ME/CS 133(a): Solution to Homework #?2

Problem 1:(10 Points, Problem 4(a,b) in Chapter 2 of MLS).

Part (a): Let’s assume that the statement in part (b) of the problem is true. Let w be a
3 x 1 vector and let ¥ be any 3 x 1 vector. Then:

Since this must be true for any vector @, then RwRT = (R)

Part (b): We can now assume that part (a) holds.

(R?) x (R@) = (R7)

Problem 2: (15 points, Problem 5 of chapter 2 in the MLS text).

Part (a): This result was derived in class. Alternatively, you could show that A = (I —
a)~'(I + a) is a matrix in SO(3) for 3 x 3 skew symmetric matrix a by showing that A is
orthogonal and that det(A) = +1. Let us first show that A is orthogonal.

AAT = (I-a) "I +a) (I —a)'(I+a) =T —a)"T+a)I —a)(l+a)"!

= (I—a)([I+a)(I—-a)*(I+a).

Note that (I +a)™'(I —a)™' = ((I —a)(I + d))_l =(I-a)"'=(I+a) - a))‘l =
(I —a) *(I +a)~! Therefore:

AAT = (T —-a)I+a)'(I—a) (I +a) =T —a) I —a)'(I+a) ' (T+a)=1.

We just showed that A € O(3). The orthogonal group has two subcomponents: det(A) = +1
and det(A) = —1. All of the matrices in each component are continuously deformable into
another matrix in the respective component. In the limit that @ — 0, @ — 0. In that case,
A = I, which has determine of +1. Hence, matrices with @ # 0 must in the same component
as matrices with @ = 0, which is the component consisting of matrices in SO(3).
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Part (b): This is a calculation. The hard part is to derive an expression for (I —a)™':
(1+a3) (—a. +azay)  (ay + agaz)
(a, + azay) (1+ ai) (—a, + aya,)
(—ay + aza;)  (az + ayas) (1+a2)

I—a) ' = ———
U=&7 = T9ap

where @ = [aw @y az}T.

Part (c): There are two ways to solve this. The simplest way is to use the result of part
5(b) quoted in the text:

1 1+a}—a3—a3 2(aay —az) 2(aras + as)
R = Tl 2(mas +a3)  1—ai+a3—a3 2(agas —ay) (1)
2(ara3 — as) 2(aza3 + ay) 1 —af — a3+ a3

where ||a||? is shorthand notation for ||a||* = a? + a3 + a%. Noting that

—llall® _

1L+ [[alf?

— trace(R) 3= —Trop—T33
1+ trace(R) 1+ 1 + rop + 733

trace(R) = = ||a|]* =

so that an expression for ||al|? is known, simple algebraic manipulation of the off-diagonal
term of R yield

a1 1+HGH2 :32:7’23
13 — 31
as 21 — 112

If you didn’t use the results of 5(b) in the text, then you would have started with Cayley’s
formula R = (I —a)~*(I + a) and derived Equation (1).

Problem 3: (5 points, Problem 8(b) of chapter 2 in the MLS text).

—1

1 1
SN = I+1,9Ag + 57 (90" + 5 (gAg) £

3!
1 1

= I+ 1,91\9 + 57 (90 + (g% ) +

_ - T A2 T A3 —1

= g(I+ 1!A+2!A +3!A +-)g

— geAg—l

Problem 4: (15 points, Euler Angles)

Let Z-X-Y Euler angles be denoted by v, ¢, and ~.



e Part (a): Develop an expression for the rotation matrix that describes the Z-X-Y
rotation as a function of the angles 1, ¢, and .

Rotation about the z-axis by angle 1 can be represented by a rotation matrix whose
form can be determined from the Rodriguez Equation:

cos®y —siny 0
Rot(Z,9) = I +siny2 + (1 — cost)2? = |sinyy  cosyy 0
0 0 1

Using the Rodriguez equation, the rotations about the y-axis and z-axis can be simi-
larly found as:

10 0 cosy 0 sinvy
Rot(Z,¢) = |0 cos¢ —sing Rot(y,v) = 0 1 0
0 sing cos¢ —siny 0 cosvy

Multiplying the matrices yields the result:

R(Y,¢,7) = Rot(Z,¢) Rot(¥,¢) Rot(y,)

(Y ey — s sosy) —stco (cv sy (cth 57 + s s¢ )
= |(s¥ey + cbsdsy) ced (ssy — csdcey) (2
—co sy s¢p co cy

where c¢ and s¢ are respectively shorthand notation for cos ¢ and sin ¢, etc.

e Part (b): Given a rotation matrix of the form:

1 Ti2 T13
R=|ra 1r2 723 (3)
31 T32 T33

compute the angles v, ¢, and v as a function of the r;;.

Direct observation of the matrices in Equations (2) and (3) show that:
sin gb =T32 .

Because sin(m — ¢) = sin ¢, there are two solutions to this equation: ¢; = sin™*(rss),
and ¢y = m — ¢;. Similar matchings of the matrix components yield:

22 —T12

= Atan2
v an [COS(;S7 Cosgb]
33  —T31
— Atan2]-1%_ '8
7 an [cosgzﬁ’ cos ¢

where the value ¢ or ¢ is used consistently



Problem 5: (Problem 11(a,b) in Chapter 2 of the MLS text).

Part (a): Recall that the matrix exponential of a twist, &, is:

2
_1, 0 O P
M=t 5l S8+ S

First, let’s consider the case of £ = (v,w), with w = 0. If:

R 0 0 v,
E=10 0 v,
0 0 O
then €2 = 0. Thus
1 0 ¢v S
. z I
= o 1l =[5 )
00 1

To compute the exponential for the more general case in which w # 0, let us assume that
= —1I, where [ is the 2 x 2 identity matrix. It is easiest

||w|| = 1. In this case, note that @? =
if we choose a different coordinate system in which to perform the calculations. Let
R 0 —w v, o
E=|w 0 v, —[(—)»T 0}
0 0 0
Let
I v
I=1om 1
Let is define a new twist, £:
£ =97y
| —wv| | v (I WU
|01 0 0]10 1
o (&P 17 )| |w
0 0 0
where we made use of the identity @? = —I. That is, we have chosen a coordinate system
in which ¢ corresponds to a pure rotation. Thus,
) oW 0
o€ _ |©
o = { i 1} |

Using Eq. (2.35) on page 42 of the MLS text:
. Y i A
e% g€ g1 _ [60 (1 ¢ )quﬁ}
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which is clearly an element of SE(2).

Part(b): It is easy to see from part (a) that the twist £ = (v, v,,0)” maps directly to the
planar translation (v, v,).

The twist corresponding to pure rotation about a point ¢'= (g,, g,) can be thought of as the
Ad-transformation of a twist, & = (0,0,w), which is pure rotation, by a transformation, g,
which is pure translation by ¢

¢ =Adp¢ = (h€'h™)Y (4)

where

Expanding Eq. (4) gives:

assuming w = 1.



