
October 28, 2016

Goals:
• Review Observability and Observers.
• Complete and “polish” the analysis of combined feedback and 

observation. 
• A few thoughts on observer design.
• Brief mid-term review

Reading: 
• Åström and Murray, Feedback Systems-2e, Section 8.1-8.3

CDS 101/110: Lecture 5.2
Observability & State Estimation



System:   �̇�𝑥 = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝐵𝐵;   𝑦𝑦 = 𝐶𝐶𝑥𝑥 + 𝐷𝐷𝐵𝐵 (*)
• Definition: The linear system (*)  is said to be Observable if for every T>0 

it is possible to determine the system state 𝑥𝑥(𝑇𝑇) through measurements 
𝑦𝑦 𝑡𝑡 and knowledge of 𝐵𝐵(𝑡𝑡) on the interval 0,𝑇𝑇 .

- Note: some texts/papers are slightly different: Observable if 𝑥𝑥(𝑡𝑡 = 0)
can be determined from measurements and inputs.

- If (*) is observable, then there are no “hidden” internal states.  This is a 
practical issue in  system design—do you have the right sensors?

Testing for Observability:

• The Matrix, 𝑊𝑊𝑂𝑂 must be full rank    WO ≡

𝐶𝐶
𝐶𝐶𝐴𝐴
𝐶𝐶𝐴𝐴2
⋮

𝐶𝐶𝐴𝐴𝑛𝑛−1

Observability



System:   �̇�𝑥 = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝐵𝐵;   𝑦𝑦 = 𝐶𝐶𝑥𝑥 + 𝐷𝐷𝐵𝐵 (*)
• Definition: The linear system (*)  is said to be in Observable Canonical 

Form (OCF) if

�̇�𝑥 =

−𝑎𝑎1 1 0
−𝑎𝑎2 0 1
⋮ ⋮ ⋮

⋯ 0
⋯ 0
⋱ ⋮

−𝑎𝑎𝑛𝑛−1 0 0
−𝑎𝑎𝑛𝑛 0 0

⋯ 1
⋯ 0

𝑥𝑥 +

𝑏𝑏1
𝑏𝑏2
⋮

𝑏𝑏𝑛𝑛−1
𝑏𝑏𝑛𝑛

𝐵𝐵

𝑦𝑦 = 1 0 0 ⋯ 0 𝑥𝑥 + 𝑑𝑑0𝐵𝐵

Where the characteristic polynomial of A is: 𝜆𝜆𝐴𝐴 𝑠𝑠 = 𝑠𝑠𝑛𝑛 + 𝑎𝑎1𝑠𝑠𝑛𝑛−1 + ⋯+ 𝑎𝑎𝑛𝑛 = 0

• When the system (*) is in OCF, the controllability matrix takes the form:

�𝑊𝑊𝑂𝑂 =

𝐶𝐶
𝐶𝐶𝐴𝐴
𝐶𝐶𝐴𝐴2
⋮

𝐶𝐶𝐴𝐴𝑛𝑛−1

=

1 0 0
−𝑎𝑎1 1 0

−𝑎𝑎12 − 𝑎𝑎2 −𝑎𝑎1 ⋱

⋯ 0
⋯ 0
⋱ 0

⋮ ⋮ ∗
∗ ∗ ∗

⋯ ⋮
⋯ 1

;    �𝑊𝑊𝑂𝑂
−1 =

1 0 0
−𝑎𝑎1 1 0

−𝑎𝑎12 − 𝑎𝑎2 −𝑎𝑎1 ⋱

⋯ 0
⋯ 0
⋱ 0

⋮ ⋮ ∗
∗ ∗ ∗

⋯ ⋮
⋯ 1

Observable Canonical Form



State Estimator:   �̇𝑥𝑥 = 𝐴𝐴�𝑥𝑥 + 𝐵𝐵𝐵𝐵 + 𝐿𝐿(𝑦𝑦 − 𝐶𝐶 �𝑥𝑥)

• The term 𝐿𝐿 𝑦𝑦 − 𝐶𝐶 �𝑥𝑥 provides “feedback” to the estimation process.

• Analysis: Let �𝑥𝑥 = 𝑥𝑥 − �𝑥𝑥 denote the error in the state estimate. Then

�̇𝑥𝑥 = �̇�𝑥 − �̇𝑥𝑥 = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝐵𝐵 − 𝐴𝐴�𝑥𝑥 + 𝐵𝐵𝐵𝐵 + 𝐿𝐿 𝑦𝑦 − 𝐶𝐶 �𝑥𝑥
= 𝐴𝐴 𝑥𝑥 − �𝑥𝑥 + 𝐿𝐿𝐶𝐶 𝑥𝑥 − �𝑥𝑥 = (𝐴𝐴 − 𝐿𝐿𝐶𝐶) �𝑥𝑥

Hence, the converge of the estimation error is governed by eigenvalues of (𝐴𝐴 − 𝐿𝐿𝐶𝐶)

- Dual to previous reachability analysis.  “Design” = eigenvalues of (𝐴𝐴 − 𝐿𝐿𝐶𝐶).

- Place poles of (𝐴𝐴𝑇𝑇 − 𝐶𝐶𝑇𝑇𝐿𝐿𝑇𝑇).    MATLAB: place(𝐴𝐴𝑇𝑇 ,𝐶𝐶𝑇𝑇 , 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒𝐵𝐵𝑒𝑒𝑠𝑠)

• Theorem: If (𝐴𝐴,𝐶𝐶) is observable, then the poles of (𝐴𝐴 − 𝐿𝐿𝐶𝐶) can be set arbitrarily.

• Design:  Specify the desired poles of (𝐴𝐴 − 𝐿𝐿𝐶𝐶) by 
𝜆𝜆𝐴𝐴−𝐿𝐿𝐿𝐿 𝑠𝑠 = 𝑠𝑠𝑛𝑛 + 𝑝𝑝1𝑠𝑠𝑛𝑛−1 + ⋯+ 𝑝𝑝𝑛𝑛−1𝑠𝑠 + 𝑝𝑝𝑛𝑛 = 0

Then gain matrix is found as: 𝐿𝐿 = 𝑊𝑊𝑂𝑂
−1 �𝑊𝑊𝑂𝑂

𝑝𝑝1 − 𝑎𝑎1
⋮

𝑝𝑝𝑛𝑛 − 𝑎𝑎𝑛𝑛

State Estimation



Feedback the estimated state:   𝐵𝐵 = −𝐾𝐾�𝑥𝑥 + 𝑘𝑘𝑟𝑟𝑟𝑟

• Analysis: Again, let �𝑥𝑥 = 𝑥𝑥 − �𝑥𝑥 denote the error in the state estimate. The 
dynamics of the controlled system under this feedback are:

�̇�𝑥 = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝐵𝐵 = 𝐴𝐴𝑥𝑥 − 𝐵𝐵𝐾𝐾 �𝑥𝑥 − 𝐵𝐵𝑘𝑘𝑟𝑟𝑟𝑟 = 𝐴𝐴𝑥𝑥 − 𝐵𝐵𝐾𝐾 𝑥𝑥 − �𝑥𝑥 + 𝐵𝐵𝑘𝑘𝑟𝑟𝑟𝑟
= 𝐴𝐴 − 𝐵𝐵𝐾𝐾 𝑥𝑥 + 𝐵𝐵𝐾𝐾 �𝑥𝑥 + 𝐵𝐵𝑘𝑘𝑟𝑟𝑟𝑟

- Introduce a new augmented state: 𝑞𝑞 = 𝑥𝑥 �𝑥𝑥 𝑇𝑇.  The dynamics of the 
system defined by this state is: 

�̇�𝑥
�̇𝑥𝑥 = (𝐴𝐴 − 𝐵𝐵𝐾𝐾) 𝐵𝐵𝐾𝐾

0 (𝐴𝐴 − 𝐿𝐿𝐶𝐶)
𝑥𝑥
�𝑥𝑥 + 𝐵𝐵𝑘𝑘𝑟𝑟

0 𝑟𝑟 ≡ 𝑀𝑀𝑞𝑞 + 𝐵𝐵𝑀𝑀𝑟𝑟

The characteristic polynomial of 𝑀𝑀 is:

𝜆𝜆𝑀𝑀 𝑠𝑠 = det 𝑠𝑠𝑠𝑠 − 𝐴𝐴 + 𝐵𝐵𝐾𝐾 det(𝑠𝑠𝑠𝑠 − 𝐴𝐴 + 𝐿𝐿𝐶𝐶)

• If the system is observable and reachable, then the poles of (𝐴𝐴 − 𝐵𝐵𝐾𝐾) and 
(𝐴𝐴 − 𝐿𝐿𝐶𝐶) can be set arbitrarily and independently

Feedback of Estimated State



Remarks:
• The controller is a dynamical system with internal state dynamics (the 

observer).

• Separation principle: The controller and observer can be designed 
(eigenvalues assigned) separately/independently.

• Internal Model principle: the control system includes and internal model of 
the system being controlled.

Feedback of Estimated State



For LTI system �̇�𝑥 = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝐵𝐵, 𝑦𝑦 = 𝐶𝐶𝑥𝑥 + 𝐷𝐷𝐵𝐵,   reachability assessed by rank of:

𝑊𝑊𝑟𝑟 = 𝐵𝐵 𝐴𝐴𝐵𝐵 ⋯ 𝐴𝐴𝑛𝑛−1𝐵𝐵

Definitions:             recall     𝑥𝑥 𝑡𝑡 = 𝑒𝑒𝐴𝐴𝐴𝐴𝑥𝑥 0 + ∫0
𝐴𝐴 𝑒𝑒𝐴𝐴 𝐴𝐴−𝜏𝜏 𝐵𝐵𝐵𝐵(𝜏𝜏)𝑑𝑑𝜏𝜏

• Controllable if state can be driven to 𝑥𝑥 𝑇𝑇 = 0 for any 𝑥𝑥 0

• i.e., ∃ 𝐵𝐵(𝑡𝑡) s.t. −𝑥𝑥 0 = 𝑒𝑒−𝐴𝐴𝑇𝑇 ∫0
𝑇𝑇 𝑒𝑒𝐴𝐴 𝑇𝑇−𝜏𝜏 𝐵𝐵𝐵𝐵 𝜏𝜏 𝑑𝑑𝜏𝜏 = ∫0

𝑇𝑇 𝑒𝑒−𝜏𝜏𝐵𝐵𝐵𝐵 𝜏𝜏 𝑑𝑑𝜏𝜏

• Reachable if 𝑥𝑥(0) = 0 can be driven to any state 𝑥𝑥𝑓𝑓 = 𝑥𝑥 𝑇𝑇 in time 𝑇𝑇

• i.e. ∃ 𝐵𝐵(𝑡𝑡) s.t. 𝑥𝑥 𝑇𝑇 = ∫0
𝑇𝑇 𝑒𝑒𝐴𝐴 𝑇𝑇−𝜏𝜏 𝐵𝐵𝐵𝐵 𝜏𝜏 𝑑𝑑𝜏𝜏

General Principle: Linear independence of N functions 𝑒𝑒𝑖𝑖 𝑡𝑡 , 𝑒𝑒 = 1, … ,𝑁𝑁 over 
interval 𝑡𝑡𝑜𝑜, 𝑡𝑡𝑓𝑓 is determined using a Gramian:

𝐺𝐺 = 𝐺𝐺𝑖𝑖𝑖𝑖 , 𝐺𝐺𝑖𝑖𝑖𝑖 = �
𝐴𝐴0

𝐴𝐴𝑓𝑓
𝑒𝑒𝑖𝑖 𝜏𝜏 𝑒𝑒𝑖𝑖 𝜏𝜏 𝑑𝑑𝜏𝜏

Linear independence is proven when G has full rank

Reachability



Controllability Gramian:

𝐶𝐶 𝑡𝑡0, 𝑡𝑡1 = �
𝐴𝐴0

𝐴𝐴𝑓𝑓
𝑒𝑒𝐴𝐴(𝐴𝐴0−𝜏𝜏)𝐵𝐵𝐵𝐵𝑇𝑇𝑒𝑒𝐴𝐴𝑇𝑇(𝐴𝐴0−𝜏𝜏)𝑑𝑑𝜏𝜏 → 𝐶𝐶(0, 𝑡𝑡𝑓𝑓) = �

0

𝐴𝐴𝑓𝑓
𝑒𝑒−𝐴𝐴𝜏𝜏𝐵𝐵𝐵𝐵𝑇𝑇𝑒𝑒−𝐴𝐴𝑇𝑇𝜏𝜏𝑑𝑑𝜏𝜏

Since 𝐶𝐶 0, 𝑡𝑡𝑓𝑓 is symmetric, for it to be full rank over 0, 𝑡𝑡𝑓𝑓 , it must be positive definite. 

Lemma: 𝐶𝐶(0, 𝑡𝑡𝑓𝑓) is positive definite if and only if there is no vector 𝑒𝑒 ≠ 0 such that

𝑒𝑒𝑇𝑇𝑒𝑒−𝐴𝐴𝐴𝐴𝐵𝐵 = 0 ∀𝑡𝑡𝑡𝑡[0, 𝑡𝑡𝑓𝑓]
Proof (by contradiction): suppose there is such a 𝑒𝑒 with 𝑒𝑒𝑇𝑇𝑒𝑒−𝐴𝐴𝐴𝐴𝐵𝐵 = 0 ∀𝑡𝑡𝑡𝑡[0, 𝑡𝑡𝑓𝑓]

• 𝑒𝑒𝑇𝑇𝐶𝐶 0, 𝑡𝑡𝑓𝑓 𝑒𝑒 = ∫0
𝐴𝐴𝑓𝑓 𝑒𝑒𝑇𝑇𝑒𝑒−𝐴𝐴𝜏𝜏𝐵𝐵𝐵𝐵𝑇𝑇𝑒𝑒−𝐴𝐴𝑇𝑇𝜏𝜏𝐵𝐵𝑒𝑒 𝑑𝑑𝜏𝜏

• If there is such a 𝑒𝑒, then 𝑒𝑒𝑇𝑇𝐶𝐶 0, 𝑡𝑡𝑓𝑓 𝑒𝑒 = 0, which implies that 𝐶𝐶 0, 𝑡𝑡𝑓𝑓 𝑒𝑒 is not 
positive definite.

Theorem: The pair (A,B) is controllable if and only if the 𝐶𝐶(0, 𝑡𝑡𝑓𝑓) is positive definite

Proof (sufficiency): suppose 𝐶𝐶(0, 𝑡𝑡𝑓𝑓) is positive definite. Let 𝑥𝑥0, 𝑥𝑥𝑓𝑓 be the initial/final states

• 𝑥𝑥 𝑡𝑡𝑓𝑓 = 𝑒𝑒𝐴𝐴𝐴𝐴𝑓𝑓𝑥𝑥0 + ∫0
𝐴𝐴𝑓𝑓 𝑒𝑒−𝐴𝐴 𝐴𝐴𝑓𝑓−𝜏𝜏 𝐵𝐵 𝐵𝐵 𝜏𝜏 𝑑𝑑𝜏𝜏

Controllability



Proof (sufficiency): (continued)

• Choose 𝐵𝐵 𝑡𝑡 = 𝐵𝐵𝑇𝑇𝑒𝑒−𝐴𝐴𝑇𝑇𝐴𝐴𝐶𝐶−1 0, 𝑡𝑡𝑓𝑓 𝑒𝑒 for some constant vector 𝑒𝑒

• Then: 𝑥𝑥 𝑡𝑡𝑓𝑓 = 𝑒𝑒𝐴𝐴𝐴𝐴𝑓𝑓𝑥𝑥0 + ∫0
𝐴𝐴𝑓𝑓 𝑒𝑒𝐴𝐴 𝐴𝐴𝑓𝑓−𝜏𝜏 𝐵𝐵 𝐵𝐵^𝑇𝑇𝑒𝑒−𝐴𝐴𝑇𝑇𝜏𝜏𝐶𝐶−1 0, 𝑡𝑡𝑓𝑓 𝑒𝑒 𝑑𝑑𝜏𝜏

= 𝑒𝑒𝐴𝐴𝐴𝐴𝑓𝑓𝑥𝑥0 + 𝑒𝑒𝐴𝐴𝐴𝐴𝑓𝑓𝐶𝐶 0, 𝑡𝑡𝑓𝑓 𝐶𝐶−1 0, 𝑡𝑡𝑓𝑓 𝑒𝑒
= 𝑒𝑒𝐴𝐴𝐴𝐴𝑓𝑓(𝑥𝑥0+𝑒𝑒)

• If 𝑒𝑒 = −𝑥𝑥0 + 𝑒𝑒−𝐴𝐴𝐴𝐴𝑓𝑓𝑥𝑥𝑓𝑓, then 𝑥𝑥 𝑡𝑡𝑓𝑓 = 𝑥𝑥𝑓𝑓
That is, 𝐵𝐵 𝑡𝑡 = 𝐵𝐵𝑇𝑇𝑒𝑒−𝐴𝐴𝑇𝑇𝐴𝐴𝐶𝐶−1 0, 𝑡𝑡𝑓𝑓 [𝑒𝑒−𝐴𝐴𝐴𝐴𝑓𝑓𝑥𝑥𝑓𝑓 − 𝑥𝑥0] steers 𝑥𝑥0 to 𝑥𝑥𝑓𝑓 for any 𝑥𝑥0, 𝑥𝑥𝑓𝑓

Controllability

Proof (necessity): show that positive definiteness of 𝐶𝐶 0, 𝑡𝑡𝑓𝑓 is necessary

• Contradiction: suppose 𝐶𝐶 0, 𝑡𝑡𝑓𝑓 is not positive definite.

• Then there exists 𝑧𝑧 ≠ 0 such that  𝑧𝑧𝑇𝑇𝑒𝑒−𝐴𝐴𝐴𝐴𝑓𝑓𝐵𝐵 = 0 ∀𝑡𝑡𝑡𝑡[0, 𝑡𝑡𝑓𝑓]

• For controllability, let x0 = 𝑧𝑧.  Suppose that 𝑥𝑥 𝑡𝑡𝑓𝑓 = 0

• Then: 0 = 𝑒𝑒𝐴𝐴𝐴𝐴𝑓𝑓𝑧𝑧 + ∫0
𝐴𝐴𝑓𝑓 𝑒𝑒𝐴𝐴 𝐴𝐴𝑓𝑓−𝜏𝜏 𝐵𝐵 𝐵𝐵(𝜏𝜏) 𝑑𝑑𝜏𝜏

• Multiply by 𝑧𝑧𝑇𝑇𝑒𝑒−𝐴𝐴𝐴𝐴𝑓𝑓: 0 = 𝑧𝑧𝑇𝑇𝑧𝑧 + ∫0
𝐴𝐴𝑓𝑓 𝑧𝑧𝑇𝑇𝑒𝑒𝐴𝐴𝜏𝜏𝐵𝐵 𝐵𝐵(𝜏𝜏) 𝑑𝑑𝜏𝜏

• But integrand is zero for all 𝑡𝑡, and thus 𝑧𝑧 = 0, a contradiction



Controllability/Reachability

Proof (necessity): (continued) 

• For reachability, let xf = 𝑒𝑒𝐴𝐴𝐴𝐴𝑓𝑓𝑧𝑧, and suppose 𝐵𝐵 𝑡𝑡 steers 𝑥𝑥0 to 𝑥𝑥 𝑡𝑡𝑓𝑓 = 𝑥𝑥𝑓𝑓

• Then: 𝑒𝑒𝐴𝐴𝐴𝐴𝑓𝑓𝑧𝑧 = ∫0
𝐴𝐴𝑓𝑓 𝑒𝑒𝐴𝐴 𝐴𝐴𝑓𝑓−𝜏𝜏 𝐵𝐵 𝐵𝐵(𝜏𝜏) 𝑑𝑑𝜏𝜏

• Multiply by 𝑧𝑧𝑇𝑇𝑒𝑒−𝐴𝐴𝐴𝐴𝑓𝑓:      𝑧𝑧𝑇𝑇𝑒𝑒−𝐴𝐴𝐴𝐴𝑓𝑓𝑒𝑒𝐴𝐴𝐴𝐴𝑓𝑓𝑧𝑧 = ∫0
𝐴𝐴𝑓𝑓 𝑧𝑧𝑇𝑇𝑒𝑒−𝐴𝐴𝜏𝜏𝐵𝐵 𝐵𝐵 𝜏𝜏 𝑑𝑑𝜏𝜏 = 𝑧𝑧𝑇𝑇𝑧𝑧

• But, if 𝐶𝐶(0, 𝑡𝑡𝑓𝑓) is not positive definite, then there exists 𝑧𝑧 such that 
𝑧𝑧𝑇𝑇𝑒𝑒−𝐴𝐴𝐴𝐴𝑓𝑓𝐵𝐵 = 0 ∀𝑡𝑡𝑡𝑡[0, 𝑡𝑡𝑓𝑓], implying that 𝑧𝑧 = 0, which is a is a contradiction. 

Theorem: 𝐶𝐶(0, 𝑡𝑡𝑓𝑓) is positive definite only if 𝑟𝑟𝑎𝑎𝑒𝑒𝑘𝑘 𝑊𝑊𝑟𝑟 = 𝑒𝑒, where
𝑊𝑊𝑟𝑟 = 𝐵𝐵 𝐴𝐴𝐵𝐵 ⋯ 𝐴𝐴𝑛𝑛−1𝐵𝐵

Proof: If 𝐶𝐶(0, 𝑡𝑡𝑓𝑓) is not positive definite, there exists 𝑧𝑧 ≠ 0 s. t.  𝑧𝑧𝑇𝑇𝑒𝑒−𝐴𝐴𝐴𝐴𝑓𝑓𝐵𝐵 = 0, ∀𝑡𝑡𝑡𝑡[0, 𝑡𝑡𝑓𝑓]

• 𝑧𝑧𝑇𝑇 ∑𝑘𝑘=0∞ −𝐴𝐴 𝑘𝑘

𝑘𝑘!
𝐴𝐴𝑘𝑘𝐵𝐵 = 0, ∀𝑡𝑡𝑡𝑡[0, 𝑡𝑡𝑓𝑓]

• Same as ∑𝑘𝑘=0∞ −𝐴𝐴 𝑘𝑘

𝑘𝑘!
𝑧𝑧𝑇𝑇𝐴𝐴𝑘𝑘𝐵𝐵 = 0, ∀𝑡𝑡𝑡𝑡[0, 𝑡𝑡𝑓𝑓]

• This implies that there exists 𝑧𝑧 such that 𝑧𝑧𝑇𝑇𝐴𝐴𝑘𝑘𝐵𝐵 = 0 for all 𝑘𝑘 = 0,1, …



Controllability/Reachability/Observability

Proof: (continued)

• ∑𝑘𝑘=0∞ −𝐴𝐴 𝑘𝑘

𝑘𝑘!
𝑧𝑧𝑇𝑇𝐴𝐴𝑘𝑘𝐵𝐵 = 0, ∀𝑡𝑡𝑡𝑡[0, 𝑡𝑡𝑓𝑓] implies via Cayley-Hamilton that

𝑧𝑧𝑇𝑇𝐴𝐴𝑘𝑘𝐵𝐵 = 0 for 𝑘𝑘 = 0, … ,𝑒𝑒 − 1
• Hence, 𝑧𝑧𝑇𝑇 𝐵𝐵 𝐴𝐴𝐵𝐵 𝐴𝐴2𝐵𝐵⋯𝐴𝐴𝑛𝑛−1𝐵𝐵 = 0, which implies that 𝑊𝑊𝑟𝑟 is not full rank.

• Therefore, (A,B) is reachable (controllable) only if 𝑊𝑊𝑟𝑟 is full rank 𝑒𝑒
Note: in LTI case, reachability is independent of time.

Observability Gramian:

𝑂𝑂(0, 𝑡𝑡𝑓𝑓) = �
0

𝐴𝐴𝑓𝑓
𝑒𝑒−𝐴𝐴𝑇𝑇𝜏𝜏𝐶𝐶𝑇𝑇𝐶𝐶𝑒𝑒−𝐴𝐴𝜏𝜏𝑑𝑑𝜏𝜏

A nearly identical analysis shows that the 𝑂𝑂 must be positive definite for observability, 
which in turn implies that the observability matrix 𝑊𝑊𝑂𝑂 must be full rank.



Mid Term

Schedule: (1) Handed out in Class on Monday.  (2) Due Friday at 5:00 pm.
Instructions on Front Page.  Three hour limited time take-home.
Review:

• Convert control system description to 1st order form
• Solution and characterization of o.d.e.s

• Matrix exponential, equilibria, stability of equilibria, phase space
• Lyapunov Function and stability
• System linearization, and stability/stabilization of linearized models.
• Convolution Integral, impulse response
• Performance characterization for 1st and 2nd order systems: 

• Step response overshoot, rise time, settling time
• System Frequency Response
• Discrete Time System
• State Feedback, eigenvalue placement
• Reachability, reachable canonical form, test for reachability
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