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Abstract: In this paper we develop a new approach for observer synthesis for discrete time au-
tonomous nonlinear systems based on Koopman operator theoretic framework. Koopman operator is
a linear but an infinite-dimensional operator that governs the time evolution of system outputs in
a linear fashion. We exploit this property to synthesize an observer form which enables the use of
Luenberger/Kalman-like linear observers for nonlinear estimation. Using the techniques for Koopman
eigenvalue/eigenfunction/mode computation, we describe a numerical procedure to construct such an
observer form which is often valid in a large portion of state space or even globally. We numerically
compare our approach with Extended Kalman Filter and report superior performance.
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1. INTRODUCTION

In this paper we develop a new approach for observer synthesis
for nonlinear systems based on Koopman operator theoretic
framework. Observer design for nonlinear systems is an ex-
tensively researched area, see Misawa and Hedrick (1989); Ni-
jmeijer and Fossen (1999); Besancon (2007). Extended Kalman
Filter (EKF) is most widely used nonlinear observer, its virtue
being relative simplicity and frequently good performance.
EKF being based on linearization is unfortunately not guar-
anteed to converge. In this paper we will focus on observer
design (via e.g.global/pseudo/extended linearization, lineariza-
tion by input-output injection, immersion etc.) based on 0b-
server forms (Misawa and Hedrick (1989); Keller (1987); Re-
spondek (2001); Kang et al. (2013)), which not only enables
exploiting Luenberger/Kalman-like linear observers in context
of nonlinear estimation, but also often enjoy reliable perfor-
mance guarantees in a large portion of state space or even
globally. However, these techniques are often very restrictive,
and the transformation which converts the system into a suit-
able observer form is very difficult to compute, making these
approaches accessible only in a very narrow context. In this
paper we exploit the spectral properties of Koopman operator
to construct a similar transformation in a more general setting,
thus potentially making linear observer like design accessible
in a much broader context for nonlinear estimation.

Koopman operator is a linear but an infinite-dimensional oper-
ator that governs the time evolution of observables or outputs
defined on the state space of a dynamical system, see Mezic
(2012); Budisic et al. (2012). Koopman operator being linear
admits eigenvalues and eigenfunctions, and enables one to ex-
press time evolution of the system outputs as a linear super-
position of Koopman modes. Recent advances in techniques
for computing Koopman spectral properties have fueled its ap-
plication in several domains such as fluid mechanics (Rowley
et al. (2009); Chen et al. (2012); Mezic (2012)), building data
visualization (Eisenhower et al. (2010)), power system stabil-
ity analysis (Susuki and Mezic (2014)), data fusion (Williams
et al. (2015b)), and computer vision (Grosek and Kutz (2013);
Surana (2015)), to name a few. These applications largely
exploit Koopman framework for data driven model reduction
along similar lines such as Proper Orthogonal Decomposition
(Rowley et al. (2009)).

There has also been some exploration in using operator theo-
retic techniques for other system and controls applications such
as stability analysis. For instance, Perron Frobeniuos opera-
tor (which is adjoint of Koopman operator) based approaches
have been proposed for nonlinear stability analysis (Vaidya and
Mehta (2008); Vaidya (2015)), computing domain of attraction
(Wang and Vaidya (2010)), defining/constructing observability
gramian for nonlinear systems (Vaidya (2007b)) and for sen-
sor/actuator placement (Vaidya et al. (2011)). Key concept here
is notion of Lyapunov measure equation (analogous to matrix
Lyapunov equation, see Vaidya (2007a)) which provides nec-
essary and sufficient condition for almost every where stability
of an invariant set in nonlinear systems. Along similar lines,
necessary and sufficient relationships between the existence
of specific eigenfunctions of the Koopman operator and the
global stability property of fixed points and limit cycles have
been established in (Mauroy and Mezic (2013, Unpublished)).
Numerical methods to estimate the region of attraction of the
fixed point/limit cycle were also discussed. The use of infinite
dimensional constructions/representations as discussed above
have also been used in other contexts in systems and control ap-
plications, see Kreisselmeier and Engel (2003); Lasserre et al.
(2008); Henrion and Korda (2014).

In this paper, we introduce a new notion of Koopman Ob-
server Form (KOF) for a nonlinear discrete time autonomous
systems with outputs. KOF is linear time invariant system
with outputs, and is constructed from Koopman eigenval-
ues/eigenfunctions for the underlying nonlinear system, and
Koopman modes for the system state and the outputs. It is
important to note that while Koopman operator has infinitely
many eigenfunctions (and eigenvalues), but for construction of
KOF only a specific subset, whose span contain the system
state and outputs, is required. KOF being linear, enables the
use of Luenberger/Kalman-like linear observers for nonlinear
estimation. Observers designed based on KOF converge un-
der an appropriate observability condition, which can be com-
puted in terms of specific Koopman eigenvalues and Koopman
modes used for constructing KOF: thus for first time estab-
lishing connection between Koopman spectral properties and
observer synthesis. Using the techniques for Koopman eigen-
value/eigenfunction/mode computation, we describe a numeri-
cal procedure to transform a given nonlinear system into KOF
which is often valid in a large portion of state space (e.g. basin
of attraction) or even globally. We numerically compare our
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approach with the EKF and report superior estimation perfor-
mance.

The paper is organized into three main sections. In Section 2
we review key concepts from the Koopman operator theory. A
theoretical and computational framework for Koopman oper-
ator based observer synthesis is introduced in Section 3. We
numerically illustrate this framework for nonlinear estimation
in Section 4. Finally, we conclude in Section 5 with directions
for future research.

2. OVERVIEW OF KOOPMAN OPERATOR THEORETIC
TECHNIQUE

In this section we briefly overview Koopman operator theoretic
concepts, see Mezic (2012) and Budisic et al. (2012) for details.
Consider an autonomous discrete time nonlinear dynamical
system

x¢ =f(x¢-1), (D

where, x; € X C R?is a state vector, f : X — X is
a function which describes the nonlinear state evolution. Let
F be space of observables which are scalar-valued functions
f : X — C (where, C denotes the complex plane) defined on
the state space. We assume that the observables are continuous,
i.e. F C C°(X) (which is space of all continuous functions on
X), see Mauroy and Mezic (Unpublished) for further discussion
on choice of F. The Koopman operator is a linear operator
U : F — F which maps 6 into a new function /6, as follows
Uh)(x) = 0(f(x)). 2)
Although the dynamical system (1) is nonlinear and evolves
on a finite-dimensional space, the Koopman operator U is
linear but infinite-dimensional. The eigenvalues A of Koopman
operator, referred to as Koopman eigenvalues (KEs), and the
eigenfunctions ¢ of Koopman operator, referred to as Koopman
eigenfunctions (KEFs) are defined as follows:
Up = \o. 3)
The set of all Koopman eigenvalues A\;,j = 1,2,--- is called
the point spectrum of the Koopman operator (Mezic (2005)).
Koopman operator may also have residual and continuous parts
of spectrum, but for the purpose of this paper, the point spec-
trum will suffice. Note that if ¢4, ¢» are Koopman eigenfunc-
tions with eigenvalues A1, Ao, then ¢ ¢ is also an eigenfunc-
tion with eigenvalue A1 \s. Using the relation

d(xi) = d(f(xi-1)) = UD(X4—1) = AP(x¢-1), (4
it follows
p(xt) = N(x0). )

Let g : X — R™ be a vector valued observable. If each of
the m components of g lie within the span of eigenfunctions

¢;,5 = 1,2---, then g can be expanded in terms of these
eigenfunctions as (see Mezic (2005)),
g(x) = 6;(x)v;, ©)
j=1

where, v; € C™ are complex valued vectors. Using (5), the
time evolution g(x;) can be expressed as

g(xi) = Y Nig(x0)v;. (7
j=1

We will refer to this expansion as Koopman Mode Decompo-
sition (KMD) following (Susuki and Mezic (2014)), with v;
being the Koopman modes associated with eigenfunction ¢;
and the observable g. The modes capture correlations in com-
ponents of the observable, while the corresponding eigenvalues
define growth/decay rates and oscillation frequencies for the

mode. If the dynamics have only a finite number of discrete
spectra (peaks) in complex plane, then a finite truncation of
expansion (7) gives a good approximation of the dynamics.
KMD can be thought of as a generalized Fourier analysis,
and offers several advantages over Discrete Fourier Transform,
see Chen et al. (2012). Each Koopman mode represents only
one frequency component, and thus is expected to decouple
dynamics at different time scales more effectively than Proper
Orthogonal Decomposition (Susuki et al. (2011)).

Note that while KEs/KEFs are intrinsic to the dynamics (1), the
modes depend on the choice of the observable, i.e. g. We will
refer to modes v? for full state observable, i.e. g(x) = x as the

Koopman Modes (KMs) and modes v for any other observable
h as the Output Koopman Modes (OKMs). Finally, we will refer
to the KEs, KEFs, KMs tripleti.e. (A;, ¢;,v?),s = 1,--- asthe
Koopman tuple.

Computation of Koopman tuple is a challenging problem and is
an active area of research. A variety of techniques have been
proposed in literature, including harmonic averaging (Mezic
(2005); Mezic and Banaszuk (2004)), generalized Laplacian
analysis (Budisic et al. (2012)), and Dynamic Mode Decom-
position (DMD) and its variants, (see Tu et al. (2014) and ref-
erences there in), and extended DMD (Williams et al. (2015a)).
These approaches are equation free (for a technique which
explicitly uses the equations, see Mauroy and Mezic (Unpub-
lished)) and rely on time traces/snapshots of appropriate ob-
servables generated from the system (1) . In our application we
will rely on extended DMD which we discuss in detail in Sec.
3.4.

3. KOOPMAN OPERATOR BASED OBSERVER
SYNTHESIS

Consider a discrete time nonlinear system with outputs

Xt:f(xt—l)a

yt =h(x¢), (®)

where, h : X — R™ is the output function or observable
on the state space X. An observer (often designed as an aux-
iliary dynamical system), is a casual mapping from any prior
information about the initial condition xq and the past outputs
{y: : to <t <t} to an estimate X; of the current state.

3.1 Nonlinear Observers

To put the Koopman operator based observer synthesis frame-
work in context of existing literature, we first briefly review
observer design techniques based on observer forms. Such tech-
niques include global/pseudo/extended linearization, lineariza-
tion by input-output injection or error linearization, immersion
based design, etc., see Nijmeijer and Fossen (1999); Besancon
(2007); Keller (1987); Kang et al. (2013); Unbehauen (2009)
and references therein. The key idea behind such techniques is
to seek a transformation

u=V(x), w = W(y), )
such that (8) can be converted into a canonical observer form,
e.g.

(10)
an

where, a(y), 5(y) are referred to as output injection terms. One
can then design a Luenberger-like linear observer,

uy = A1 + afyy),
wi = Cuy + B(ye),
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Uy = A1 + a(y:) + L(wy — Wy), (12)
wy =00y + B(ye), (13)
x; =V (), (14)
where, L is the Luenberger gain. The error e, = u; — Uy
follows a linear dynamics: e; = A°e,. Thus, if (A%, C)
is observable, then L can be chosen so that A°° — LC is

Hurwitz. The transformations (9) must satisfy a first order sys-
tem of partial differential equations (PDEs) and must atleast
be local diffeomorphisms. To be solvable the system of PDEs
must satisfy geometric integrability conditions (Krener and Re-
spondek (1985)). A more general observer form is the so-called
state affine form in which A°(y) and C“°(y) are functions of
outputs. For this form one has to employ Kalman-like observer
instead of the Luenberger approach. The PDEs for resulting
transformations are more complicated, but the integrability con-
ditions are less stringent (Unbehauen (2009)). Along similar
lines, immersion based approaches have been proposed (see
(Besancon (2007)) and references there in) which do not restrict
the state transformation to be a diffemorphism, and employ
immersion of state space into a space of larger dimension to
facilitate observer synthesis.

The problem with above approaches is that there are often
restrictive, i.e. only very few systems in practise can be trans-
formed into the desired observer forms. These techniques have
been at best employed for low dimensional problems, and
the computations grow in complexity as the state dimension
increases. We next discuss how Koopman operator theoretic
framework can provide a practical approach for obtaining a
suitable observer form which potentially makes linear observers
accessible in a wide range of nonlinear estimation problems.

3.2 Koopman Observer Form

Assumption I: Let " = span{¢;}?_, be a subset of KEFs for
system (8) such that h(x),x € F™, and so

x =Y ¢i(x)v{, h(x)=>Y ¢:x)vP, (15
=1 =1

where, v& € C4,i =1,--- ,n are the KMs, and vl € C™ i =
1, ,n are the OKMs as defined before.

Note that if A is a complex KE with KEF ¢, then the complex
conjugate A is also a KE with KEF ¢. Similarly, for real valued
observables h, the KMs occur in conjugate pairs. In whatever
follows, we order KEFs {¢1, ¢, - ,¢,} (and correspond-
ingly KEs and KMs/OKMs) such that complex conjugate ap-
pears adjacent to each other. We shall denote by: Re(c), Im(c),
|e| and arg(c) as the real part, imaginary part, modulus and
argument, respectively of any complex number ¢ € C; and by
* as the standard vector/matrix transpose.

Define T7;(x) = (¢1(x), d2(X), - - , pn(x))* as follows:

o ¢ = ¢; if i-th KEF is real, and
e ¢; = 2Re(¢;) and @11 = —2Im(¢;), if ¢ and 7 + 1-th
KEFs are complex conjugate pairs.

Consider a nonlinear change of coordinates defined by Ty, :
R - R™,

2 = Tu(xy). (16)
We refer to this transformation as the Koopman Canonical
Transform (KCT), and the coordinates z, = (214, -+ ,2Zn )" €

R™ as the Koopman Canonical Coordinates (KCC). From Eqn.
(4), it follows:

® Zit = Aizi,t—l» if 7-th KEF is real,

[ (zi,h Zi+1,t)* = Q)\i (Z‘i’tfl, Ziflﬁtfl)*, if 7 and ¢ + 1-th
KEFs are complex conjugate pairs, where,

- cos(arg A\) sin(arg A
@ = Al (sirg(arg /)\) cos((arg /\))> ‘ a7

It follows then, z; = Az;_1 where, A is a n x n real block
diagonal matrix such that:

e A has a diagonal entry A; ; = A, if i-th KEF is real,
Aii A

Aiv1i Aivtiv } =@
if ¢ and ¢ + 1-th KEFs are complex conjugate pairs.

e A has a block diagonal entry {

Furthermore, it is straightforward to show that KMD (15) can
be expressed in terms of KCC as
h(x;) = C"z, (18)

where, C* € R¥>™ and CP? € R™*"™ are matrices obtained
from KMs and OKMs, respectively. For instance, i-th column
of C* is v¥ if i-th KEF is real, and ¢, i4-1-th columns are Re(v;)
and Im(v;), respectively if ¢ and i + 1-th KEFs are complex
conjugate pairs. Similar construction applies for CP.

Xt = C‘/L‘Zt,

In summary, using KCC z,, the evolution of full state observ-
able x; and h(x;) can be expressed via a linear time invariant
system with outputs:

zy = Az, (19)
h(x;) = C"z,, (20)
Xt = C'TZt. (21)

We will refer to the system (19-21) as the Koopman Observer
Form (KOF). Some remarks follow:

e Following as similar procedure as outlined above, one can
derive an analogous KOF in continuous time setting.

e KOF does not explicitly depend on KEFs.

e Compared to the observer form (10-11), in the KOF there
are no output injection terms.

e In the observer (12-14) based on standard observer form,
the state estimate is obtained by the inverse nonlinear
transform (see Eqn. (14)). In contrast, in KOF, state es-
timate can be obtained via a linear transform (see Eqn.
(21)), thereby providing a computational advantage.

e Typically n > d, i.e the dimension of KOF can be sig-
nificantly greater than the state space dimension of the
original nonlinear system. In this regard Koopman ap-
proach can be thought of as an immersion based design,
see Besancon (2007). When n — oo, a finite approxima-
tion n = n, > 1 has to be introduced from a practical
perspective. Different approaches for approximations and
analysis of approximation error is beyond the scope of this
paper, and will be investigated in future work. The infinite
dimensional linear systems theory (Temam (1997)) could
play an important role in such an analysis.

e Finally, note that in above construction of KOF we have
assumed KEFs to be simple. One can extend the above
construction for generalized KEFs (see Budisic et al.
(2012)) as well, in that case A will have a more general
block diagonal structure.

Given the KOF, one can design a standard Luenberger observer
(or Kalman filter, see Section 3.5 for further discussion)

;= Aty + L(y: — ye), (22)
yi =Cluy, (23)
Xt = lelt (24)

As before if the pair (A, C?) is observable then the observer
gain L can be chosen such that the observer (22-24) converges.
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Finally, note that if an exact finite dimensional KMD (see Eqn.
(15)) holds, then KOF is globally valid and observer designed
based on it will be globally convergent under observability
conditions stated above. For what classes of systems one can
achieve this will be investigated in future. It is clear, however
that since KOF can only have one equilibria at origin, an exact
finite dimensional KMD/KOF can only be possible if system (8)
has only one equilibria. When system (8) has multiple equilibria
or attractors in general, it may be possible to get a finite KOF
restricted only to basins of attraction. In addition there may be
cases where infinite many terms are needed in KMD, i.e. n —
oo in Eqn. (15), and one will have to introduce a truncation (as
pointed above), and thus the KCT may be accurate only locally
in a subset of the state space X. In those cases the observer
design based on the KOF may only exhibit local convergence.
Still, this convergence is expected to hold over a much larger
potion of state space (e.g. basin of attraction) compared to the
EKEF, for example.

While additional theoretical work is required to characterize
tradeoff between accuracy and size of KOF, and region of
validity of KOF, we numerically demonstrate that Koopman
framework could provide a practical and superior approach for
observer design. In addition availability of scalable numerical
techniques for Koopman tuple computation (as discussed in
Section 3.4) makes this approach viable for a large class of
nonlinear systems including high dimensional ones.

3.3 Nonlinear Observability

We will use standard notion of nonlinear observability Her-
mann and Krener (1977), which we briefly recall first. A pair
of points xq and x{, are indistinguishable (denoted x(Ix() if
the system (8) with these two initial conditions realizes same
sequence of outputs {yo,¥y1,¥2, - }. Consequently, system
(8) is said to be nonlinearly observable at x¢ if I(x9) = {xo}
and is nonlinearly observable if I(x) = {x} for every x € X.

Theorem I: If Assumption I (see Section 3.2) holds and the pair
(A, C™) for the KOF (19-21) is observable, then system (8) is
nonlinearly observable, and L can be chosen such that the linear
observer (22-24) converges.

Proof: The proof is by contradiction. First, note that since
x = (%z, the transformation 7z, is an injective map. Next
assume that the system (8) is not observable, and so there
exists two distinct initial conditions xo # x{, resulting in same
output sequence {yo, y1,y2, - }- Let zg = Ty(xo) and z{, =
Tu(xp), then zg # z(, by injectivity of T;,. By construction, the
KOF (19-21) will also produce same output sequence starting at
zo and z(,. This is a contradiction, since the KOF is observable
under conditions of Theorem I, and so zy = z{).

It is interesting to note how certain KEs (forming A) and OKMs

(forming C™) play a role in determining nonlinear observability
and convergence of observer design.

3.4 Koopman Tuple Computation

In this section we summarize the extended DMD (EDMD)
approach (Williams et al. (2015a)) and its kernel version
(Williams et al. (Unpublished)) which we will use for Koopman
tuple computation for obtaining the KOF. EDMD is a extension
of DMD which has emerged as powerful tool for analyzing
nonlinear systems. DMD originally introduced in fluids com-
munity (Schmid (2010)), characterizes the nonlinear dynamics
through analysis of some approximating linear systems. It uses
Arnoldi type methods for computing DMD eigenvalues/modes
as empirical Ritz eigenvalues/vectors from sequential data. It
was shown in (Rowley et al. (2009)) that DMD is closely related
to KMD, and under certain conditions DMD eigenvalues/modes

are equivalent to KEs/KMs. This connection has been further
strengthened in exact DMD approach (Tu et al. (2014)), which
generalizes the notion of approximating linear system used in
DMD, and is able to handle non-sequential data. EDMD further
extends exact DMD in the sense that it reduces to exact DMD
under a specific choice of dictionary used in EDMD.

EDMD is a Galerkin weighted residual approach which uses
a dictionary of basis functions to approximate KEFs and cor-
responding KEs. Let Fp C JF be a subset of observables
spanned by a dictionary D = {41, ,%¥p}, where ¢; : X —

C. Then 6,0 € Fp can be expressed as 0(x) = U*(x)a,
O(x) = W*(x)a, respectively, for some a,a € CP, where
U(x) = (¢¥1(x),- -+ ,¥p(x))*. Under the action of Koopman
operator

UB)(x) = (Tof(x))a=T*(x)a+ r(x)
=U*(x)Ua+ r(x), (25)

where, U is a finite dimensional approximation of I/, and r(x)
is the residual as Fp may not be invariant under action of Uf.

Given a dataset of snapshot pairs {(x;,%;)}¥,, % = f(x;),
one can formulate a least square problem of minimizing,

N N
Do IrGxa)lP = [(F (%) — U (xi)U) al,
i=1 i=1
to obtain
U =¥l (26)
where, t is the pseudo inverse and
£ =
X9 X2
x — . y \Ilf = .
U (xn) 1 vyp RANCS N By
Let A\;,2 = 1,---, D be eigenvalues of U, with corresponding

right/left eigenvectors &;, y;, respectively. Then A; approximate
KEs with corresponding KEFs given by ¢;(x) = U*(x)&;. Let
the coordinate function g;(x) = z; be in span of D so that
x; = U*b,; for some b; € RP. Then, KMs can be obtained
via v; = B*v; , where B = [by, - - - b,]. Similar computations
result in OKMs.

EDMD approach discussed above suffers from curse of dimen-
sionality due to explosion in number of required dictionary ele-
ments D with the increase in state dimension d. To circumvent
explicit construction of the dictionary, a kernel based EDMD
approach has been proposed in Williams et al. (Unpublished).
In this approach the computation of eigenvectors/eigenvalues of
U is accomplished by forming an alternative matrix

U=GrA, 27)
where, G = ¥, P} and A= WP are N x N matrices. Us-
ing the kernel trick, entries of matrices GG, A can be computed

directly (without forming ¥ (x) for computing inner products
of form ¥*(x;)¥(x,), an O(D) operation) as
Gij = K(x5,%5),  Aij = K(X;,%5), (28)
where, K(x,x) : X x X — R is an appropriately chosen
kernel function. K implicitly defines Fp (subspace of scalar
observables spanned by elements of ¥(x)), and evaluates the
inner products implicity in O(d) rather than O(D) time. The
steps for Koopman tuple computation based on this approach
are summarized in Algo 1. The total computational cost of
this approach is O(N? max(d, N)). For problems with large
number of snapshots N, Krylov methods could be used to
compute a (leading) subset of the eigenvalues/vectors.
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Algorithm 1 Kernel based EDMD

1: Input: Dataset with snapshot pairs {(x;,%;)}¥,, kernel
function K and observable h
2: Output: Koopman tuple ({(\i, #i, v¥)}Y, and OKMs

{(vPH,
3: Compute U by forming G, A using (28).
4: Compute eigenvalues \;, 2 = 1,--- , N, and corresponding

right eigenvectors &; of U.
5: Let =2 = [&1 - - - En], then i-th rows of
P, = G=, Pg = AE, (29)
contains the numerically computed KEFs evaluated at x;

and X;, respectively.
6: Compute KMs/OKMs as

Vi, Vi) = (@x)T Hy, (30)
where, X = -,xn|* and  Hy =
[h(xl)7 T 7h(XN)]*'

Some remarks follow:

e Choice of dictionary/kernel function: Optimal choice of
D or equivalently K is an important, yet open question.
These choices will most likely depend both on underlying
dynamical system and strategy used to obtain the dataset.
Examples of D include polynomials, spectral elements,
radial basis functions etc. (Williams et al. (2015a)), while
choices of kernels include polynomial, Gaussian, Matern,
etc. see Rasmussen and Williams (2006). Note that when
Fp is not an invariant subspace of ¥/, than it can result
in errors in computation of some eigenfunctions. Further,
since KEFs are discontinuous across basins of attraction,
as appropriate choice of dictionary/kernel is critical to
obtain approximation over larger domain which extend
beyond basin of attraction. We refer the reader to see
Williams et al. (2015a); Mauroy and Mezic (Unpublished)
for further discussions on such issues.

e Choice of sampling points: EDMD procedure being a
weighted residual Galerkin method converges as N —
oo. With randomly distributed samples, the convergence

rate behaves as O(N~'/2) as in Monte Carlo integration
techniques. Other sampling choices, e.g. uniform grid,
effectively uses different quadrature rules and could lead
to better convergence rates.

3.5 Computation of KOF and Observer Design

Algo. 2 summarizes the procedure for constructing KOF. In
Step 4, any approach for Koopman tuple computation (as dis-
cussed in Sections 3.4/2) can be used. Note that for a given
system, KOF computation can be carried out once in an off-line
fashion.

Algorithm 2 Procedure for obtaining KOF

1: Input: f, h

2: Output: KOF (4, C%, C?)

3: Generate dataset with snapshot pairs {(x;,%;)}¥;, where
X; = f(x;) by simulating system (1).

4: Compute Koopman tuple (\;, ¢;, v¥) and OKMs vB, i =
1,---,n,e.g. using Algo (1).

5. Use the procedure described in Section 3.2 to obtain the
KOF (A, C*,CP).

Once KOF is available, one can use any linear observer, e.g.
Luenberger or Kalman filter, for estimation as discussed in

Section 3.1. An additional step is required for initializing the
observer z, based on initial state specifications in the original
coordinates xq. Specifically,

e [nitial state: z( can be obtained directly by using the KCT
(16), i.e. zg = Ty4(x0). One could also invert the relation
(20) to approximately obtain zy ~ (C?)Tx.

e [nitial distribution: For the case when a distribution for
X is prescribed, e.g. xg ~ N (Xo, P) (where, N (x, P)
denotes a normal distribution with mean x and covariance
P), one has to resort to a numerical procedure to obtain
corresponding distribution on zg. Note that even when
Xo is normally distributed, zy will in general not be
normally distributed under KCT. Due to non-normally
distributed initial condition, the distribution on z; (and
similarly for x; via relation (21)) will evolve as a non-
normal distribution even though KOF is linear, which is
no surprise (as under nonlinear evolution (1), a normally
distributed x; at ¢ = 0 could evolve into a general
distribution). In our application we use the Kalman filter
with the approximation zo ~ N (Zo, P%) where,

7o = (CM)'xy, PZ=(CMPI(CMHDH*. @31

Finally, note that once the filter estimates in KCC {2},
have been obtained from a given output sequence {y;}~ ;, the

corresponding state estimates {X;}7_, can be obtained using
%: = C*"2z;. One can recover approximate state error covariance

Pr = C*PZ(C*)* from { P#}7_, if one uses the Kalman filter.
4. NUMERICAL DEMONSTRATION

In this section we numerically demonstrate Koopman operator
framework for observer synthesis. We consider discrete time
nonlinear system with output noise

Xt = f(xt—l)a

vt =h(x;) + s, (32)
where, s; ~ N (0, R) is zero mean normally distributed noise
with covariance matrix R. Also, we assume that the initial con-
dition is uncertain with normal distribution xo ~ N (X, PY).
In what follows we consider output noise covariance to be of
the form R = 02Z,,, where 0, > 0 and similarly initial
state covariance to be form P¥ = 02Z,, where Z,, denotes a
p X p identity matrix. Note that additive noise term in (32),
leads to a similar additive term in output Eqn. (20) of the KOF.
In all the examples considered, we use Kalman filter based
on KOF for estimation, and for brevity we will refer to that
filter as the Koopman Kalman Filter (KKF). For comparison
we use the EKF with initial condition sampled according to
xg ~ N (Xo, P¥). The KKF is initialized consistently with this
initial condition using the procedure (see Eqn. (31)) described
in Section 3.5.

To assess estimation performance, we obtain several realiza-
tions of noisy outputs {y*,- - ,y’T}zN:T1 by simulating the sys-
tem (32) with random initial conditions x{, ~ N (Xo, P¥),7 =
1---, N, at a given noise levels o,. Let {xf)," x5 N be
underlying state sequence and let {Xp, - XN be its es-
timate, then estimation accuracy can be measured using root
mean square error as a function of time:

N,
o LS i g
RY" = M;H&—xm?, t=1,T.  (33)

4.1 Example I

Consider a nonlinear map f in Eqn. (32) to be
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Fig. 1. a) R7° for EKF and KKF for for o, = 0.01 and 0, = 1
for the system (34). b) Responses of KKF/EKF for one of
the realizations of the output with o, = 1.

—KKF,n=5.00
- - -KKF,n=25.00
s KKE 1n=51.00

20 40 60 80 100
time (sec)

(a)

Fig. 2. R{°(0, = 1) for KKF based on different order n of
KOF for the system (36).

_ pz
) = (uxz + (P — p)ea? ) ’ Gd

and let h(x) = 2?3 + x5 be the output. The system has a
globally stable fixed point at the origin. It can be shown that
for (34), p, are Koopman eigenvalues with eigenfunctions

b,(x) = z1, and ¢, (x) = xo — cz?, respectively. Also note
that p?, pu etc. are Koopman eigenvalues with eigenfunctions
$2, 6,0, ete. It follows that x = 37| ¢;(x)v; where, ¢ =
d)p; ¢)2 = ¢/M ¢3 = ng and vy = (170)*’ V2 = (Oa 1)* and
vy = (0,¢)* are the KMs. Similarly, ha(x) = ¢2(x) + (c +
1)¢3(x) defining the OKMs. Thus, using the KCT

—KKF,0,=0.01
- - -KKF,0,=1.00/]
—EKF,0,=0.01 ]
- - -EKF,0,=1.00

~ <

20 40 60 80 100
time (sec)

(a)

Output

0.2 X . | = = = Noisy Output
20 40 60 80 100
time(sec) Truel
o e T r 1 KKF
= gg M b EKF|
g g8l . 7
IS ——
20 40 60 80 100
time(sec)
| PO N A——-—
0.5 Bros
=1 LA . . . . J
20 40 60 80 100
time(sec)
(b)

Fig. 3. a) R7° for EKF and KKF for o, = 0.01 and 0, = 1 for
the system (36). b) Responses of KKF/EKF for one of the
realizations of the output with o, = 0.01.

1 (x) X1 )
z="Tux)=| ¢20x) | = | x2 —cx1 |, (35)
¢3(x) X7
one obtains KOF (19-21) where, A = diag(p, u, p?), C% =
[vi vo v3l,and C® = [0 1 ¢+ 1]. Note that the KOF

is globally valid in this case. It is easy to verify that the
observability matrix of KOF

ch 01 c+1
cha | = (0 7 02(c+1)> ;
chA? 0 u? plc+1)

is rank deficient. So Theorem I in section (3.3) does not ap-
ply. However, null space of O is linear space spanned by
(I 0 0)* and only states x that gets mapped to this space
under 77;(x) (35) is x = 0. Thus, x is still observable based on

KOF. This example suggests that conditions in Theorem I are
not necessary.

O:

Figure 1-a shows that the estimation accuracy of KKF is sig-
nificantly better that EKF, where the average in (33) is taken
over N, = 100 randomly sampled initial conditions around the
origin. Note that EKF performs better for the higher noise level,
as the noise helps to stabilize the filter. The noisy output and
time response of KKF and EKF for one of the sampled initial
conditions for o, = 1 is shown in Fig. 1-b.

4.2 Example Il

As the second example, we consider discrete time Van der Pol
system in reverse time with

X1 71’2dt ) : (36)

f(x) = <JJ2 + (z1 — @0 + 2320 dt
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where, dt = 0.1, and let h(x) = 2% + x5 be the output. The
system has a stable fixed point at origin and an unstable limit
cycle which forms the boundary of the basin of attraction for
the fixed point, which we will denote by B. To obtain KOF we
compute Koopman tuple using kernel EDMD Algo. (2) using
snapshot pairs uniformly distributed in 5. After trail and error,

we found Martern covariance kernel (K (x1, x2) = (1+ @ +

%) exp(— \/lf)r) , where, r = ||x; — X2, see Rasmussen and

Williams (2006)) worked well for this problem.

We used N = 51 snapshot pairs leading to computation of
n = 51 KEs/KMs/KEFs. To numerically study convergence
aspects of KOF, we constructed KOF by selecting only a subset
n = 5, 25 of most dominant KEs/KMs/KEFs based on ranking
by norm of the KMs. Note one can also use sparse DMD
(Jovanovic et al. (2014)) to select a subset of KMs which
are dynamically most relevant. We found that for all cases
n = 5,25,51 the pair (4,C") for KOF is observable, and
thus Theorem I applies. To compare performance of KKF based
on KOFs with different order n we used N,, = 100 randomly
sampled initial conditions in 3. The averaged RMSE curves in
Fig. 2 show that with increased order of KOF the estimation
performance improves as expected, and it is sufficient to retain
upto n = 25 dominant modes for constructing the KOF.

To compare performance of KKF with EKF we similarly used
N, = 100 randomly sampled initial conditions in 5. We found
that while KKF converged for all the sampled initial conditions,
EKEF diverged for 21% and 5% initial conditions for the noise
levels 0, = 0.01 and 0, = 1, respectively. The averaged RMSE
curves shown in Fig. 3-a are based only on the samples for
which EKF converged. The noisy output for 0, = 0.01 and
time response of KKF and EKF for one of the sampled initial
conditions is shown in Fig. 3-b, again superior performance of
KKF over EKF is evident.

5. CONCLUSION

In this paper we introduced a new approach for observer syn-
thesis based on Koopman operator theoretic framework. Specif-
ically, we showed how Koopman tuple can be exploited to
construct the KOF in a very general setting, thereby making
Luenberger/Kalman-like linear observers accessible in a much
broader context. Note that while Koopman operator has infinite
many eigenvalues/eigenfunctions, only those whose span in-
clude the state and output function are required in the KOF. We
provided a numerical procedure for constructing such a KOF,
and demonstrated superior estimation performance of the KOF
based Kalman filter compared to the EKF. By exploiting kernel
EDMD approach, the proposed framework can be potentially
applied to high dimensional problems.

In future it will be useful to characterize class of nonlinear
systems for which an exact finite dimensional KOF exists. For
cases where this is not possible, and a truncation is required,
further theoretical and numerical studies are required for as-
sessing the tradeoff between level of truncation (i.e. size of
KOF) and the estimation performance. It will also be desirable
to generalize the KOF based observer synthesis framework
for input-output nonlinear systems, a preliminary approach is
under development (Surana (Unpublished)).
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