CDS 101/110: Lecture 5.2
Observability & State Estimation

October 28, 2016

Goals:
* Review Observability and Observers.
* Complete and “polish” the analysis of combined feedback and
observation.
* A few thoughts on observer design.

* Brief mid-term review

Reading:
e Astrém and Murray, Feedback Systems-2e, Section 8.1-8.3



Observability

System: x=Ax+Bu;, y=Cx+Du (¥

» Definition: The linear system (*) is said to be Observable if for every T>0
it is possible to determine the system state x(T) through measurements
y(t) and knowledge of u(t) on the interval [0, T].

- Note: some texts/papers are slightly different: Observable if x(t = 0)
can be determined from measurements and inputs.

- If (*) is observable, then there are no “hidden” internal states. This is a
practical issue in system design—do you have the right sensors?

Testing for Observability:

CA
« The Matrix, W, must be fullrank Wy =| CA?

_CA;”‘_l_



System:

» Definition: The linear system (*) is said to be in Observable Canonical

Observable Canonical Form

Form (OCF) if
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* When the system (*) is in OCF, the controllability matrix takes the form:
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State Estimation

State Estimator: X = A% + Bu + L(y — CX)
 The term L(y — Cx) provides “feedback” to the estimation process.

 Analysis: Let X = x — X denote the error in the state estimate. Then

X¥X=x%x—%=Ax+Bu—[AX 4+ Bu+ L(y — C®)]
= A(x — %) + LC(x — %) = (A — LO)X

Hence, the converge of the estimation error is governed by eigenvalues of (A — LC)
- Dual to previous reachability analysis. “Design” = eigenvalues of (4 — LC).
- Place poles of (AT — CTLT). MATLAB: place(47, CT, eigenvalues)

« Theorem: If (4, C) is observable, then the poles of (A — LC) can be set arbitrarily.

» Design: Specify the desired poles of (A — LC) by
A—pc(s) = s +pis" T+t ppgs+p, =0

_[PrT 4
Then gain matrix is found as: L = W, W, ‘

Pn — Qn



Feedback of Estimated State

Feedback the estimated state: u = —KX + k,r
« Analysis: Again, let X = x — X denote the error in the state estimate. The
dynamics of the controlled system under this feedback are:
x = Ax + Bu = Ax — BKXx — Bk,r = Ax — BK(x — X) + Bk,r
= (A — BK)x + BKX + Bk,r

- Introduce a new augmented state: g = [x %]*. The dynamics of the
system defined by this state is:

-

The characteristic polynomial of M is:

Ay (s) = det(sl — A+ BK)det(s] — A+ LC)

(A — BK)
0 (A LC) [

[Bk ]r_Mq+BMr

® |f the system is observable and reachable, then the poles of (A — BK) and
(A — LC) can be set arbitrarily and independently



Feedback of Estimated State

Remarks:

* The controller is a dynamical system with internal state dynamics (the
observer).

» Separation principle: The controller and observer can be designed
(eigenvalues assigned) separately/independently.

 Internal Model principle: the control system includes and internal model of
the system being controlled.
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Reachability

For LTI system x = Ax + Bu, y = Cx + Du, reachability assessed by rank of:
W,=[B AB .. A" 1B]
Definitions: recall x(t) = e4tx(0) + foteA(t‘T)Bu(T) dr
 Controllable if state can be driven to x(T) = 0 for any x(0)
e i.e, Ju(t)st. —x(0) = e A7 fOT eAT"DBu(1) dt = fOT e "Bu(z) dt
* Reachable if x(0) = 0 can be driven to any state x; = x(T) intime T
e i.e. Ju(t)st. x(T) = fOT eAT-DBu(t) dt

General Principle: Linear independence of N functions [;(t),i = 1, ..., N over
interval [¢,, t]is determined using a Gramian:
ty
G = [GU]’ Gl] = ll(T)l](T) dt
to
Linear independence is proven when G has full rank



Controllability

Controllability Gramian:

C(to, t1) = J

o

ty ty

eA(to—T)BBTeAT(to—T)dT RN C(O, tf) — j e—ATBBTe—ATTdT
0

Since C(O, tf) is symmetric, for it to be full rank over [0, tf], it must be positive definite.
Lemma: C (0, t;) is positive definite if and only if there is no vector v # 0 such that
vle ™ B =0 Vte[0, t]
Proof (by contradiction): suppose there is such a v with vTe™4tB = 0 Vte[0, tr]
- vT((0, tf)v = f(ff vTe ATBRTe~A"TBy dr
e If there is such a v, then vTC(O, tf)v = 0, which implies that C(O, tf)v is not

positive definite.

Theorem: The pair (A,B) is controllable if and only if the C(0, ;) is positive definite

Proof (sufficiency): suppose C(0, tf) is positive definite. Let x(, xf be the initial/final states

o x(tr) =efxy+ f(ffe_A(tf_T)B u(r) dr



Controllability

Proof (sufficiency): (continued)
e Choose u(t) = BTe"ATtC"l(O, t¢)v for some constant vector v
o Then: x(t;) = e4%xo + [,/ eAr0B BATe 47 C~1(0, 1, )v dr
= et xy + e4rC(0,t)C71(0, tr)v
= e (xo+v)

e Ifv=—xy+ e_Atfxf, then x(tf) = Xf

That is, u(t) = BTe‘ATtC‘l(O, te)[e 5 xp — xo] steers x, to xy for any xo, Xy

Proof (necessity): show that positive definiteness of C(O, tf) is necessary

e Contradiction: suppose C(O, tf) is not positive definite.
 Then there exists z # 0 such that zTe B = 0 Vte[0, tr]

* For controllability, let x, = z. Suppose that x(tf) =0
o Then:0=e*z+ [T e4tr™Bu(r) de
e Multiply by zTe ™. 0 = zTz + fotf zTed"Bu (1) dr

 Butintegrand is zero for all t, and thus z = 0, a contradiction



Controllability/Reachability

Proof (necessity): (continued)
e For reachability, let x; = e?'f z, and suppose u(t) steers x, to x(tf) = Xf
e Then:e?tfz = fotf eAltr~)B u(r) dr

. _ _ t _
o Multiply by zTe™4tr:  zTe Atredlrz = fOfZTe ATBu(t)dr = 27z

But, if C(0, tr) is not positive definite, then there exists z such that
zTe B = 0 Vte[0,t¢], implying that z = 0, which is a is a contradiction.

Theorem: C (0, t¢) is positive definite only if rank(W,.) = n, where
W.=[B AB .. A"1B]
Proof: If C(0, tr) is not positive definite, there exists z # 0 s. t. zTe ™ tfB = 0, Vte[O, tr]

« z' Yk=0

(=¥
A*B =0, Vte[0, t]

k!
(=t)*
k!

e This implies that there exists z such that zTAKB =0 forallk =0,1,...

* SameasYi., zTAKB = 0, Vte[0, tf]



Controllability/Reachability/Observability

Proof: (continued)

_nk
Z,‘f’zo( kt? zTA*B = 0, Vte]O, tr] implies via Cayley-Hamilton that
zTAKB =0 fork=0,..,n—1
e Hence, zT|B AB A?B --- A""1B| = 0, which implies that W, is not full rank.

e Therefore, (A,B) is reachable (controllable) only if W is full rank n
Note: in LTI case, reachability is independent of time.

Observability Gramian:
tf T
0((), tf) = j e—A TcTCe—ATdT
0
A nearly identical analysis shows that the O must be positive definite for observability,
which in turn implies that the observability matrix W, must be full rank.



Mid Term

Schedule: (1) Handed out in Class on Monday. (2) Due Friday at 5:00 pm.

Instructions on Front Page. Three hour limited time take-home.

Review:

Convert control system description to 1%t order form
Solution and characterization of o.d.e.s
* Matrix exponential, equilibria, stability of equilibria, phase space
Lyapunov Function and stability
System linearization, and stability/stabilization of linearized models.
Convolution Integral, impulse response
Performance characterization for 15t and 2"9 order systems:
* Step response overshoot, rise time, settling time
System Frequency Response
Discrete Time System
State Feedback, eigenvalue placement

Reachability, reachable canonical form, test for reachability
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