
CDS 101/110: Lecture 7.1
Loop Analysis of Feedback Systems

November 7 2016

Goals:
• Introduce concept of “loop analysis”
• Show how to compute closed loop stability from open loop properties
• Describe the Nyquist stability criterion for stability of feedback systems
• Introduce Nyquist Diagram
• First look at gain margin and phase margin

Reading: 
• Åström and Murray, Feedback Systems, Chapter 10, Sections 10.1, 10.2
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Review From Last Week
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Bode Plot Units

What are the units of a Bode Plot?

• Magnitude: The ordinate (or “y-axis”) of magnitude plot is 
determined by 20 log10 |𝐺𝐺 𝑖𝑖𝑖𝑖 |

• Decibels,” names after A.G. Bell
• Phase: Ordinate has units of degrees (of phase shift)
• The abscissa (or “x-axis”) is log10(frequency) (usually, rad/sec)

Example: simple first order system:     𝐺𝐺 𝑠𝑠 = 1
1+𝜏𝜏𝜏𝜏

• Single pole at 𝑠𝑠 = −1/𝜏𝜏

• 𝐺𝐺 𝑖𝑖𝑖𝑖 = 1
1+𝑖𝑖𝜏𝜏𝜔𝜔

= 1
1+𝜔𝜔2𝜏𝜏2

• In decibels:

20 log10 𝐺𝐺(𝑖𝑖𝑖𝑖) = 20 log10 1 − 20 log10 1 + 𝜔𝜔𝜔𝜔 2
1
2

= −10 log10( 1 + 𝜔𝜔𝜔𝜔 2)



Bode Plot Units (continued)

Example (continued): simple first order system:     𝐺𝐺 𝑠𝑠 = 1
1+𝜏𝜏𝜏𝜏

• Behavior of magnitude in decibels:

20 log10 𝐺𝐺(𝑖𝑖𝑖𝑖) ≈ �
0 𝜔𝜔 ≪ 1/𝜏𝜏
−10 log10 2 𝜔𝜔 = 1/𝜏𝜏
−20(log10 𝜔𝜔 + log10 𝜏𝜏) 𝜔𝜔 ≫ 1/𝜏𝜏

• 𝜔𝜔3dB = 1/𝜏𝜏 is the -3dB half-power or break point

• Precisely:
−10 log10 2 = −3.0103 dB

• Unit DC gain (0dB)
• Magnitude decreases at 20 

dB/decade for 𝜔𝜔 ≫ 1/𝜏𝜏



Bode Plot Units(continued)

Example (continued): simple first order system:     𝐺𝐺 𝑠𝑠 = 1
1+𝜏𝜏𝜏𝜏

• Phase (argument) of transfer function:

∠𝐺𝐺 𝑖𝑖𝑖𝑖 = ∠ 1
1+𝑖𝑖𝑖𝑖𝑖𝑖

= ∠1 − ∠ 1 + 𝑖𝑖𝑖𝑖𝑖𝑖 = − arctan(𝜔𝜔𝜔𝜔)

• Asymptotic Approximation

− arctan(𝜔𝜔𝜔𝜔) ≈

0 𝜔𝜔 < 0.1/𝜏𝜏

−
𝜋𝜋
4

(1 + log10 𝜔𝜔 + log10 𝜏𝜏) 0.1𝜏𝜏 ≤ 𝜔𝜔 ≤ 10/𝜏𝜏

−
𝜋𝜋
2

𝜔𝜔 > 10/𝜏𝜏



Bode Plot (continued)
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Loop Analysis

First consider “simple” unity feedback 

Performance? Trace how sinusoidal 
signals propagate around the closed loop 
system.

Does signal grow or decay?
• Can be determined from frequency 

response.

Alternative: look for conditions on PC 
that lead to instability
E.g. : if PC(s) = -1 for some s = iω, 
then system is not asymptotically stable
Condition on PC is useful because
we can design PC(s) by choice of C(s)
However, checking PC(s) = -1 is not 
enough; need more sophisticated check

P(s)C(s)
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controller”

How do open loop dynamics effect 
closed loop dynamics?

𝐻𝐻𝑦𝑦𝑦𝑦 = 𝑃𝑃𝑃𝑃
1+𝑃𝑃𝑃𝑃

= 𝑛𝑛𝑝𝑝𝑛𝑛𝑐𝑐
𝑑𝑑𝑝𝑝𝑑𝑑𝑐𝑐+𝑛𝑛𝑝𝑝𝑛𝑛𝑐𝑐

•Poles of Hyr = zeros of 1 + PC 



 Low frequency range:

𝑃𝑃𝑃𝑃 ≫ 1 ⇒
𝑃𝑃𝑃𝑃

1 + 𝑃𝑃𝑃𝑃
≈ 1

(good tracking)

 Bandwidth: frequency at 
which closed loop gain = 1

2
⇒ open loop gain ≈ 1

 Idea: use C(s) to shape PC
(under certain constraints)

 Need tools to analyze 
stability and performance for 
closed loop given PC

8

Game Plan: Frequency Domain Design
Goal: figure out how to design C(s) so that 1+C(s)P(s) is stable and we get 

good performance+
•Poles of Hyr = zeros of 1 + PC 
•Would also like to “shape” Hyr to specify
performance at differenct frequencies
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Nyquist Criterion: Warm up

Let the “loop transfer function“ be

𝐿𝐿(𝑠𝑠) = 𝑃𝑃(𝑠𝑠)𝐶𝐶(𝑠𝑠)

• Inject sinusoid of frequency 𝜔𝜔0 at pt. A.
• Signal at pt. B has frequency 𝜔𝜔0

• Oscillatory signal is self-maintaining if 
signal at B is same as signal at A.  

• This can occur if there is a frequency 
𝜔𝜔0 such 

𝐿𝐿 𝑖𝑖𝜔𝜔0 = −1.
• “critical point”: when loop transfer 

function =-1

Naïve stability idea:  

𝐿𝐿 iω ≤ 1

• Amplitude of signal at B is less than 
amplitude of injected signal at A.

• Reality is a bit more complicated
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Nyquist Plot

A different representation of frequency 
response of open loop transfer 
function, L(s) = P(s)C(s). 

• Formed by tracing 𝑠𝑠 around the 
Nyquist “D contour,” Γ

Nyquist Contour (Γ):
• Imaginary axis
• Semi-Circle, or arc, at infinity that 

connects endpoints of imaginary axis
• The image of 𝐿𝐿(𝑠𝑠) as 𝑠𝑠 traverses Γ is 

the Nyquist plot
• Note, portion of plot corresponding to 
𝜔𝜔 < 0 is mirror image of 𝜔𝜔 > 0

•Nyquist “D” 
contour

•Take limit as 
r → 0, R → ∞

•Trace from −1
to +1 along 
imaginary axis

C(s) P(s)++
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r

Nyquist Contour (Γ):
• If pole of 𝐿𝐿(𝑠𝑠) on 𝑗𝑗𝑗𝑗-axis, then create 

small semi-circular “detour” around the 
pole in RHP. 

• Take limit as semi-circle radius → 0
• Goal: from complex analysis, we’re 

trying to find number of excess zeros 
in RHP, which leads to instability
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Nyquist Criterion

Determine stability from (open) loop 
transfer function, L(s) = P(s)C(s). 
• Use “principle of the argument” from 

complex variable theory (see reading)

Thm (Nyquist). Consider the Nyquist plot 
for loop transfer function L(s).  Let

P # RHP poles of L(s)
N # clockwise encirclements of -1
Z # RHP zeros of 1 + L(s)

Then
Z = N + P

•Nyquist “D” 
contour

•Take limit as 
r → 0, R → ∞

•Trace from −1
to +1 along 
imaginary axis

•Trace frequency 
response for 
L(s) along the 
Nyquist “D” 
contour

• Count net # of 
clockwise 
encirclements 
of the -1 point
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Simple Interpretation of Nyquist
Basic idea: avoid positive feedback
• If L(s) has 180˚ phase (or greater) and 

gain greater than 1, then signals are 
amplified around loop

• Use when phase is monotonic
• General case requires Nyquist

ambode(sys) [or bode(sys) in dB] amnyquist(sys)

Can generate Nyquist plot from Bode plot  + reflection around real axis

Frequency (rad/sec)

Ph
as

e 
(d

eg
); 

M
ag

ni
tu

de
 (d

B)

Bode Diagrams

-40

-30

-20

-10

0

10
From: U(1)

10-1 100 101
-200

-150

-100

-50

0

To
: Y

(1
)

Real Axis

Im
ag

in
ar

y 
Ax

is

Nyquist Diagrams

-1.5 -1 -0.5 0 0.5 1 1.5 2
-3

-2

-1

0

1

2

3
From: U(1)

To
: Y

(1
)

𝜔𝜔=0𝜔𝜔=∞ 
𝜔𝜔=-∞

C(s) P(s)++

d

ye u

-1

r



13

Example: Proportional + Integral* speed controller

Remarks
• N = 0, P = 0 ⇒ Z = 0 (stable)
• Need to zoom in to make sure there 

are no net encirclements
• Note that we don’t have to compute 

closed loop response
-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

-1.5

-1

-0.5

0

0.5

1

1.5

C(s) P(s)++

d

ye u

-1

r



14

More complicated systems
What happens when open loop plant has RHP poles?
• 1 + PC has singularities inside D contour ⇒ these must be taken into account
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Comments and cautions
Why is the Nyquist plot useful?
• Old answer: easy way to compute stability (before computers and MATLAB)
• Real answer: gives insight into stability and robustness; very useful for reasoning 

about stability

Nyquist plots for systems with poles on the jω axis

Cautions with using MATLAB
• MATLAB doesn’t generate portion of plot for poles on imaginary axis
• These must be drawn in by hand (make sure to get the orientation right!)

•chose contour to 
avoid poles on axis

•need to carefully 
compute Nyquist 
plot at these points

•evaluate H(ε+0i) to
determine direction

𝜔𝜔=-i∞
𝜔𝜔 =+i∞

𝜔𝜔=0+

𝜔𝜔=0-
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Robust stability: gain and phase margins
Nyquist plot tells us if closed loop is stable, but 
not how stable

Gain margin
• How much we can modify the loop gain 

and still have the system be stable
• Determined by the location where the loop 

transfer function crosses 180˚ phase

Phase margin
• How much “phase delay” can be addeded

while system remains stable
• Determined by the phase at which the loop 

transfer function has unity gain

Bode plot interpretation
• Look for gain = 1, 180˚ phase crossings
• MATLAB: margin(sys)

Nyquist Diagram
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Example: cruise control

Effect of additional sensor dynamics
• New speedometer has pole at s = 10 (very fast); problems develop in the field
• What’s the problem?  A: insufficient phase margin in original design (not robust)

Nyquist plots
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Preview: control design

Approach: Increase phase margin
• Increase phase margin by reducing gain ⇒ can accommodate new sensor dynamics
• Tradeoff: lower gain at low frequencies ⇒ less bandwidth, larger steady state error
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Summary: Loop Analysis of Feedback Systems

• Nyquist criteria for loop stability
• Gain, phase margin for robustness
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Z = N + P
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