CDS 101/110: Lecture 4.3
State Feedback

October 21, 2016

Goals:
® Clean up uncertainty from last lecture’s example
e 2nd _Qrder systems in Detail
* |Introduce Control Gramian, and connect with Reachability

Reading:
e Astrém and Murray, Feedback Systems 2e, Ch 7



Example #2: Predator prey

(From FBS Section 4.7)

System\dynamics
ﬁ: ?“+’u)H(1—H)— aH L H > 0.

(growth rate)

dt k c+H'
Q — aH L _dL. prey consump- -y 5,
dt c+H tion rate)
e Stable limit cycle with unstable equilibrium point —_
at H.=20.6, L.=29.5 ol —— s - - |
) - t
e Can we design the dynamics of the system by Fuy /F'J'., "f ” f'“ f“" fﬂ|['- :
modulating the food supply (“#” in “r + " term) 51?0- ..' ’ll r v
AL L./u/m/ u

Q1: can we move from a given initial population AR
of lynxes and rabbits to a specified one intime 7 197,
by modulation of the food supply?

/stable

Q2: can we stabilize the lynx population around
a desired equilibrium point (eg, Ls; = ~30)?
e Try to keep lynx and hare population in check

Lynxes

—t=lnstable

Approach: try to stabilize using state feedback law




Example #2: Problem setup

Equilibrium point calculation

f = inline('predprey(0, x)', 'X');
Xeq = fsolve(f, [20, 30])'; He = xeq(l); Le = xeq(2);
dH H aHL
dt — (’}“ + U-)H 1— L o ¢ -+ H % Generate the linearization around the eq point
i1 LT - App - [
dL aHL -((a*c*k*Le + (c + He)"2*(2*He - k)*r)/((c + He) 2%
— =) —dL (a*b*c*Le)/(c + He)"2, -d + (a*b*He)/(c + He)
dt c+ H 1;
Bpp = [He*(1l - He/k); 0];
® Xe = (2061 295)1 Ue = 01 LB = 295 % Check reachability
if (det(ctrb(App, Bpp)) ~= 0) disp “reachable”; end

Linearization
e Compute linearization around equilibrium point, x.:

af dx higher
o 7~ e e el e s

0Ul iy, )

. . V= (u - ue)

e Redefine local variables: z=x-x. v =u-u. .
Z=(x—xX,)

acL,. 2H.r __ al, _ H.
d 21| | (e+Ho)?2 Kk T  c+H. ~1 H. (1 k ) | )
E ~ | abcL. abHe dl |z + v
i -‘v'z (C+He)2 (1+H8 *"'2 O

e Reachable? YES, if a, b # 0 (check [B AB]) = can locally steer to any point



Example #2: Stabilization via eigenvalue assignment

acL, 2H.r _ aH, _ H.
d |z _ | (e+HH? T Tk +7 c+H. “1 He (1 k ) 1
E ~ | T abcL. abH. dl |z + t
t1*2 .2 . 4 L2 0
Control design: v is control input for linearized system 7o ‘ - -
™ Hare
vV = _KZ — _kl(H - He) - kQ(L - L‘B) 60 ; \\‘ _____ Lynx
[ 50| [I \
uw=u,+ K(xr—=x.) v=(u-—u, 5 0 o
Place poles at stable values zZ=(x—Xp) & 30 /L ___________________
e Choose A=-0.1,-0.2 20§
® MATLAB: Kpp = place(App, Bpp, [-0.1; -0.2]); % a2 w0 e s 100
Time (years)
Key principle: design of dynamics 100 :
e Use feedback to create a stable equilibrium point “
More advanced: control to desired value r =L, . col
a
I Controller ‘ l ‘ Process - a0l
: - : u x = Ax + Bu ’
ro—el b (=2~ y = Cx + Du = 20H N = .
-~ — T T~ ==

| 0
—K = . 0 50 100
: Hares



Second Order Systems

General Form: q+ 2{wyq + w%q = w%u, y=q

- Convert to 1st-order from, with z = [q  q]":
i=op —agulttlugle  ymmon
- Roots of the characteristic polynomial are 4, , = —{wg + wy/{2 — 1
» Stable if { > 0. Complex conjugates if { < 1, real otherwise
» Solution, and behavior, depends upon damping ratio ¢
* w, IS the natural frequency of the system

* w; = wyy/ (% — 1 is the damped frequency of the system

T
= For convenience, introduce x = [q w_]

N T T



Second Order Systems

Behavior (homogeneous solution):

= { < 1. underdamped (oscillatory behavior)

W 1
y(t) = e=$@wot <x10 cos wgt + (% X190 + w—x20> sin wdt>

d d
=1If { > 1: overdamped & = w, (( +J2 -1 1)
y(t) = Bx10 + X20 p—at _ ¥10 T X20 o—Bt B=wi((—v¢*—1)
B—a p-a

= If ¢ = 1: critically damped

y(t) = e 590 (x19 + (x20 + {WoX10)t)



Second Order System Step Response

From the convolution Integral: y(t) = fot CeAt=DBdr

4
(l — e S Cos @yt — Le_ga’of sin cog) . C<1;

Vi-g2

(1 —e= (1 +amyt)), ¢=1:
N ) =
2 g? l
y— 1)ewof<€+x/€2l)). {1,
\ 2 gz_l y y
A Im 2 ‘ .
¢=04 —
¢=07 \>x >=/C ’ 1.5}
=1 ~ Re N
” * % > R
T, :
0.5
0 ‘
0 5 10 15

Normalized time wgf

(a) Eigenvalues (b) Step responses



Second Order System Step Response

Maximum Overshoot:

= Find first response peak time (set dy/dt = 0), and then peak amplitude

= note that step response expression can be rearranged to

, I - . _
y(r) =k (l -7 gje‘wﬂ" sin(wyt + q))) @ =cos ¢

d t e_zwo
ay(t) =0 =————[wg cos(wgt* + @) — {wysin(wyt™ + ¢)]

dt /1_(2

Or: tan(wgt* + @) = —% =

Cwo Cwo

woy/1-3% _ J1-0%2
¢

=tanp - (w4t =nn

T . . 1 en(/\/ 1-¢"2 . +
woJic2 Jpeak = e sin(m + @)
Vpear = 1+ e™/V17¢"2 — overshoot = e™/V1-¢"2

First peak at t,.qx =



Reachability

Review: For LTI control systems,

x = Ax + Bu, xeR™, AeR™"  BeR™7" ueR"
y = Cx + Du, yeR™, AeR™" BeR™*"

reachability can be assessed from the rank of:
W,=[B AB .. A" 1B]
Some Analysis: x(t) = e4tx(0) + foteA(t‘T)Bu(T) dr
 Controllable if state can be driven to x(T) = 0 for any x(0)

e e, Ju(t)st. —e4Tx(0) = fOTeA(T‘T)Bu(T) dt

e i.e, Ju(t)st. —x(0) = e A7 fOT eAT"DBy(1) dt = fOT e "Bu(z) dt
* Reachable if x(0) = 0 can be driven to any state x; = x(T) intime T

e i.e.Ju(t)st. x(T) = fOT eAT"DBu(t) dt



Reachability

Discrete Approximation (for intuition): For LTI control systems,

N—-1
—x(0) = ) L(z)u(r)A
2
where L(1;) = e4T-%)B
* lLetU = [U(Tl), U(Tz), T u(TN—l)]T; L= [L(TO)AI L(Tl)Ai B L(TN—l)A]
e Then —x(0) = LU

* Asolution exists if x(0) lies in the range space of L. For reachability, where x(0)
can be arbitrary, L must be full rank. £ is full rank if the following matrix is full rank:

LLr”
More Formally: Linear independence of N functions ;(t),i = 1, ..., N over

interval [¢,, t]is determined using a Gramian:

ty
G = [Gl]], Gl] = ll(T)l](T) dt
to
Linear independence is proven when G has full rank



Controllability

Controllability Gramian:

C(to, t1) = J

o

ty ty

eA(to—T)BBTeAT(to—T)dT RN C(O, tf) — j e—ATBBTe—ATTdT
0

Since C(O, tf) is symmetric, for it to be full rank over [0, tf], it must be positive definite.
Lemma: C (0, t;) is positive definite if and only if there is no vector v # 0 such that
vle ™ B =0 Vte[0, t]
Proof (by contradiction): suppose there is such a v with vTe™4tB = 0 Vte[0, tr]
- vT((0, tf)v = f(ff vTe ATBRTe~A"TBy dr
e If there is such a v, then vTC(O, tf)v = 0, which implies that C(O, tf)v is not

positive definite.

Theorem: The pair (A,B) is controllable if and only if the C(0, ;) is positive definite

Proof (sufficiency): suppose C(0, tf) is positive definite. Let x(, xf be the initial/final states

o x(tr) =efxy+ f(ffe_A(tf_T)B u(r) dr



Controllability

Proof (sufficiency): (continued)
e Choose u(t) = BTe"ATtC"l(O, t¢)v for some constant vector v
o Then: x(t;) = e4%xo + [,/ eAr0B BATe 47 C~1(0, 1, )v dr
= et xy + e4rC(0,t)C71(0, tr)v
= e (xo+v)

e Ifv=—xy+ e_Atfxf, then x(tf) = Xf

That is, u(t) = BTe‘ATtC‘l(O, te)[e 5 xp — xo] steers x, to xy for any xo, Xy

Proof (necessity): show that positive definiteness of C(O, tf) is necessary

e Contradiction: suppose C(O, tf) is not positive definite.
 Then there exists z # 0 such that zTe B = 0 Vte[0, tr]

* For controllability, let x, = z. Suppose that x(tf) =0
o Then:0=e*z+ [T e4tr™Bu(r) de
e Multiply by zTe ™. 0 = zTz + fotf zTed"Bu (1) dr

 Butintegrand is zero for all t, and thus z = 0, a contradiction



Controllability/Reachability

Proof (necessity): (continued)
e For reachability, let x; = e?'f z, and suppose u(t) steers x, to x(tf) = Xf
e Then:e?tfz = fotf eAltr~)B u(r) dr

. _ _ t _
o Multiply by zTe™4tr:  zTe Atredlrz = fOfZTe ATBu(t)dr = 27z

But, if C(0, tr) is not positive definite, then there exists z such that
zTe B = 0 Vte[0,t¢], implying that z = 0, which is a is a contradiction.

Theorem: C (0, t¢) is positive definite only if rank(W,.) = n, where
W.=[B AB .. A"1B]
Proof: If C(0, tr) is not positive definite, there exists z # 0 s. t. zTe ™ fB = 0, Vte[O, tr]

« z' Yk=0

(=¥
A*B =0, Vte[0, t]

k!
(=t)*
k!

e This implies that there exists z such that zTAKB =0 forallk =0,1,...

* SameasYi., zTAKB = 0, Vte[0, tf]



Controllability/Reachability

Aside: Cayley-Hamilton Theorem
 Let A beann X n matrix.
o Let A (s) =det(s] —A) =s"+a;s" 1+ -+ a,_;5 + a, be characteristic poly.
* Asatisfies its own characteristic polynomial: A" + a; A" 1 + -+ a,,_jA+ a,l =0

e Hence, A* for k > n are linear combinations of I, 4, -+, A1

Proof: (continued)

_nk
. Z}io:()( kt!) zTAKB = 0, Vte[0, t¢] implies via Cayley-Hamilton that
zTAKB =0 fork=0,..,n—1
* Hence, zT|B AB A?B --- A""1B| = 0, which implies that W, is not full rank.

* Therefore, (A,B) is reachable (controllable) only if W, is full rank n

Note: in LTI case, reachability is independent of time.
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