CDS 101/110: Lecture 4.3 State Feedback

October 21, 2016

Goals:

- Clean up uncertainty from last lecture's example
- 2nd –Order systems in Detail
- Introduce Control Gramian, and connect with Reachability

Reading:

Åström and Murray, Feedback Systems 2e, Ch 7

Example #2: Predator prey

(growth rate)

(From FBS Section 4.7)

System dynamics

$$\begin{split} \frac{dH}{dt} &= (r+u)H\left(1-\frac{H}{k}\right) - \frac{aHL}{c+H}, \qquad H \geq 0, \\ \frac{dL}{dt} &= b\frac{aHL}{c+H} - dL, \qquad \text{(prey consump-tion rate)} \quad L \geq 0. \end{split}$$

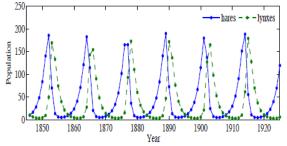
- Stable limit cycle with unstable equilibrium point at $H_e = 20.6$, $L_e = 29.5$
- Can we design the dynamics of the system by modulating the food supply ("u" in "r + u" term)

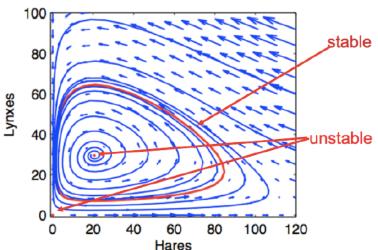
Q1: can we move from a given initial population of lynxes and rabbits to a specified one in time T by modulation of the food supply?

Q2: can we stabilize the lynx population around a desired equilibrium point (eg, $L_d = \sim 30$)?

Try to keep lynx and hare population in check

Approach: try to stabilize using state feedback law





Example #2: Problem setup

Equilibrium point calculation

$$\begin{split} \frac{dH}{dt} &= (r+u)H\left(1-\frac{H}{k}\right) - \frac{aHL}{c+H}\\ \frac{dL}{dt} &= b\frac{aHL}{c+H} - dL \end{split}$$

•
$$x_e$$
 = (20.6, 29.5), u_e = 0, L_e = 29.5

f = inline('predprey(0, x)', 'x'); xeq = fsolve(f, [20, 30])'; He = xeq(1); Le = xeq(2); % Generate the linearization around the eq point App = [-((a*c*k*Le + (c + He)^2*(2*He - k)*r)/((c + He)^2*(a*b*c*Le)/(c + He)^2, -d + (a*b*He)/(c + He)]; Bpp = [He*(1 - He/k); 0]; % Check reachability if (det(ctrb(App, Bpp)) ~= 0) disp "reachable"; end

Linearization

Compute linearization around equilibrium point, x_e:

$$A = \frac{\partial f}{\partial x}\Big|_{(x_e, u_e)} B = \frac{\partial f}{\partial u}\Big|_{(x_e, u_e)} \frac{dx}{dt} \approx A(x - x_e) + B(u - u_e) + \begin{cases} u - u_e \\ v = (u - u_e) \end{cases}$$
• Redefine local variables: $z = x - x_e$, $v = u - u_e$

$$z = (x - x_e)$$

$$\frac{d}{dt} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} -\frac{acL_e}{(c+H_e)^2} - \frac{2H_er}{k} + r & -\frac{aH_e}{c+H_e} \\ \frac{abcL_e}{(c+H_e)^2} & \frac{abH_e}{c+H_e} - d \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} + \begin{bmatrix} H_e \left(1 - \frac{H_e}{k}\right) \\ 0 \end{bmatrix} v$$

• Reachable? YES, if $a, b \neq 0$ (check [B AB]) \Rightarrow can locally steer to any point

Example #2: Stabilization via eigenvalue assignment

$$\frac{d}{dt} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} -\frac{acL_e}{(c+H_e)^2} - \frac{2H_er}{k} + r & -\frac{aH_e}{c+H_e} \\ \frac{abcL_e}{(c+H_e)^2} & \frac{abH_e}{c+H_e} - d \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} + \begin{bmatrix} H_e \left(1 - \frac{H_e}{k}\right) \\ 0 \end{bmatrix} v$$

Control design: v is control input for *linearized* system

$$v = -Kz = -k_1(H - H_e) - k_2(L - L_e)$$

 $u = u_e + K(x - x_e)$ $v = (u - u_e)$

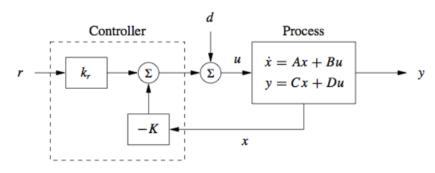
Place poles at stable values $z = (x - x_{\rho})$

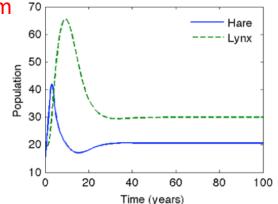
- Choose $\lambda = -0.1, -0.2$
- MATLAB: Kpp = place(App, Bpp, [-0.1; -0.2]);

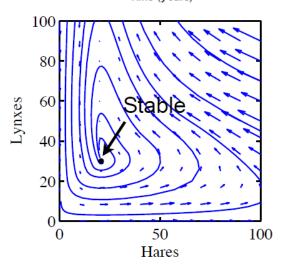
Key principle: design of dynamics

Use feedback to create a stable equilibrium point

More advanced: control to desired value $r = L_d$







Second Order Systems

General Form: $\ddot{q} + 2\zeta\omega_0\dot{q} + \omega_0^2q = \omega_0^2u$, y = q

– Convert to 1st-order from, with $z = [q \ \dot{q}]^T$:

$$\dot{z} = \begin{bmatrix} 0 & 1 \\ -\omega_0^2 & -2\zeta\omega_0 \end{bmatrix} z + \begin{bmatrix} 0 \\ \omega_0^2 \end{bmatrix} u \qquad y = \begin{bmatrix} 1 & 0 \end{bmatrix} z$$

- Roots of the characteristic polynomial are $\lambda_{1,2} = -\zeta \omega_0 \pm \omega_0 \sqrt{\zeta^2 1}$
- Stable if $\zeta > 0$. Complex conjugates if $\zeta < 1$, real otherwise
- Solution, and behavior, depends upon damping ratio ζ
- ω_0 is the *natural frequency* of the system
- $\omega_d = \omega_0 \sqrt{\zeta^2 1}$ is the *damped frequency* of the system
- For convenience, introduce $\dot{x} = \begin{bmatrix} q & \frac{\dot{q}}{\omega_0} \end{bmatrix}^T$

$$\dot{x} = \begin{bmatrix} 0 & \omega_0 \\ -\omega_0 & -2\zeta\omega_0 \end{bmatrix} x + \begin{bmatrix} 0 \\ \omega_0^2 \end{bmatrix} u \qquad y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

Second Order Systems

Behavior (homogeneous solution):

 $\bar{\zeta}$ < 1: underdamped (oscillatory behavior)

$$y(t) = e^{-\zeta \omega_0 t} \left(x_{10} \cos \omega_d t + \left(\frac{\zeta \omega_0}{\omega_d} x_{10} + \frac{1}{\omega_d} x_{20} \right) \sin \omega_d t \right)$$

- If $\zeta > 1$: overdamped

overdamped
$$y(t) = \frac{\beta x_{10} + x_{20}}{\beta - \alpha} e^{-\alpha t} - \frac{\alpha x_{10} + x_{20}}{\beta - \alpha} e^{-\beta t} \qquad \beta = \omega_0 (\zeta - \sqrt{\zeta^2 - 1})$$

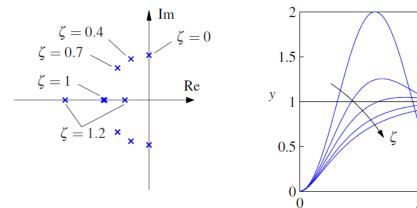
■ If $\zeta = 1$: critically damped

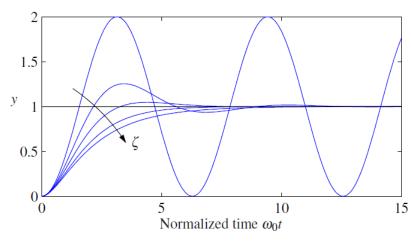
$$y(t) = e^{-\zeta \omega_0 t} (x_{10} + (x_{20} + \zeta \omega_0 x_{10})t)$$

Second Order System Step Response

From the convolution Integral: $y(t) = \int_0^t Ce^{A(t-\tau)}Bd\tau$

$$y(t) = \begin{cases} \left(1 - e^{-\zeta \omega_0 t} \cos \omega_d t - \frac{\zeta}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_0 t} \sin \omega_d t\right), & \zeta < 1; \\ (1 - e^{-\omega_0 t} (1 + \omega_0 t)), & \zeta = 1; \\ \left(1 - \frac{1}{2} \left(\frac{\zeta}{\sqrt{\zeta^2 - 1}} + 1\right) e^{-\omega_0 t (\zeta - \sqrt{\zeta^2 - 1})} + \frac{1}{2} \left(\frac{\zeta}{\sqrt{\zeta^2 - 1}} - 1\right) e^{-\omega_0 t (\zeta + \sqrt{\zeta^2 - 1})}\right), & \zeta > 1, \end{cases}$$





(a) Eigenvalues

(b) Step responses

Second Order System Step Response

Maximum Overshoot:

- Find first response peak time (set dy/dt = 0), and then peak amplitude
- note that step response expression can be rearranged to

$$y(t) = k \left(1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_0 t} \sin(\omega_d t + \varphi) \right) \qquad \varphi = \cos^{-1} \zeta$$

$$\frac{dy(t)}{dt} = 0 = -\frac{e^{-\zeta\omega_0}}{\sqrt{1-\zeta^2}} \left[\omega_d \cos(\omega_d t^* + \varphi) - \zeta\omega_0 \sin(\omega_d t^* + \varphi)\right]$$

Or:
$$\tan(\omega_d t^* + \varphi) = \frac{\omega_d}{\zeta \omega_0} = \frac{\omega_0 \sqrt{1 - \zeta^2}}{\zeta \omega_0} = \frac{\sqrt{1 - \zeta^2}}{\zeta} = \tan \varphi \rightarrow \omega_d t^* = n\pi$$

First peak at
$$t_{peak} = \frac{\pi}{\omega_0 \sqrt{1-\zeta^2}}$$
; $y_{peak} = 1 - \frac{e^{\pi \zeta/\sqrt{1-\zeta^2}}}{\sqrt{1-\zeta^2}} \sin(\pi + \varphi)$

$$y_{peak} = 1 + e^{\pi \zeta/\sqrt{1-\zeta^2}}$$
 \rightarrow $overshoot = e^{\pi \zeta/\sqrt{1-\zeta^2}}$

Reachability

Review: For LTI control systems,

$$\dot{x} = Ax + Bu,$$
 $x \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times r}$, $u \in \mathbb{R}^r$
 $y = Cx + Du,$ $y \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{m \times r}$

reachability can be assessed from the rank of:

$$W_r = \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}$$

Some Analysis:

$$x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)}Bu(\tau) d\tau$$

- *Controllable* if state can be driven to x(T) = 0 for any x(0)
 - i.e., $\exists \ u(t) \text{ s.t. } -e^{AT}x(0) = \int_0^T e^{A(T-\tau)}Bu(\tau) \ d\tau$
 - i.e., $\exists \ u(t) \text{ s.t. } -x(0) = e^{-AT} \int_0^T e^{A(T-\tau)} Bu(\tau) \ d\tau = \int_0^T e^{-\tau} Bu(\tau) \ d\tau$
- **Reachable** if x(0) = 0 can be driven to any state $x_f = x(T)$ in time T

• i.e.
$$\exists u(t)$$
 s.t. $x(T) = \int_0^T e^{A(T-\tau)} Bu(\tau) d\tau$

Reachability

Discrete Approximation (for intuition): For LTI control systems,

$$-x(0) = \sum_{i=1}^{N-1} L(\tau_i) u(\tau_i) \Delta$$

where $L(\tau_i) = e^{A(T-\tau_i)}B$

- Let $U = [u(\tau_1), u(\tau_2), \cdots, u(\tau_{N-1})]^T$; $\mathcal{L} = [L(\tau_0)\Delta, L(\tau_1)\Delta, \cdots, L(\tau_{N-1})\Delta]$
- Then $-x(0) = \mathcal{L}U$
- A solution exists if x(0) lies in the *range space* of \mathcal{L} . For reachability, where x(0) can be arbitrary, \mathcal{L} must be full rank. \mathcal{L} is full rank if the following matrix is full rank:

$$\mathcal{L}\mathcal{L}^T$$

More Formally: Linear independence of N functions $l_i(t)$, i = 1, ..., N over interval $[t_o, t_f]$ is determined using a Gramian:

$$G = [G_{ij}],$$
 $G_{ij} = \int_{t_0}^{t_f} l_i(\tau) l_j(\tau) d\tau$

Linear independence is proven when G has full rank

Controllability

Controllability Gramian:

$$C(t_0, t_1) = \int_{t_0}^{t_f} e^{A(t_0 - \tau)} B B^T e^{A^T(t_0 - \tau)} d\tau \quad \to \quad C(0, t_f) = \int_0^{t_f} e^{-A\tau} B B^T e^{-A^T \tau} d\tau$$

Since $C(0, t_f)$ is symmetric, for it to be full rank over $[0, t_f]$, it must be positive definite.

Lemma: $C(0, t_f)$ is positive definite if and only if there is no vector $v \neq 0$ such that

$$v^T e^{-At} B = 0 \quad \forall t \in [0, t_f]$$

Proof (by contradiction): suppose there is such a v with $v^T e^{-At} B = 0$ $\forall t \in [0, t_f]$

- $v^T C(0, t_f) v = \int_0^{t_f} v^T e^{-A\tau} B B^T e^{-A^T \tau} B v d\tau$
- If there is such a v, then $v^TC(0,t_f)v=0$, which implies that $C(0,t_f)v$ is not positive definite.

Theorem: The pair (A,B) is controllable if and only if the $C(0,t_f)$ is positive definite **Proof** (sufficiency): suppose $C(0,t_f)$ is positive definite. Let x_0 , x_f be the initial/final states

•
$$x(t_f) = e^{At_f} x_0 + \int_0^{t_f} e^{-A(t_f - \tau)} B u(\tau) d\tau$$

Controllability

Proof (sufficiency): (continued)

- Choose $u(t) = B^T e^{-A^T t} C^{-1}(0, t_f) v$ for some constant vector v
- Then: $x(t_f) = e^{At_f} x_0 + \int_0^{t_f} e^{A(t_f \tau)} B B^* T e^{-A^T \tau} C^{-1}(0, t_f) v d\tau$ $= e^{At_f} x_0 + e^{At_f} C(0, t_f) C^{-1}(0, t_f) v$ $= e^{At_f} (x_0 + v)$
- If $v = -x_0 + e^{-At_f}x_f$, then $x(t_f) = x_f$

That is, $u(t) = B^T e^{-A^T t} C^{-1}(0, t_f) [e^{-At_f} x_f - x_0]$ steers x_0 to x_f for any x_0, x_f

Proof (necessity): show that positive definiteness of $C(0,t_f)$ is necessary

- Contradiction: suppose $C(0, t_f)$ is not positive definite.
- Then there exists $z \neq 0$ such that $z^T e^{-At_f} B = 0 \ \forall t \in [0, t_f]$
- For *controllability*, let $x_0 = z$. Suppose that $x(t_f) = 0$
 - Then: $0 = e^{At_f}z + \int_0^{t_f} e^{A(t_f \tau)} B u(\tau) d\tau$
 - Multiply by $z^T e^{-At_f}$: $0 = z^T z + \int_0^{t_f} z^T e^{A\tau} B u(\tau) d\tau$
 - But integrand is zero for all t, and thus z=0, a contradiction

Controllability/Reachability

Proof (necessity): (continued)

- For **reachability**, let $x_f = e^{At_f}z$, and suppose u(t) steers x_0 to $x(t_f) = x_f$
 - Then: $e^{At_f}z = \int_0^{t_f} e^{A(t_f \tau)} B u(\tau) d\tau$
 - Multiply by $z^T e^{-At_f}$: $z^T e^{-At_f} e^{At_f} z = \int_0^{t_f} z^T e^{-A\tau} B u(\tau) d\tau = z^T z$
 - But, if $C(0, t_f)$ is not positive definite, then there exists z such that $z^T e^{-At_f} B = 0 \quad \forall t \in [0, t_f]$, implying that z = 0, which is a is a contradiction.

Theorem: $C(0, t_f)$ is positive definite only if $rank(W_r) = n$, where

$$W_r = \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}$$

Proof: If $C(0, t_f)$ is not positive definite, there exists $z \neq 0$ s. t. $z^T e^{-At_f} B = 0$, $\forall t \in [0, t_f]$

- $z^T \sum_{k=0}^{\infty} \frac{(-t)^k}{k!} A^k B = 0, \forall t \in [0, t_f]$
- Same as $\sum_{k=0}^{\infty} \frac{(-t)^k}{k!} z^T A^k B = 0$, $\forall t \in [0, t_f]$
- This implies that there exists z such that $z^T A^k B = 0$ for all k = 0,1,...

Controllability/Reachability

Aside: Cayley-Hamilton Theorem

- Let A be an $n \times n$ matrix.
- Let $\lambda_A(s) = \det(sI A) = s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n$ be characteristic poly.
- A satisfies its own characteristic polynomial: $A^n + a_1 A^{n-1} + \cdots + a_{n-1} A + a_n I = 0$
 - Hence, A^k for $k \ge n$ are linear combinations of I, A, \dots, A^{n-1}

Proof: (continued)

- $\sum_{k=0}^{\infty} \frac{(-t)^k}{k!} z^T A^k B = 0$, $\forall t \in [0,t_f]$ implies via Cayley-Hamilton that $z^T A^k B = 0$ for $k=0,\dots,n-1$
- Hence, $z^T [B AB A^2 B \cdots A^{n-1} B] = 0$, which implies that W_r is not full rank.
- Therefore, (A,B) is reachable (controllable) only if W_r is full rank n

Note: in LTI case, reachability is independent of time.