good and excellent and confirms the
usability of the proposed approach.

successfully execute both walking transitions. We attribute
this fast-learning curve to a high usability of our approach.

Statistical analysis of the SUS questionnaire further un-
derlines the usability of our approach. For this, we computed
the mean and standard deviation of the SUS score for the
beginners, the experts, and all participants and compared
them in respect to the rating proposed by Bangor et al. [34].
Hence, the SUS score of 0 to 100 is assigned to values
between worst and best imaginable. As shown in Figure
15, the experts assign an excellent mean score, while the
beginners evaluate our approach with a good mean score.
The better rating by the experts can be explained by their fa-
miliarity with the robot hardware and that they have less fear
of contact than the beginners. This observation is confirmed
by the measured standard deviation which, for the experts
is smaller than for the beginners. In general, the user study

confirms a good to excellent usability and a steep learning
curve of the proposed approach.

6. Conclusion

In this paper, we presented a new approach for learning
behavior-specific filters that can be used to accurately iden-
tify human physical influences on a robot. The approach
uses DTW and DMD/SDMD in order to (1) detect an exter-
nal perturbation and (2) to quantify the amount of external
perturbations. The estimated perturbation value can then be
used by a robot to adapt its movements to the applied forces
or interpret a human command such as ‘walk backwards.’

In our experiments, we showed that the learned perturba-
tion filter can be used to accurately estimate touch informa-
tion from noisy, low-cost sensors. Our approach produces a
continuous perturbation value that can be used to detect even
subtle physical interactions with a human partner. Since we
are using a data-driven approach, no thresholds need to be
defined by the user. At the core of our approach lies DMD
which, so far, has mostly been used in other fields of science,
particularly fluid mechanics. We conclude that DMD is a
highly promising method for robotics.

A drawback of the proposed approach is that no guaran-
tees regarding the robustness and accuracy of the perturba-
tion detection can be provided. In particular, in situations
when safety is critical, it is important to use additional mea-
sures to ensure safety. However, even in these situations,
our method can be used to generate a redundant estimate
of the external perturbation. Conflicts between the different
estimates can be used to halt execution of a behavior or
trigger an emergency stop.

In our future research, we hope to hierarchically combine
several filters in a mixture-of-experts approach, to general-
ize perturbation estimation to new, unseen behaviors. We are
currently also investigating the application of this approach
to industry-grade robots and collaborative assembly tasks.

Supplemental data
Supplemental data for this article can be accessed at http://dx.doi.
org/10.1080/01691864.2014.981292.

Note

1. http://youtu.be/wHZYx6Dzswk.
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[31] Jovanović MR, Schmid PJ, Nichols JW. 2012. Low-rank
and sparse dynamic mode decomposition. In: Center for
turbulence research annual research briefs. Stanford, USA.
p. 139–152.
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