

CDS 101/110: Lecture 7.2 Loop Analysis of Feedback Systems

November 7 2016

Goals:

- Review Nyquist Diagrams (including examples).
- Gain margin and phase margin
- Some analysis of Nyquist stability criterion systems

Reading:

• Åström and Murray, Feedback Systems, Chapter 10, Sections 10.1-10.3,

Closed Loop Stability Analysis

"simple" negative unity feedback

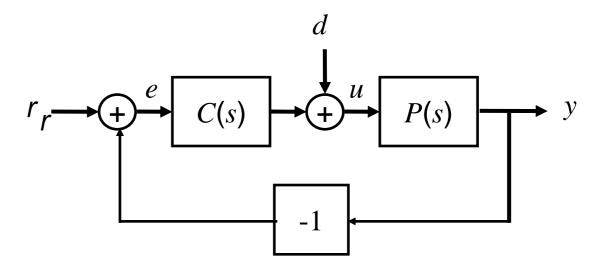
Q: If we know properties of P(s) and C(s), (the open loop transfer function) can we infer anything about closed loop behavior and performance?

$$L(s) = P(s)C(s) = \frac{n_P(s)}{d_P(s)} \frac{n_C(s)}{d_C(s)}$$

Closed loop transfer function:

$$G_{yr} = \frac{PC}{1+PC} = \frac{n_p n_c}{d_p d_c + n_p n_c}$$

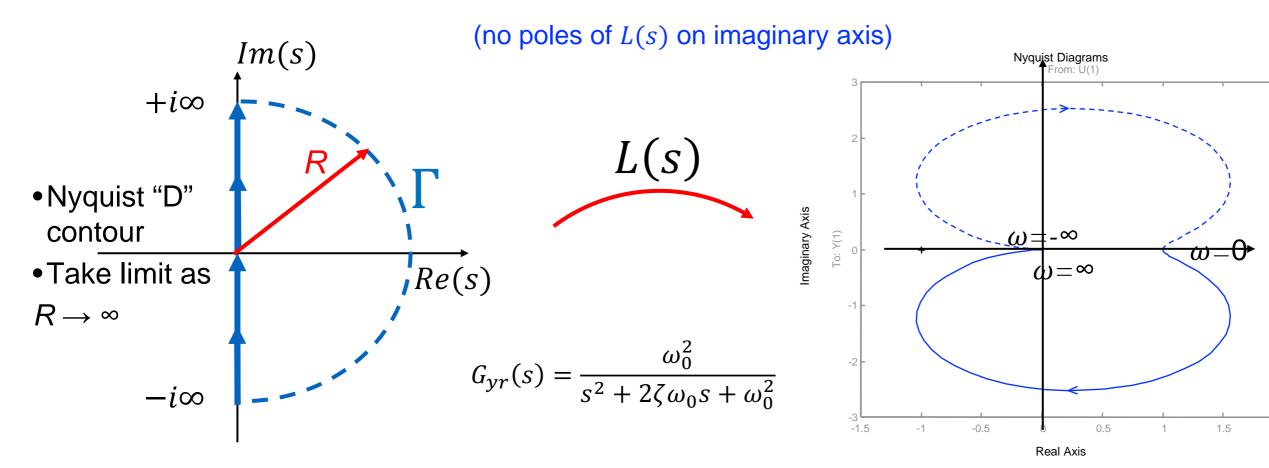
- Poles of G_{yr} determine stability.
- Zeros of (1 + PC) are poles of G_{yr}
- Is there an easy way to check for RHP zeros of (1 + PC)?



The **Nyquist plot** allows us to check if (1 + PC) has zeros in RHP, and therefore if G_{yr} is unstable

- useful if poles of $d_P(s)d_C(s) + n_P(s)n_C(s)$ not easily found.
- collateral benefit: new ideas on "robustness" of closed loop system.
- useful for *time delay* analysis of linear systems

Basic Nyquist Plot (review)



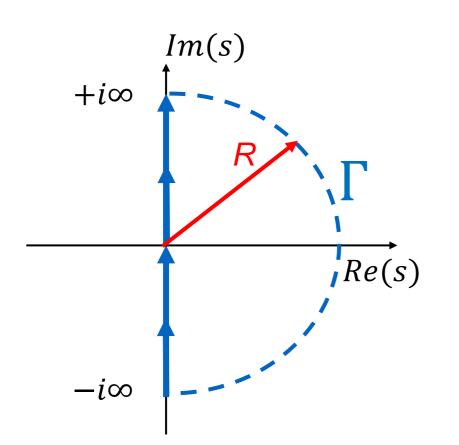
Nyquist Contour (Γ) :

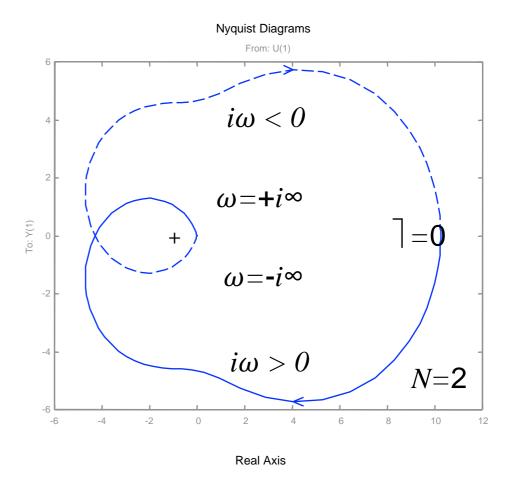
- Start from 0, and move along positive Imaginary axis (increasing frequency)
- Follow semi-Circle, or arc at infinity, in clockwise direction (connecting the endpoints of the imaginary axis)
- From $-i\infty$ to zero on imaginary axis
- Note, portion of plot corresponding to $\omega < 0$ is mirror image of $\omega > 0$

Nyquist Plot

- Formed by tracing s around the Nyquist contour, Γ, and mapping through L(s) to complex plane representing magnitude and phase of L(s).
- I.e., the image of L(s) as s traverses Γ is the Nyquist plot
- Goal: from complex analysis, we're trying to find number of zeros (if any) in RHP, which leads to instability

Nyquist Criterion





Thm (Nyquist). Consider the Nyquist plot for loop transfer function L(s). Let

- *P* # RHP poles of open loop L(s)
- *N* # clockwise encirclements of -1 (counterclockwise is negative)
- Z # RHP zeros of 1 + L(s)

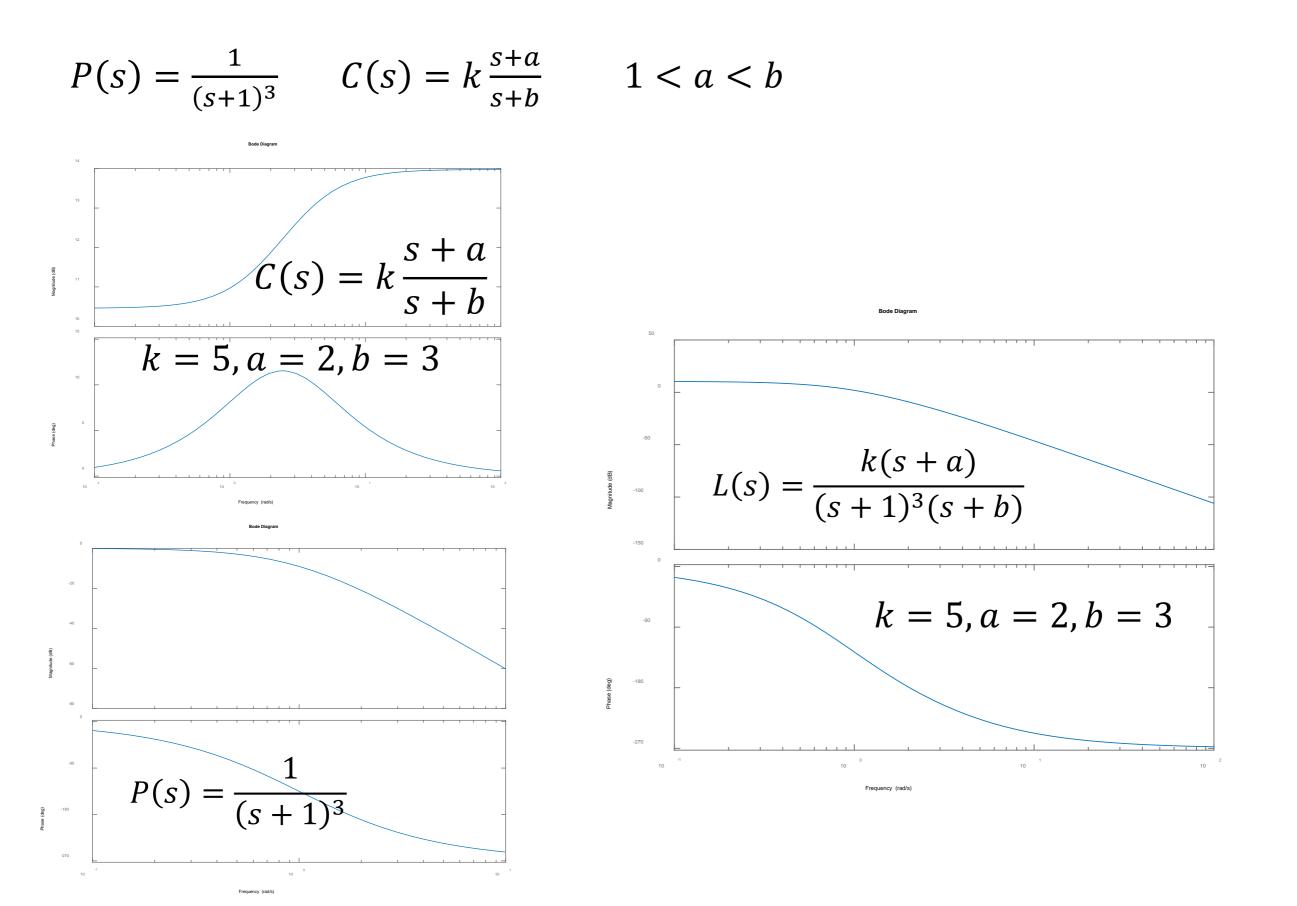
Then

$$Z = N + P$$

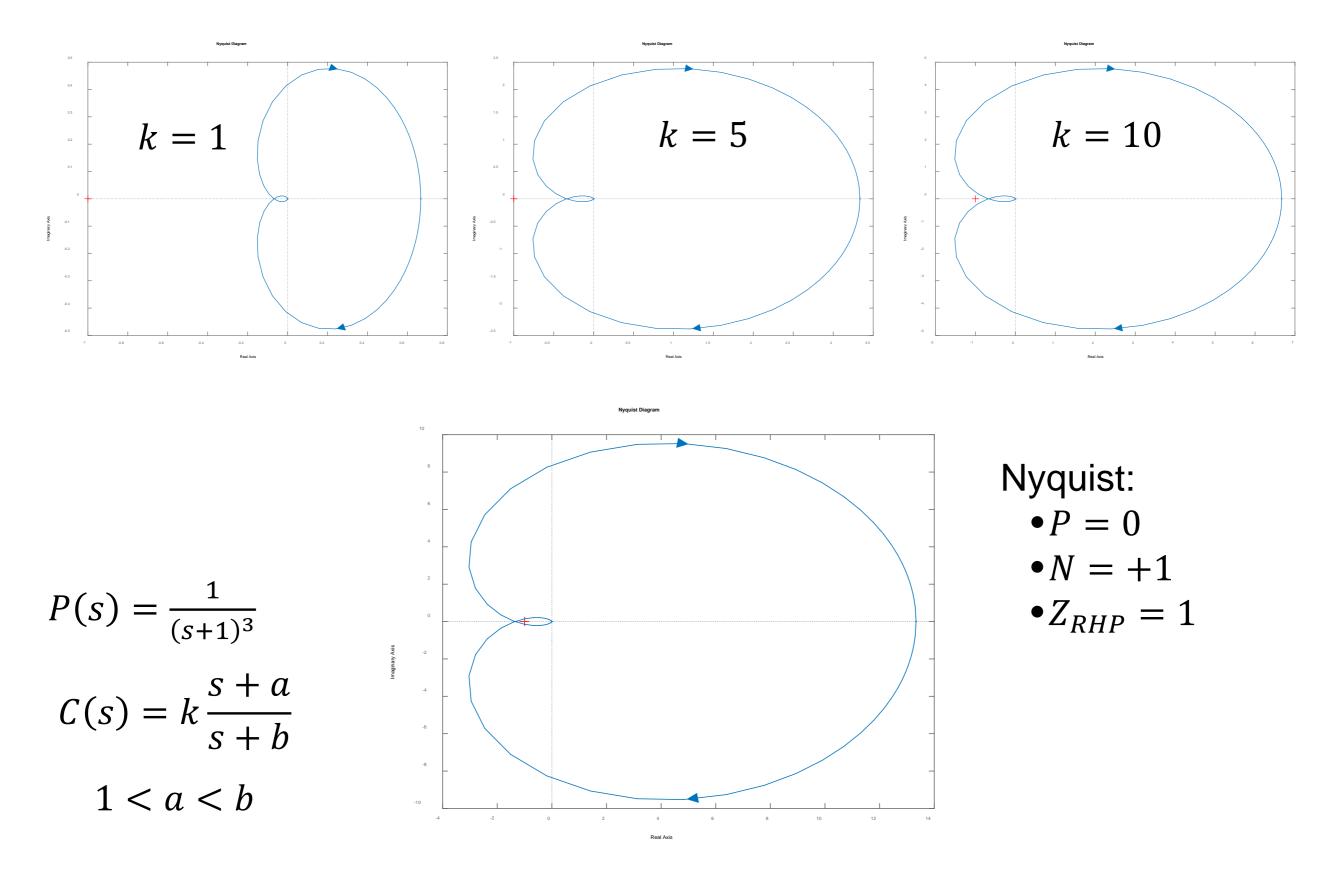
Consequence:

- If $Z \ge 1$, then (1 + L(s)) has RHP zeros, which means that $G_{yr}(s)$ has RHP poles.
- *G_{yr}(s)* is unstable with simple unity feedback, and control *C*(*s*)

Nyquist Plot Example #1



Nyquist Plot Example #1



Robust stability: gain and phase margins

Nyquist plot tells us if closed loop is stable, but not how stable

Gain margin

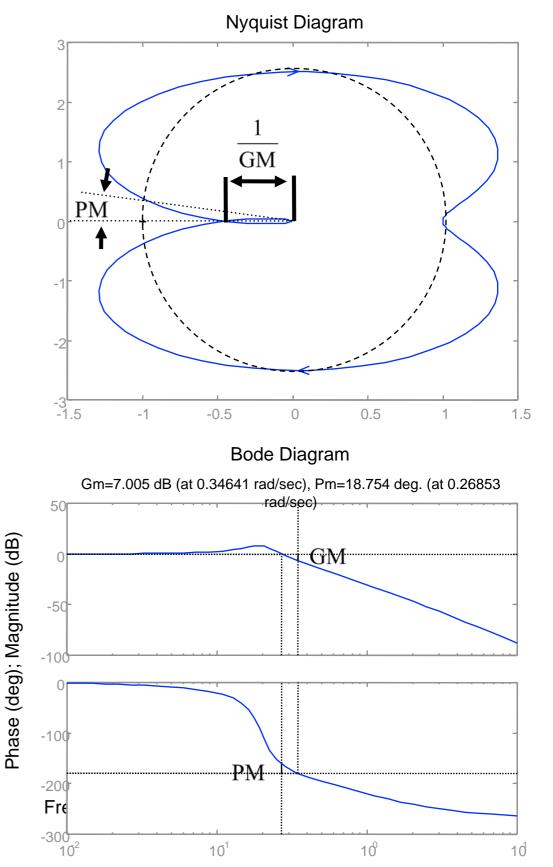
- How much we can modify the loop gain and still have the system be stable
- Determined by the location where the loop transfer function crosses 180° phase

Phase margin

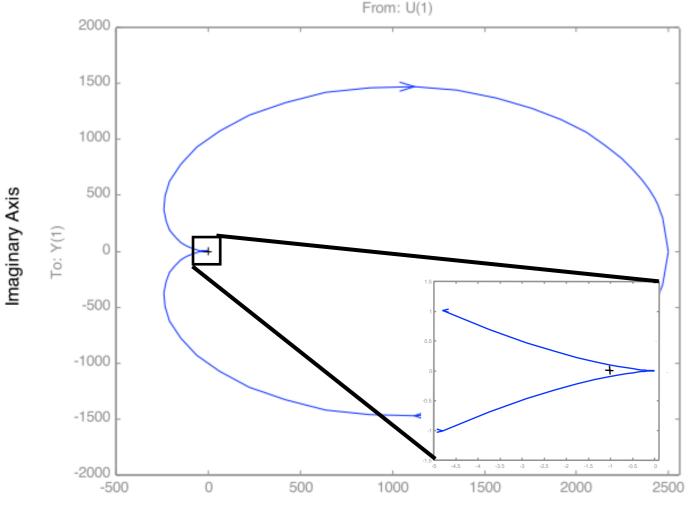
- How much "phase delay" can be addeded while system remains stable
- Determined by the phase at which the loop transfer function has unity gain

Bode plot interpretation

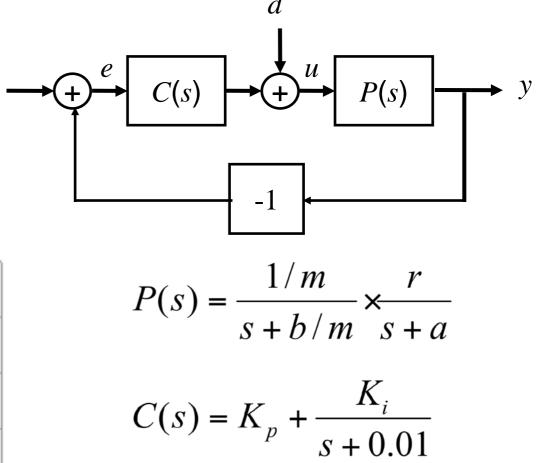
- Look for gain = 1, 180° phase crossings
- MATLAB: margin(sys)



Example: Proportional + Integral* speed controller



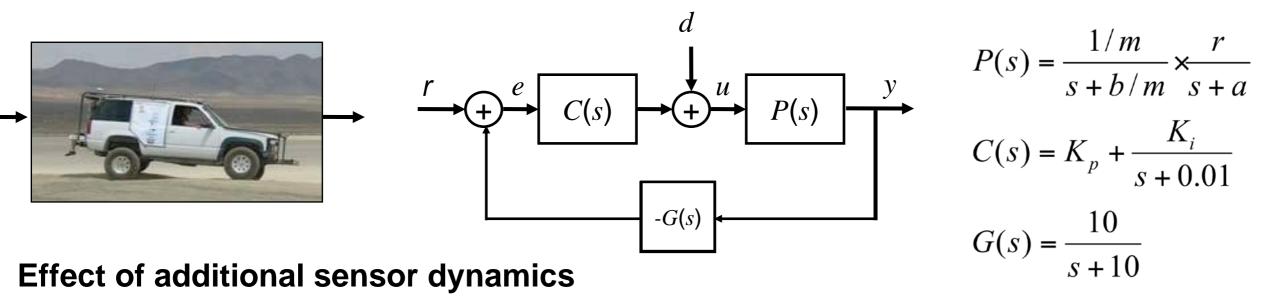
Real Axis



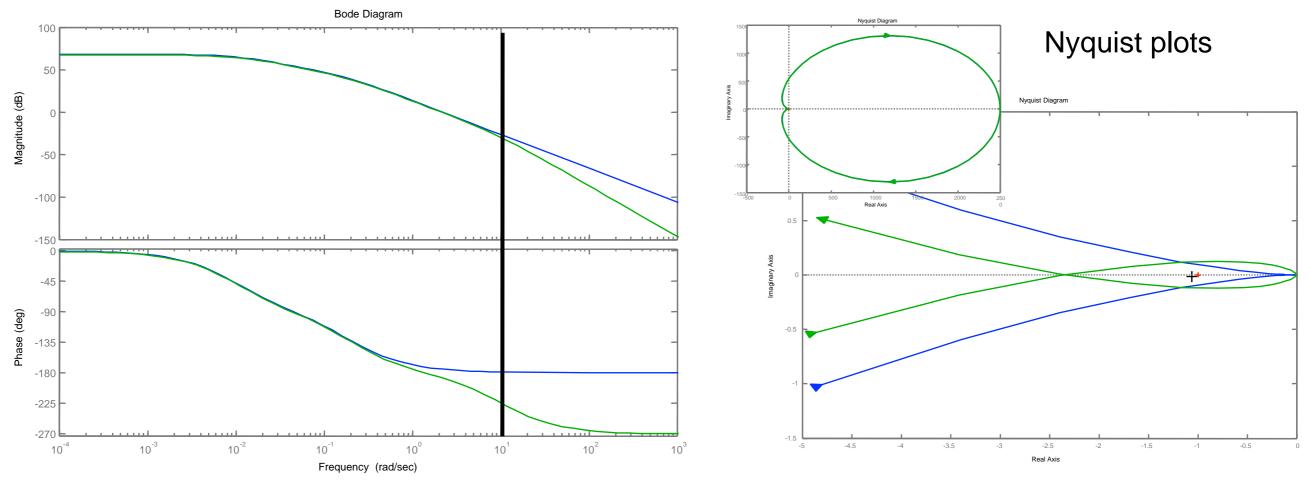
Remarks

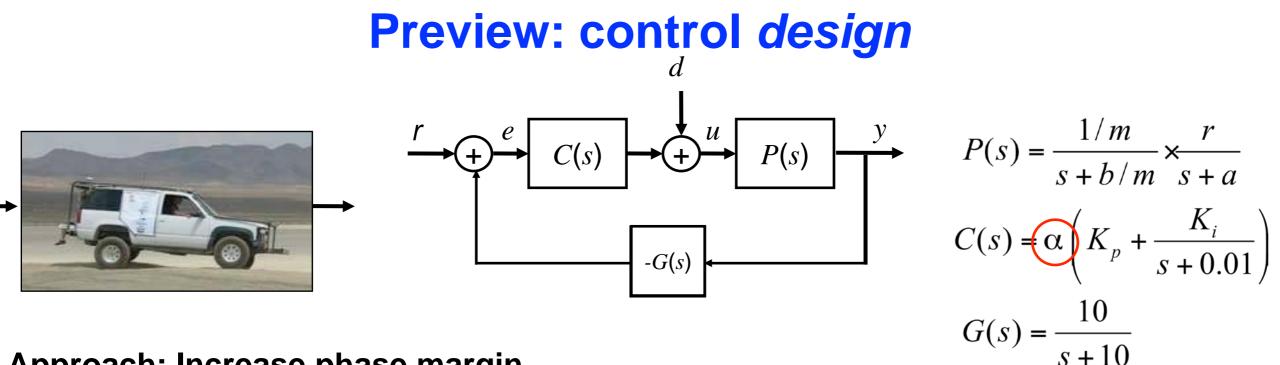
- $N = 0, P = 0 \Rightarrow Z = 0$ (stable)
- Need to zoom in to make sure there are no net encirclements
- Note that we don't have to compute closed loop response

Example: cruise control



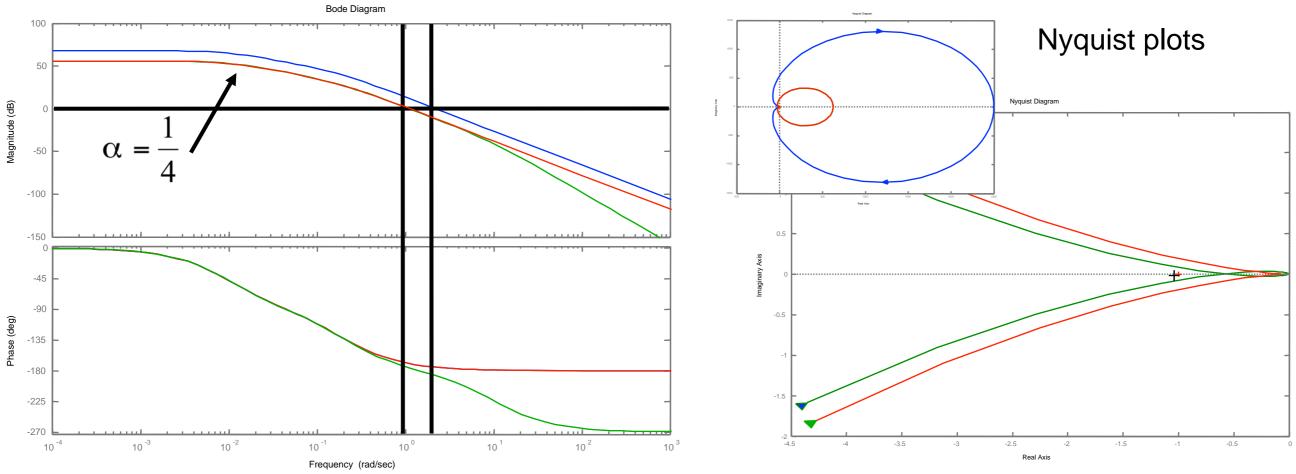
- New speedometer has pole at s = 10 (very fast); problems develop in the field
- What's the problem? A: insufficient phase margin in original design (not robust)





Approach: Increase phase margin

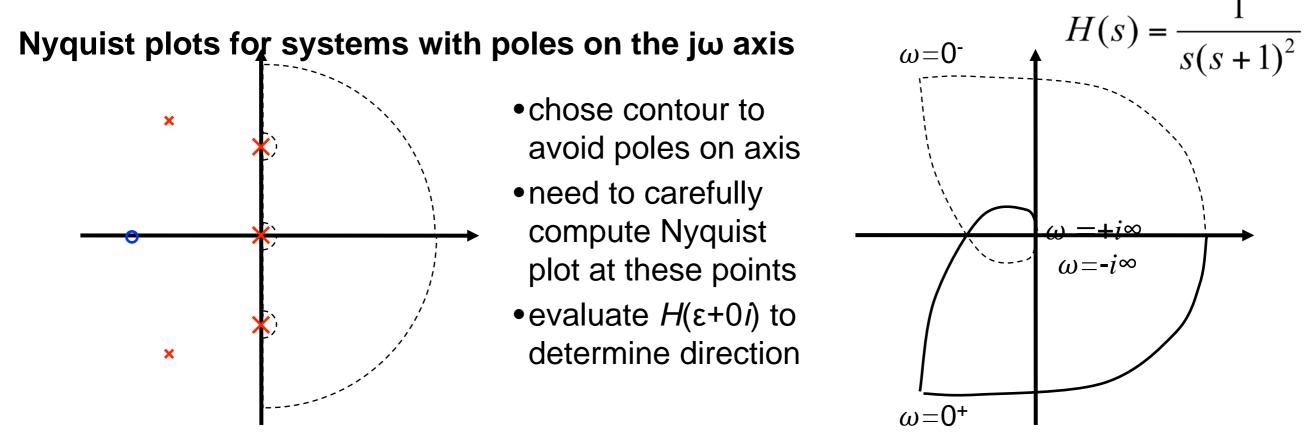
- Increase phase margin by reducing gain \Rightarrow can accommodate new sensor dynamics
- Tradeoff: lower gain at low frequencies \Rightarrow less bandwidth, larger steady state error



Comments and cautions

Why is the Nyquist plot useful?

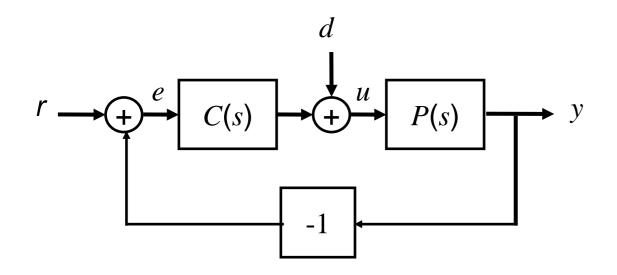
- Old answer: easy way to compute stability (before computers and MATLAB)
- Real answer: gives insight into stability and robustness; very useful for reasoning about stability



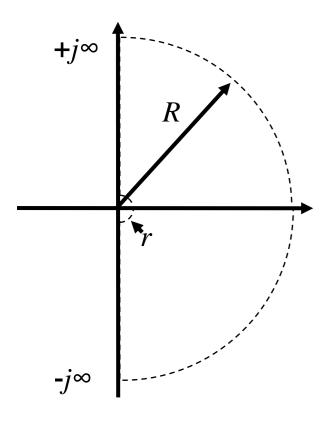
Cautions with using MATLAB

- MATLAB doesn't generate portion of plot for poles on imaginary axis
- These must be drawn in by hand (make sure to get the orientation right!)

Summary: Loop Analysis of Feedback Systems



- Nyquist criteria for loop stability
- Gain, phase margin for robustness



Thm (Nyquist).

P # RHP poles of *L*(*s*) *N* # CW encirclements *Z* # RHP zeros

Z = N + P

