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Abstract— We propose a new observer form based on Koop-
man operator theoretic framework for input-output nonlinear
systems with control affine inputs. Based on this observer
form, we describe an observer synthesis framework which
exploits estimation techniques developed for Lipschitz systems
and bilinear systems. We also formulate nonlinear observability
rank condition in terms of the Koopman observer form, and
numerically illustrate the benefits of the proposed framework.

I. INTRODUCTION

Nonlinear state observer design has been an area of
constant research for several decades and, despite important
progress, many outstanding practical problems still remain
unsolved [1], [2], [3]. Extended Kalman filter (EKF) con-
tinues to be one of most widely used practical nonlinear
estimation approaches, but unfortunately has no general
guarantees on convergence due to its reliance on lineariza-
tion. Geometric observer techniques [1], [4], [5], [6] seek a
coordinate transformation so that the state estimation error
dynamics are linear in the new coordinates. Necessary and
sufficient conditions for existence of such transformation
have been established but in practice are extremely difficult
to satisfy. There has also been work to propose observers for
more specialized classes of nonlinear systems, such as Lip-
schitz nonlinear systems and bilinear systems. For instance,
Lyapunov and Linear Matrix Inequalities based approaches
have been developed for Lipschitz nonlinear systems [7],
[8], [9], [10], [11], while Kalman type filters can be used
for bilinear systems, see [12] and references therein. These
observer design approaches are only applicable if the output
is a linear function of the state, precluding its applicability
for systems with nonlinear outputs. Some techniques have
been proposed (see [13], [12] and references there in) which
transforms output nonlinearities of a bilinear system into
a linear form by expanding the state space. Along similar
lines Carleman linearization approach [14], [15] provides
a framework to transform a nonlinear system with control
affine terms approximately into a higher dimensional bilinear
form, however requires analyticity of the underlying system.
Other approaches for exact/approximate bilinearization of
arbitrary nonlinear systems has also been extensively studied
[16], [12]; however these approaches suffer from similar lim-
itations as the geometric observer techniques. The purpose
of this paper is to explore a Koopman operator theoretic
framework for observer synthesis which has the promise of
alleviating some of the technical challenges stated above,
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and provide a rigourous yet practical approach for nonlinear
estimation.

Koopman operator is a linear but infinite-dimensional
operator that governs the time evolution of observables or
outputs defined on the state space of a dynamical system
[17], [18]. Spectral properties of Koopman operator provide
powerful means of analysis and decomposition of nonlinear
dynamical systems. Recent theoretical and computational
advances associated with Koopman operator are enabling
new techniques for more effectively dealing with high di-
mensional complex nonlinear systems. The majority of the
applications [19], [20], [17], [21], [22], [23] exploit Koop-
man framework for data driven nonlinear model reduction
or spectral analysis. More recently [24], [25] formulated
global stability property of fixed points and limit cycles
in terms of specific eigenfunctions of the Koopman oper-
ator, and developed a numerical procedure to estimate the
associated basin of attraction. Along similar lines, Perrron-
Frobeniuos operator (which is adjoint of Koopman operator)
based approaches have been used for nonlinear stability
and observability analysis [26], [27]. In [28], authors devel-
oped a Koopman based linear observer design framework
for discrete time nonlinear systems with no inputs. This
framework uses specific Koopman eigenfunctions whose
span contains the state and output function to construct an
immersion which transforms the nonlinear system into a
linear observer form for which one can employ standard
Luenberger/Kalman based linear observers. The majority of
the operator theoretic work, for example as referenced above
has been restricted to an autonomous setting, i.e. systems
with no inputs. An exception is a recent publication [29],
which explores Koopman invariant subspaces to facilitate
design of optimal control of nonlinear systems with full state
feedback.

In this paper we demonstrate how Koopman framework
can be used for immersion based observer design for input-
output nonlinear systems. Motivated by the formulation in
[28] for discrete time systems with no inputs, we develop a
Koopman Observer Form (KOF) in continuous time setting
which incorporates the input terms. We give conditions
under which the KOF is finite dimensional. While the KOF
looses the desirable linear structure (as with no inputs),
we demonstrate that it can still facilitate the application
of existing special observer design techniques for Lipschitz
systems and bilinear systems in context of more general
nonlinear systems. We demonstrate the benefits of the pro-
posed framework numerically. We also formulate nonlinear
observability rank conditions in terms of the KOF.
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The paper is organized into seven sections. We start with
mathematical preliminaries in Section II, followed by a
review of Koopman operator theoretic framework in Section
III. The KOF is introduced in Section IV, and observer
design framework based on it is discussed in Section V. In
Section VI we formulate nonlinear observability rank condi-
tion in terms of the KOF. Numerical example is presented
in Section VIII, and paper is concluded in Section IX with
directions for future research.

II. MATHEMATICAL PRELIMINARIES

In this paper we consider input/output nonlinear systems
with control affine terms

ẋ = f(x) +

l∑
i=1

gi(x)ui, (1)

y = h(x), (2)

where, x ∈ X ⊂ Rd is state vector, u = (u1, · · · , ul)∗ ∈
U ⊂ Rl are the control inputs, f : X → Rd is a vector
field, gi : X → Rd, i = 1, · · · , l are state dependent
control coupling terms, and h : X → Rm are the outputs.
Throughout we will consider standard inner product < ·, · >
on the Euclidean space. For any complex number c ∈ C,
we shall denote by Re(c), Im(c), |c| and arg(c) as the real
part, imaginary part, modulus and argument, respectively.
The transpose of a vector or matrix will be represented by
superscript a ∗.

Let C1(X) be the vector space of continuously differen-
tiable scalar complex valued functions r : X → C on X.
The gradient of a function r ∈ C1(X) will be represented
as a row vector dr = ( ∂r

∂x1
, · · · , ∂r∂xd

) , while Jacobian of
any vector valued function r : X → Cp with components
r = (r1, · · · , rp)∗, ri ∈ C1(X) will be denoted by,

∂r

∂x
=

 dr1

...
drp

 =


∂r1
∂x1

· · · ∂r1
∂xd

...
...

...
∂rp
∂x1

· · · ∂rp
∂xd

 . (3)

Let χ(X) be a set of all real valued vector fields v : X→ Rd
on X. Elements of χ(X) act as linear operators on C1(X)
by Lie differentiation, s.t. for any r ∈ C1(X) and v ∈ χ(X),

Lvr =< dr,v > . (4)

This definition extends naturally to vector valued functions,
as follows

Lvr =

 Lvr1

...
Lvrp

 =

 < dr1,v >
...

< drp,v >

 , (5)

where, r = (r1, · · · , rp)∗. The fact that we work on sub-
sets of Euclidean space is for simplicity, and the whole
framework discussed in this paper can easily be extended
to systems with phase spaces on manifolds.

III. KOOPMAN OPERATOR THEORETIC FRAMEWORK

In this section we review Koopman operator theory, de-
tails can be found in [17], [18]. Consider an autonomous
dynamical system described by an ODE,

ẋ = f(x), (6)

where, x ∈ X ⊂ Rd as above. Let Φ(t,x0) be the flow map
i.e. solution of above ODE stating at the initial condition
x0. Let F be a space of complex valued scalar functions
ψ : X → C, then Koopman (semi)group of operators U t :
F → F associated with the flow Φ is defined by

(U tψ)(x) = ψ ◦ Φ(t,x). (7)

In this paper we assume F ⊆ C1(X), see [25] and [30]
for discussion on appropriate choices of F . By definition,
the Koopman operator is linear, and ψ̃(t,x) = U tψ is the
solution to the PDE

∂ψ̃

∂t
= < dψ̃, f >= Lf ψ̃, (8)

with boundary condition, ψ̃(0,x) = ψ(x).
An eigenfunction of the Koopman operator (or in short

Koopman eigenfunction (KEF) ) is an observable φ ∈ F
that satisfies:

U tφ = eλtφ, (9)

where, λ ∈ C is referred to as the Koopman eigenvalue (KE)
corresponding to KEF φ. It follows from (8) that the KEF
satisfy the eigenvalue equation

Lfφ = λφ. (10)

In general the Koopman operator could possess continuous
and residual parts of spectrum in addition to the point
spectrum [30]. For our purposes only point spectrum of
Koopman operator will suffice. In fact, in well-chosen F
the continuous and residual parts of the Koopman spectra
are empty for most types of attractors [25]. Note following:
• If φ1 and φ2 are KEFs with eigenvalues λ1, λ2 then
φk11 φ

k2
2 is also a KEF with eigenvalue k1λ1 + k2λ2 for

any k1, k2 ∈ R.
• KEF are smooth in the vicinity of the attractor, a

property which contrasts Koopman operator with the
Perron-Frobenius operator, i.e it’s dual [25].

Let φi be an eigenfunction for the Koopman operator cor-
responding to the eigenvalue λi. Given a vector valued
observable r(x), the Koopman mode (KM) vi, corresponding
to φi is the vector of the coefficients of the projection of
r(x) onto the span{φi} [17], [18]. vi can be thought of
as mapping from the observable space into a vector space
V ⊂ Cp; the map r → φivi is then a vector-valued
projection operator onto the subspace span {φi}.

Note that KEs/KEFs (λ, φ) depend only on the dynamics
(6), and the chosen function space F , and not on any partic-
ular observable. On the other hand the KMs v are specific
to a given observable. In this regard, we will refer to modes
vx for full state observable, i.e. r(x) = x as the Koopman
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Modes (KMs), and modes vr for any other observable r as
the Output Koopman Modes (OKMs). Finally, we will refer
to the KEs, KEFs, KMs triplet i.e. (λi, φi,v

x
i ), i = 1, · · · as

the Koopman tuple.

IV. KOOPMAN OBSERVER FORM

For the input-output system (1)-(2), consider the Koopman
operator and its associated KEs/KEFs (λ, φ) corresponding
to the flow Φ0 induced by the unactuated part, i.e.

ẋ = f(x), (11)

which is obtained by setting u ≡ 0 in (1).
Condition I: Let Fn = span{φi}ni=1 be a finite subset of

KEFs such that x,h(x) ∈ Fn (where, h is the output in
(2)), and so

x =

n∑
i=1

φi(x)vxi , h(x) =

n∑
i=1

φi(x)vh
i , (12)

where, vxi ∈ Cd, i = 1, · · · , n are the KMs, and vh
i ∈

Cm, i = 1, · · · , n are the OKMs, as defined before.
Note that if λ is a complex KE with KEF φ, then the

complex conjugate λ is also a KE with KEF φ, and

Lfφ = λ φ. (13)

For any real valued observable h it is straightforward to
show that the OKMs also occur in conjugate pairs just as
the KEs/KEFs.

Let λ = |λ|ei arg(λ) be polar representation of a complex
KE. From Eqns. (10) and (13) one can easily show

LfRe(φ) = |λ|(cos(arg λ)Re(φ) + sin(arg λ)Im(φ)),

Lf Im(φ) = |λ|(sin(arg λ)Re(φ)− cos(arg λIm(φ)).

For compactness we express above relations in a vector form

Lf

(
Re(φ)
−Im(φ)

)
=

(
LfRe(φ)
−Lf Im(φ)

)
= Qλ

(
Re(φ)
−Im(φ)

)
,

(14)
where,

Qλ = |λ|
(

cos(arg λ) sin(arg λ)
− sin(arg λ) cos(arg λ)

)
. (15)

Since LQλ = QλL, it also follows that

Lkf
(

Re(φ)
−Im(φ)

)
= Lk−1

f Qλ

(
Re(φ)
−Im(φ)

)
= QλLk−1

f

(
Re(φ)
−Im(φ)

)
= Qkλ

(
Re(φ)
−Im(φ)

)
, (16)

for k = 1, 2, · · · .
In what follows, we order KEFs {φ1, φ2, · · · , φn} (and

correspondingly KEs and KMs/OKMs) such that complex
conjugate pairs appears adjacent to each other. Define
T (x) = (φ̂1(x), φ̂2(x), · · · , φ̂n(x))∗ as follows:
• φ̂i = φi if i-th KEF is real, and
• φ̂i = 2Re(φi) and φ̂i+1 = −2Im(φi), if i and i + 1-th

KEFs are complex conjugate pairs.

It is straightforward to show that KMD (12) can be expressed
in terms of T (x) as

x = CxT (x), h(x) = ChT (x), (17)

where, Cx ∈ Rd×n and Ch ∈ Rm×n are matrices formed
from KMs and OKMs as follows. The i-th column of Ch is
vh
i if i-th KEF is real, and i, i + 1-th columns are Re(vh

i )
and Im(vh

i ), respectively if i and i+1-th KEFs are complex
conjugate pairs. Similar procedure applies for constructing
Cx.

Using the relation (14), one can write the Lie derivative
of T (x) as:

LfT (x) = ΛT (x), (18)

where, Λ is a n× n real block diagonal matrix such that:
• Λ has a diagonal entry Λi,i = λi, if i-th KEF is real,

• Λ has a block diagonal entry
[

Λi,i Λi,i+1

Λi+1,i Λi+1,i+1

]
=

Qλi
(see (15)), if i and i + 1-th KEFs are complex

conjugate pairs.
Consider a nonlinear change of coordinates defined by T :

X→ Rn,

z(t) =

 z1(t)
...

zn(t)

 = T (x(t)). (19)

Following [28] we refer to this transformation as the Koop-
man Canonical Transform (KCT), and the coordinates z(t) ∈
Rn as the Koopman Canonical Coordinates (KCC). From
Eqn. (18) it follows that under change of coordinates (19),

ż =
∂T (x)

∂x
(f(x) +

l∑
i=1

gi(x)ui),

= LfT (x) +

l∑
i=1

LgiT (x)ui,

= Λz +

l∑
i=1

g̃i(z)ui, (20)

where,
g̃i(z) = LgiT (x)|x=Cxz. (21)

Thus system (1)-(2) can be transformed into

ż = Λz +

l∑
i=1

g̃i(z)ui, (22)

y = Chz, (23)
x = Cxz. (24)

Following [28], we will refer to the system (22)-(24) as the
Koopman Observer Form (KOF). Note that the dimension of
z in KOF will be greater than the dimension of state x of
the original nonlinear system, i.e. n ≥ d; and so the observer
design based on KOF is an immersion based approach, see
[3] and references therein. We further refer reader to [28]
for comparison with geometric observer design approaches
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[1], [4], [5], [6] which seek a diffeomorphism to obtain other
types of observer forms to facilitate observer design.

Note that above derivation can be easily extended to more
general nonlinear systems:

ẋ = f(x,u), (25)
y = h(x). (26)

Writing the above system as

ẋ = f0(x) + f̃(x,u), (27)
y = h(x), (28)

where, f0(x) = f(x, 0) and f̃(x,u) = f(x,u)− f(x, 0), and
applying the KCT (based on f0(x)), one gets a KOF,

ż = Λz + g̃(z,u), (29)
y = Chz, (30)
x = Cxz. (31)

where, g̃(z,u) = ∂T (x)
∂x f̃(x,u)|x=Cxz.

We next consider three special cases of the KOF which
will require working with the system (22)-(24). However, the
Lipschitz KOF formulation (see Section IV-B) is applicable
for the more general KOF (29)-(31) as well.

A. Linear KOF with No Inputs

Condition II: Assume that there are no input terms in (2),
i.e. gi ≡ 0, i = 1 · · · , l.

Under Condition II the KOF (22)-(24) reduces to linear
time invariant system,

ż = Λz, (32)
y = Chz, (33)
x = Cxz, (34)

which is continuous time analogue of discrete time KOF
introduced in [28]. In this special case one can employ
standard Luenberger/Kalman observer design approaches,
see [28] for details.

B. Lipschitz KOF

Condition III: Assume that the nonlinear term

Ψ(z,u) =

l∑
i=1

g̃i(z)ui, (35)

in (22) is locally Lipschitz in domain D ⊂ Rn i.e.

||Ψ(z2,u)−Ψ(z1,u)|| ≤ γ||z2 − z1||, (36)

for all z1, z2 ∈ D, u ∈ U, and γ is the Lipschitz constant.
Under Condition III the KOF (22)-(24) becomes a Lips-

chitz system [7],

ż = Λz + Ψ(z,u), (37)
y = Chz, (38)
x = Cxz, (39)

where, Ψ(z,u) is locally Lipschitz. One can then employ ob-
server design techniques for Lipschitz systems as discussed
in Section V-A.

Note that any nonlinear system (25)-(26) can be expressed
in the form (37) as long as f is continuously differentiable
with respect to x. Furthermore the resulting nonlinear term Ψ
will satisfy (36) at least locally. However, that is not sufficient
to apply observer design techniques for Lipschitz systems
(see Section V-A) which also require that the output equation
(2) be linear. The KCT on the other hand transforms the
output equation into a linear form as well, making observer
design techniques for Lipschitz systems applicable to a much
broader class of nonlinear input-output systems.

C. Bilinear KOF

Condition IV: Assume that

Lgi
T (x) = bi +

n∑
j=1

vgi

j φi(x), (40)

where, bi ∈ Rn is a constant vector, and vgi

j , j = 1 · · · , n
are the KMs for gi, i = 1, · · · , l.

Under Condition IV the KOF (22)-(24) reduces to a
bilinear control form

ż = Λz +

l∑
i=1

Bizui +B0u, (41)

y = Chz, (42)
x = Cxz, (43)

where, B0 = [b1, · · · ,bl] is a n × l matrix, and Bi is
a n × n matrix constructed using Koopman modes {vgi

j }
using the procedure for constructing Ch/Cx described in
the previous section. Note that in case Lgi

T (x)−bi /∈ Fn,
one can expand the Fn to include additional KEFs such
that LgiT (x) lie in Fn, and a closure is obtained. Observer
design techniques for bilinear systems are discussed in
Section V-B. Few additional remarks:
• Note that if Lgi

T (x) = bi 6= 0, i = 1, · · · , l, then
Bi ≡ 0 and the bilinear KOF above reduces to a linear
input-output KOF.

• The process of obtaining bilinear KOF (or linear KOF
when no control inputs are present) is similar to the
Carleman approach to linearization [14], [15]: both
use an immersion to transform the nonlinear system
to a bilinear (or linear) form. The key distinction is
that in the bilinear KOF we use a specific set of
KEFs (as prescribed by Condition I) to construct the
transformation, while in the Carleman approach the
transformation is constructed using tensor products of
the state vector and relies on analyticity of the system
(1)-(2). In future it will be worthwhile to investigate if
the proposed Koopman based approach leads to more
compact linear/bilinear KOF representation than the
Carleman linearization for similar accuracy in approxi-
mation of the underlying nonlinear system, see Section
VII for further discussion.

D. Computation of KCT

In order of compute the KOF for the system (1)-(2), one
needs to determine the KCT (19) based on the autonomous
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part of (1) such that Condition I is satisfied. It is important
to note that while there are infinitely many Koopman eigen-
values/eigenfunctions, we are only interested in those whose
span contains x,h(x) (where h(x) is the output function
(2)).

A variety of techniques have been proposed in literature
for computation of Koopman tuple i.e. Koopman eigenvalues,
eigenfunctions and modes: harmonic averaging [31], [32],
generalized Laplacian analysis [18], and Dynamic Mode De-
composition (DMD) and its variants (see [33] and references
there in), and extended DMD [34], [35]. These approaches
primarily differ in the function basis they use for obtaining a
finite dimensional approximation of the Koopman operator,
and use simulated traces from the underling dynamical
system to compute a subset of spectra of the Koopman
operator. We refer the reader to [28] for such an approach
for computing KCT based on the extended DMD technique.

V. OBSERVER DESIGN USING KOF

We next discuss observer design approaches for the non-
linear system (1)-(2) based on the KOF (22)-(24). Different
design techniques are applicable under different assumptions
(which result in different special cases of the KOF):
• Standard linear observer design under Condition I and

Condition II,
• Observer design for Lipschitz systems under Condition

I and Condition III,
• Observer design for bilinear systems under Condition I

and Condition IV.
Below we review design techniques for Lipschitz systems
and bilinear systems.

A. Observer Design for Lipschitz KOF

Observer design for Lipschitz systems of the form (37)-
(38), i.e.

ż = Az + Ψ(z,u),

y = Cz, (44)

have received much attention in the literature. For such
systems one can seek an observer of the form:

˙̂z = Aẑ + Ψ(ẑ,u) + L(y − Cẑ), (45)

and the goal is to find a gain L, such that the observer error
e(t) = z− ẑ dynamics

ė = (A− LC)e + Ψ(z,u)−Ψ(ẑ,u), (46)

is asymptotically stable. Since Thau’s seminal paper [36]
where he obtained a sufficient condition on L to ensure the
asymptotic stability of the observer, a rich body of literature
has emerged tackling the observer design problem [7], [8],
[9], [10], [11]. The observer design technique proposed in [7]
is based on quadratic Lyapunov function, and depends on the
existence of a positive definite solution to an algebraic Ricatti
equation. The procedure is iterative and involves following
steps:

1. Choose ε > 0 sufficiently small.

2. Check if the modified Ricatti equation

AP +PA∗+P (γ2I − 1

ε
C∗C)P +(1+ ε)I = 0, (47)

has a positive definite solution P , where I is a n × n
identity matrix.

3. If positive-definite P exists, then a choice

L =
1

2ε
PC∗, (48)

stabilizes the error dynamics. If not let ε ← ε/2 and
repeat steps 2 and 3.

Raghavan’s algorithm can sometime fail to converge even
when the matrices (A,C) satisfy the usual observability
assumptions and does not provide insights into what con-
dition A − LC should satisfy to ensure observer stability.
In [8], necessary and sufficient conditions on L that ensure
asymptotic stability of the observer were given, and a gradi-
ent based optimization method was proposed for designing
the observer. The authors in [9] showed that the condition
introduced in [8] is related to a modified H∞ problem, and
proposed a dynamical filter based observer design based on
H∞ optimization.

A major limitation of above approaches is that they work
only for adequately small values of the Lipschitz constant
[11]. When the Lipschitz constant is large or when the
equivalent Lipschitz constant has to be chosen large due to
the non-Lipschitz nature of the nonlinearity, above observer
design techniques could fail to provide a solution. To address
this limitation, several approaches have been proposed. For
example, Raghavan [7] showed that the observer design
approach discussed above might still be feasible using a
state transformation. A technique based on Linear Matrix
Inequalities (LMI) optimization has been proposed in [10]
which leads to a robust H∞ observer design. Using this
approach the Lipschitz constant of the nonlinear system can
be maximized so that the observer error dynamics is not only
asymptotically stable but also the observer can tolerate some
additive nonlinear uncertainty.

In [11], a less conservative approach to estimating the
Lipschitz constant is proposed with the Lipschitz condition
(36) expressed in a matrix form:

||Ψ(z2,u)−Ψ(z1,u)|| ≤ ||G(z2 − z1)||. (49)

Note that the matrix G in this case could be a sparsely
populated matrix. Hence, ||G(x1−x2)| can be much smaller
than the constant γ||x1−x2|| used earlier in (35) for the same
nonlinear function. Furthermore, it was shown in [11] that
the error dynamics (46) is asymptotically stable if and only
if an observer gain matrix L can be chosen such that[

(A− LC)∗P + P (A− LC) + εG∗G P
P −εI

]
< 0,

for some positive definite symmetric matrix P , and some
real ε > 0. The above inequality is nonconvex because it
involves the product of P and L. By introducing Y = PL
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above matrix inequality can be expressed as a LMI,[
A∗P + PA− C∗Y ∗ − Y C + εG∗G P

P −εI

]
< 0, P > 0,

which can be solved using standard convex optimization
techniques or the MATLAB LMI control toolbox. The gain
can simply be computed as L = P−1Y . The above LMI can
also be replaced by an equivalent Riccati inequality in just
one variable P

A∗P +PA+ εG∗G+
1

ε
PP −C∗L∗P −PLC = −µI < 0,

(50)
for some β ∈ R and µ > 0. This can be solved using
Algebric Riccati Equation solver in MATLAB, and the gain
can be computed via L = β2

2 P
−1C∗, see [11] for details.

B. Observer Design for Bilinear KOF

For bilinear systems of the form (41)-(42), i.e.

ż = Az +

l∑
i=1

Bizui +B0u,

y = Cz, (51)

multiple formulations can be posed for observer design [12].
For instance, assume that u is known. For this case one can
view (51) as a linear time varying system,

ż = A(t)z +B0u,

y = Cz, (52)

where, A(t) = A +
∑l
i=1B

iui(t), and use well-known
Kalman type methods of designing observers of time-varying
linear system. For instance, if the system (52) is uniformly
completely observable, and A(t) is uniformly bounded in
time, one can seek an observer of the form [3], [37],

˙̂z = A(t)ẑ +B0u +K(t)(y − Cẑ), (53)

where, the gain K(t) = M(t)C∗W−1 is computed based on
solution of a matrix Riccati equation

Ṁ = A(t)M(t) +M(t)A∗(t)−M(t)C∗W−1CM(t)

+ V + δM(t),

where, M(0) = M0 = M∗0 > 0, W = W ∗ > 0, and with
either δ ≥ 2||A(t)|| for all t, or V = V ∗ > 0. The rate of
convergence can be tuned by either δ or V .

Design of an observer which will converge for all choices
of u has also been considered, see [38], [12].

VI. NONLINEAR OBSERVABILITY CRITERION BASED ON
KOF

In this section we establish a nonlinear observability
criterion for system (1)-(2) by exploiting the KOF. We will
use standard notion of nonlinear observability [39], which
we briefly recall first. A pair of points x0 and x′0 are
indistinguishable (denoted x0Ix′0) if the system (1)-(2) with
these two initial conditions realizes same input-output map
for every admissible control input u(t), t ∈ [t0, t1]. Note
that indistinguishability I is an equivalence relation on X.

System (25)-(26) is said to be nonlinearly observable at x0

if I(x0) = {x0} and is nonlinearly observable if I(x) = {x}
for every x ∈ X.

Let Z be the image of state space X under the KCT, i.e.
Z = T (X). Note that since x ≡ Cxz (by Condition I), the
transformation T is an injective mapping onto its range Z.
Theorem I: If Condition I and Condition II hold, and the
pair (Λ, Ch) is observable, i.e.

rank([Ch, ChΛ, · · · , ChΛn−1]∗) = n, (54)

then the nonlinear system (1)-(2) is nonlinearly observable.
Proof: The proof is by contradiction. Assume (1)-(2) is not
observable, and so there exists two distinct initial conditions
x0 6= x′0 such that they result in same output y(t) over any
interval of time [0, T ]. Let z0 = T (x0) and z′0 = T (x′0),
then z0 6= z′0 by injectivity of T . By construction, the KOF
will also produce same outputs when initialized at z0 or z′0.
This is a contradiction, since under condition (54), the KOF
(32)-(33) is observable, and so z0 = z′0.
Theorem II: If Condition I and Condition IV hold, and

rank([Ch, ChΛ, ChB1, · · ·ChBl, ChΛ2, ChΛB1,

· · · , ChΛBl, ChB1Λ, · · · , Ch(Bl)n−1]) = n, (55)

then the nonlinear system (1)-(2) is nonlinearly observable
for the space of control inputs U containing piecewise
continuous input signals.
Proof: The condition (55) implies that there exists piecewise
continuous input signal for which the bilinear KOF (41)-(43)
is observable [40]. Then, following same arguments as in the
proof of Theorem I, the proof of the Theorem II follows.

The above propositions provide sufficient conditions for
nonlinear observability in terms of KOF. However, the
observability conditions (54) and (55) required in above
theorems, respectively are stringent. In fact, as long as the
linear KOF (32)-(34), and the bilinear KOF (41)-(43) are
observable (as discussed above) restricted to Z (i.e. any
two states z, z′ ∈ Z are indistinguishable), Theorem I and
Theorem II will hold true.

VII. REMARKS ON ASSUMPTIONS FOR KOF
We discuss the implications of Condition I, which pro-

vides the key assumption for the proposed Koopman based
observer design framework. Recall, Condition I requires that
the x,h(x) lie in a span of a finite dimensional subset
of Koopman eigenfunctions associated with the autonomous
part of the system (1). For u ≡ 0, the KOF reduces to a
linear form. Since in this case the KOF can only have a
fixed point at the origin, an exact finite dimensional KOF
may exist only for nonlinear systems with a single isolated
fixed point. A similar assessment on existence of a finite-
dimensional Koopman-invariant subspace was noted in [29]
in context of full state feedback based control design using
Koopman framework.

Furthermore, the Koopman decomposition (12) may re-
quire infinitely many terms, i.e.

x = lim
N→∞

N∑
i=1

φi(x)vxi ,h(x) = lim
N→∞

N∑
i=1

φi(x)vh
i . (56)
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Retaining only a finite number n � 1 of terms in above
expansions, a truncated or approximate KOF can be obtained

ż = Λz +

l∑
i=1

g̃i(z)ui,

y = Chz + ∆h(x),

x = Cxz + ∆x(x),

where, g̃i(z) = LgiT (x)|x=Cxz+∆x(x), and ∆ denotes the
truncation error. Note that while any continuously differen-
tiable nonlinear system can always be written in above form
with linear terms in state, and additive nonlinear terms (for
instance by linearizing both dynamics (1) and the output
equation (2)), the resulting nonlinear terms can only be
bounded locally. On the other hand, at the expense of includ-
ing sufficient number of terms n in the decomposition (56),
the nonlinear terms ∆h(x),∆x(x) can be made arbitrarily
small, and thus the truncated KOF is expected to provide
more accurate approximation over a larger portion of the state
space. Further theoretical and numerical work is required for
assessing the computational and estimation accuracy tradeoff
resulting from the truncation of the KOF under different
assumptions (i.e. Condition II, III and IV), and will be
pursued in future work. Along similar lines as discussed
in Section IV-C comparison with the Carleman linearization
approach will also be worthwhile to investigate.

Additionally, we argue that the proposed framework is also
useful for nonlinear systems with multiple fixed points or
more general attractors. For instance, it was demonstrated in
[28] that a Kalman filter designed based on an approximate
KOF in basin of attraction (whose boundary is formed by an
unstable limit cycle) of a fixed point (of a nonlinear system
with no inputs) leads to a superior estimation performance
compared to that based on the Extended Kalman Filter. In a
more general setting, obtaining approximate KOFs in differ-
ent basins of attraction and patching them for estimation is
another worthwhile avenue of future research.

Finally, note that the requirement in Condition I for the
full state observable x to lie in a finite dimensional span of
Koopman eigenfunctions can be relaxed. For this case no
modifications are required for KOF based observer design
framework presented in this paper. However, the relationship
x = Cxz can no longer be used to obtain the estimate of
x; rather, one will need to solve the system of nonlinear
equations T (x)− z = 0.

VIII. NUMERICAL DEMONSTRATION

To illustrate KOF based observer design framework, we
consider following system:

ẋ =

(
ρx1

µ(x2 − x2
1)

)
+ g(x)u, (57)

y = h(x) = x2
1 + x2, (58)

where, g(x) = (g1(x), g2(x))∗. It can be shown that for
autonomous part of (57), i.e.

ẋ =

(
ρx1

µ(x2 − x2
1)

)
, (59)

(a)

Fig. 1. Estimation results for system (57)-(58) using observer design based
on the associated Lipschitz KOF.

ρ, µ are Koopman eigenvalues with eigenfunctions φρ(x) =
x1, and φµ(x) = x2 − αx2

1, respectively, where α = µ
µ−2ρ .

Also note that 2ρ, ρ + µ etc. are Koopman eigenvalues
with eigenfunctions φ2

ρ, φρφµ etc. Let φ1 = φρ, φ2 =

φµ, φ3 = φ2
ρ, then it follows that x =

∑3
i=1 φi(x)vx

i

where, vx
1 = (1, 0)∗, vx

2 = (0, 1)∗, and vx
3 = (0, α)∗.

Similarly, h(x) =
∑3
i=1 φi(x)vh

i , where vh
1 = 0, vh

2 = 1,
and vh

3 = 1 + α. Thus, using the KCT (19)

z =

(
z1

z1

)
= T (x) =

 φρ
φµ
φ2ρ

 =

 x1

x2 − αx2
1

x2
1

 ,

we get the KOF (22)-(24) with

Λ = diag(ρ, µ, 2ρ), Cx =

(
1 0 0
0 1 α

)
,

Ch =
(

0 1 1 + α
)
,

and

g̃(z) =

 1 0
−2αz1 1

2z1 0

( g1(Chz)
g2(Chz)

)
. (60)

For illustration purposes, we consider some specific
choices of g(x). For example, with g(x) = (1, 0)∗,

LgT (x) = b +

n∑
j=1

vg
j φi(x), (61)

where, b = (1, 0, 0)∗, and vg
1 = (0,−2α, 2)∗, and vg

2 =
vg

3 = (0, 0, 0)∗. So Condition IV is satisfied leading to a bi-
linear KOF, and one can employ observer design techniques
discussed in Section V-B.

For g(x) = (cos(x1), 0)∗, one obtains a Lipschitz KOF
with

Ψ(z, u) = cos(z1)

 1
−2αz1

2z1

u, (62)
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where, we have assumed that the control inputs are bounded
|u| ≤ um. We use Raghavan’s method discussed in Section
V-A to design the observer gain L. Figure 1 shows the
estimation results for periodically excited inputs u(t) =
cos(2πt) so that um = 1.

IX. CONCLUSION

In this paper we introduced a Koopman Observer Form
(KOF) and associated immersion based observer synthesis
framework for general nonlinear input-output systems with
control affine terms. By considering special cases of the
KOF, we showed how existing observer design techniques
for Lipschitz systems and bilinear systems can be used in
context of estimation for more general nonlinear systems.

Further theoretical and numerical work is required for
assessing the tradeoff between computational effort and
estimation accuracy resulting from the truncation of the KOF.
The use of KOF for control synthesis, and fault detection
and isolation in dynamic systems is another avenue of future
research which we are currently pursuing.
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