

CDS 101/110: Lecture 9.1 Frequency DomainLoop Shaping

November 21, 2017

Goals:

- Review:
 - canonical control design problem
 - performance measures
- Loop Transfer Functions (Gang of Four, Seven)
- Show how to use "loop shaping" to achieve a performance specification
- Work through example(s)

Reading:

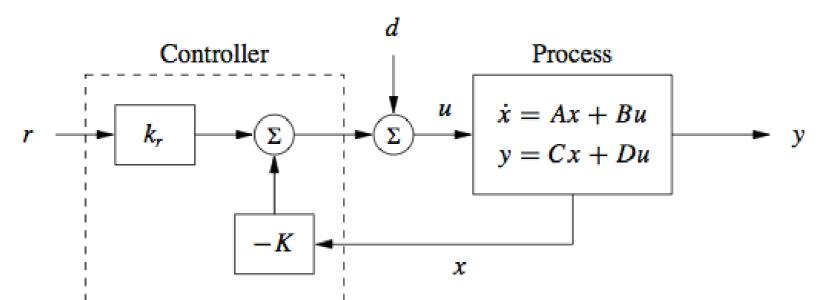
• Åström and Murray, Feedback Systems 2-e, Section 12.1-12.4

Design Patterns for Control Systems



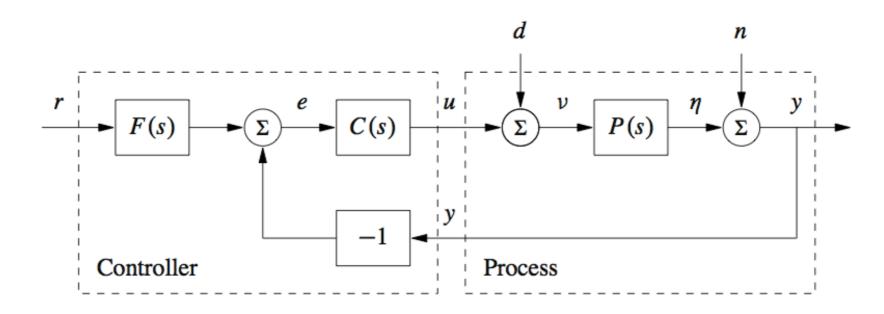
- Reference input shaping
- Feedback on output error
- Compensator dynamics shape closed loop response
- Uncertainty in process
 dynamics P(s) + external
 disturbances (d) & noise (n)
- Goal: output y(t) should track reference trajectory r(t)
- Design typically done in "frequency domain" (second half of CDS 101/110)

Modern" (state space) control (1970s...)



- Assume dynamics are given by linear system, with known A, B, C, D matrices
- Measure the state of the system and use this to modify the input
- $u = -K x + k_r r$
- Goal unchanged: output y(t) should track reference trajectory r(t) [often constant]

Input/Output Control Design Specifications



Common Sense Goals:

- Keep error small for reference signals r
- Attenuate effect of sensor noise n and load disturbances d
- Avoid large input commands u

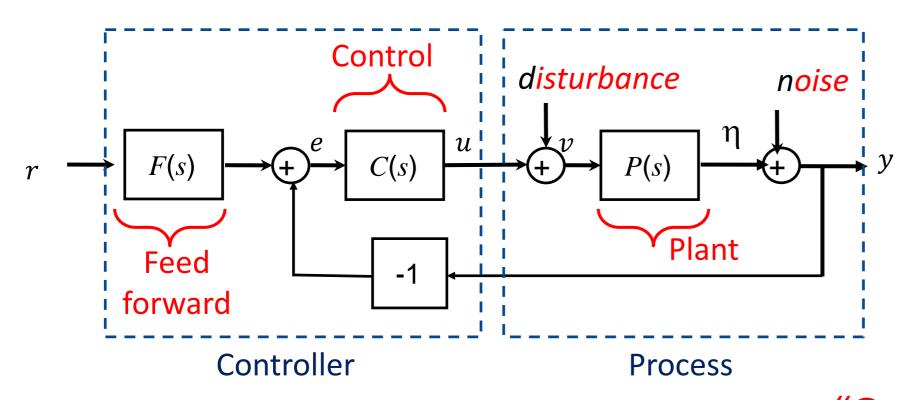
Designs represent tradeoffs, e.g.:

- Keep L = PC large for good performance $(G_{er} << 1)$
- Keep L = PC small for good noise rejection $(G_{\eta n} < 1)$
- Load disturbances (d) typically low frequency, while noise (v) is high frequency
- Stability always determined by 1/(1+PC) assuming stable process & controller
- Numerator determined by forward path between input and output

More generally: 7 primary transfer functions; simultaneous design of each

• Controller C(s) enters in multiple places \Rightarrow possibly hard to understand tradeoffs

General Loop Transfer Functions



r = reference input

e = error

u = control

v = control + disturbance

 η = true output (*what we*

want to control!)

y = measured output

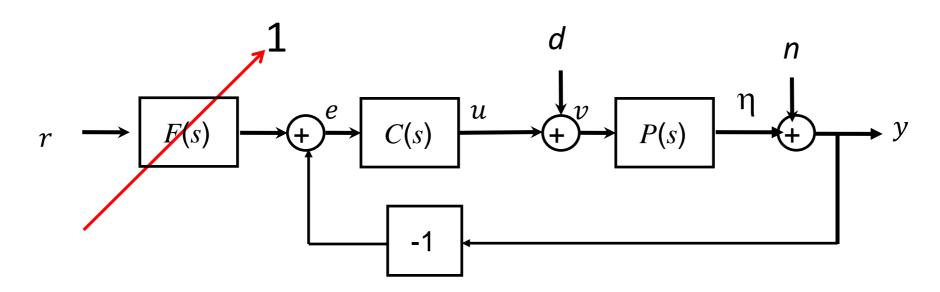
System

"outputs"
$$\begin{pmatrix} y \\ \eta \\ v \\ u \\ e \end{pmatrix} = \begin{pmatrix} \frac{PCF}{1+PC} & \frac{P}{1+PC} & \frac{1}{1+PC} \\ \frac{PCF}{1+PC} & \frac{P}{1+PC} & \frac{-PC}{1+PC} \\ \frac{CF}{1+PC} & \frac{1}{1+PC} & \frac{-C}{1+PC} \\ \frac{CF}{1+PC} & \frac{-PC}{1+PC} & \frac{-C}{1+PC} \\ \frac{F}{1+PC} & \frac{-P}{1+PC} & \frac{-1}{1+PC} \end{pmatrix}$$
"inputs"
$$\begin{pmatrix} r \\ d \\ n \end{pmatrix}$$

"Gang of Six" $TF = \frac{PCF}{1+PC} \qquad T = \frac{PC}{1+PC} \qquad PS = \frac{P}{1+PC}$ $CFS = \frac{CF}{1+PC} \qquad CS = \frac{C}{1+PC} \qquad S = \frac{1}{1+PC}$ Response of Response of (y, u) to r u to (d,n) y to (d,n)

"Gang of Seven"

Key Loop Transfer Functions



F(s) = 1: Four unique transfer functions define performance ("Gang of Four")

Sensitivity: Function

$$G_{er} = S(s) = \frac{1}{1 + L(s)}$$

Complementary

Sensitivity Function:

$$G_{yr} = T(s) = \frac{L(s)}{1+L(s)}$$

Load Sensitivity Function:

$$G_{yd} = PS(s) = \frac{P(s)}{1+L(s)}$$

Noise Sensitivity Function:

$$G_{yn} = CS(s) = \frac{C(s)}{1+L(s)}$$

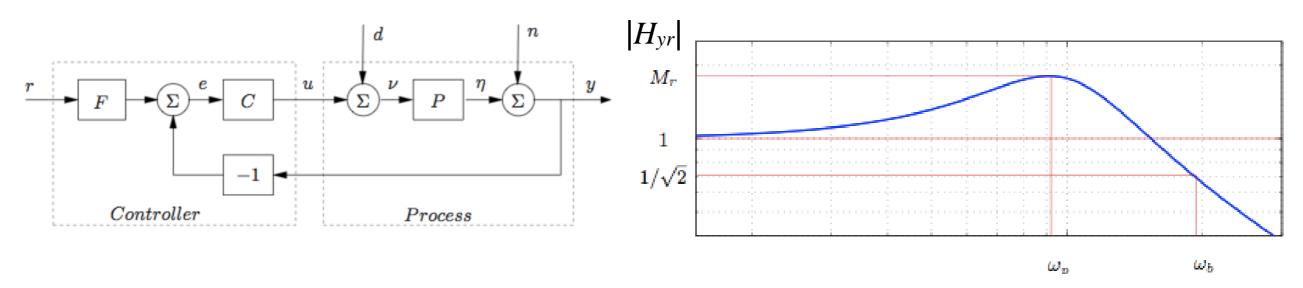
$$L(s) = P(s)C(s)$$

"Gang of Four"

(the "sensitivity" functions)

Characterize most performance criteria of interest

Frequency Domain Specifications (review)



Specifications on the *open loop* transfer function (*L*)

- Gain crossover frequency, ω_{gc} : the lowest frequency at which loop gain = 1
- Gain margin, g_m : amount the loop gain can be increased before instability
- Phase margin, φ_m : amount of phase lag required to generate instability

Specifications on *closed loop* frequency response (eg G_{yr} , G_{yd} , etc)

- \bullet Resonant peak, M_r , is the largest value of the frequency response
- Peak frequency, ω_p , is the frequency where the maximum occurs
- Bandwidth, ω_b , is the frequency where the gain has decreased to $1/\sqrt{2}$

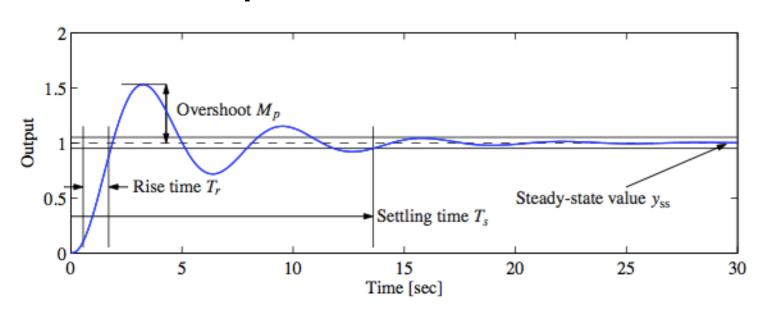
Basic idea: convert specs on closed loop to specs on open loop

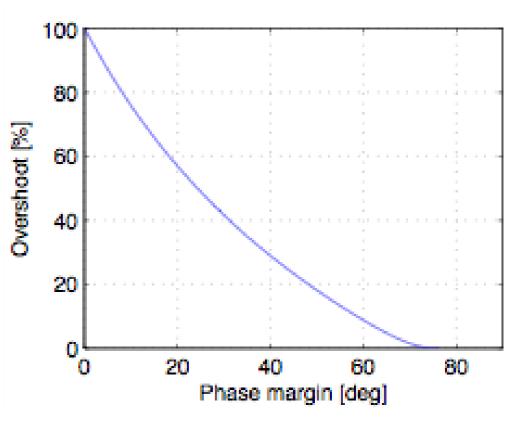
- Bandwidth \approx value for which |L| = 1
- Resonant peak set by phase margin
- Keep L(s) large to set $H_{yr} \approx 1$

$$H_{yr} = rac{L}{1+L}$$
 $H_{er} = rac{1}{1+L}$

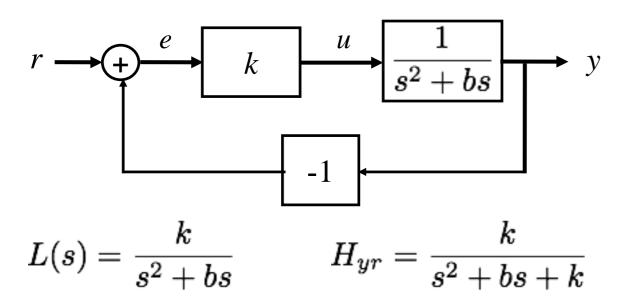
Time Domain Specs → **Frequency Domain Specs**

Time domain specifications

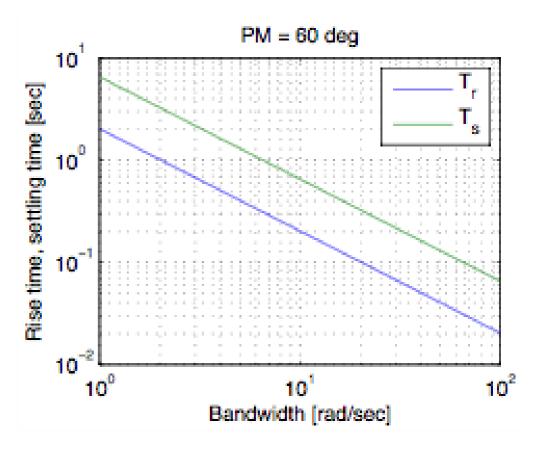




Map to frequency domain for second order system



Use properties of second order systems (Ch 7)

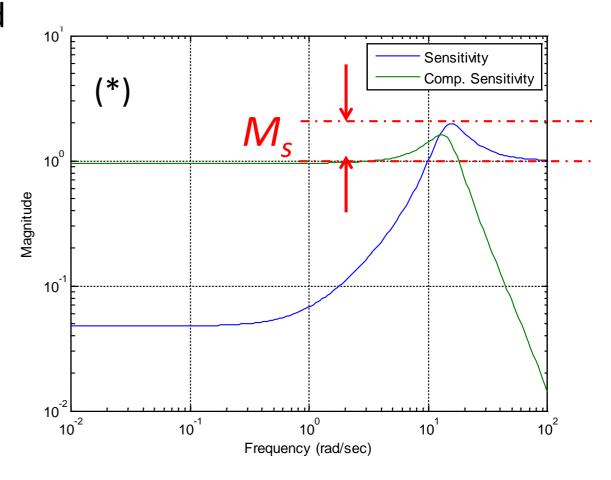


Sensitivity

Note:
$$H_{yd} = \frac{P(s)}{1 + L(s)} = P(s) \frac{1}{1 + L(s)} = P(s)S(s)$$

- I.e., Closed Loop Response to Disturbance = Open Loop Response x Sensitivity
- I.e., S(s) tells us how variations in output are influenced by feedback
 - Disturbances with $|S(i\omega)| < 1$ attenuated by feedback
 - Disturbances with |S(iω)|>1 amplified
- Max Sensitivity = max |S(iω)| := M_s
 - $\bullet \ \ M_s = 1/s_m,$
 - s_m is *stability margin* (from Nyquist)
 - Related to robustness

$$L(s) = \frac{20}{(s+1)(s/10+1)(s/100+1)}$$



Sensitivity (continued)

Example plotted is:

$$L(s) = \frac{20}{(s+1)(s/10+1)(s/100+1)} \tag{*}$$

$$S(s) = \frac{1}{1 + L(s)}$$

- |S(iw)|>1 Inside unit circle centered at -1 (disturbances amplified)
- |S(iw)|<1 outside unit circle centered at -1

(disturbances attenuated)

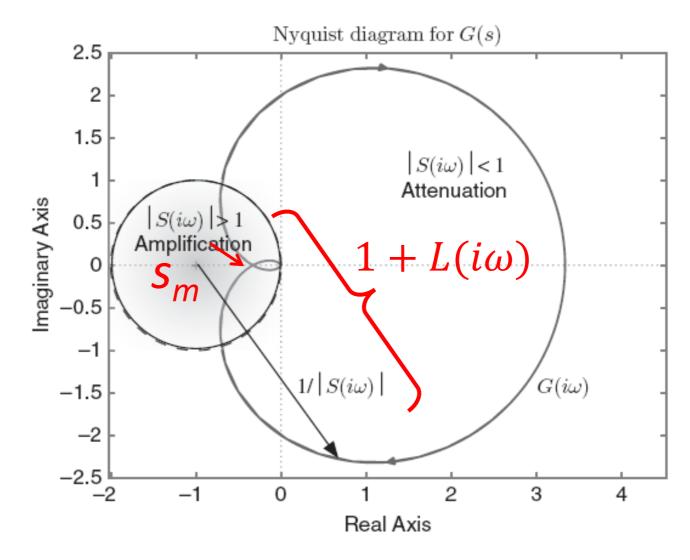
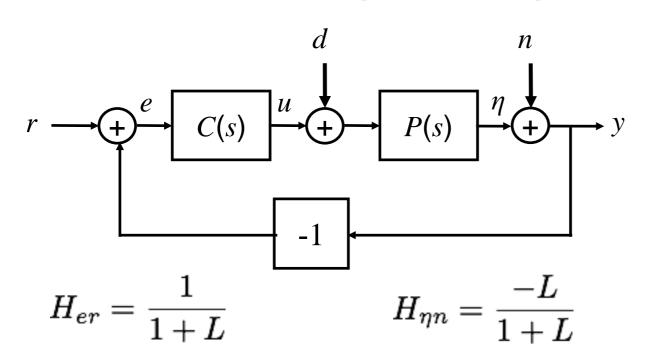
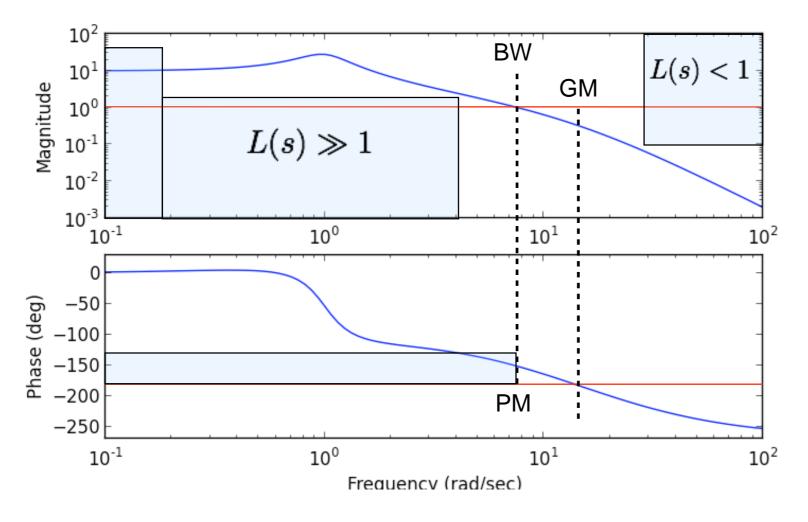


Fig. 4 Nyquist plot of the loop gain G(s) = P(s)C(s) for the system (29). For frequencies for which $G(i\omega)$ enters the unit circle centered about the -1 point, disturbances are amplified and, for frequencies for which G(s) lies outside this circle, disturbances are attenuated relative to open-loop.

(*) From Rowley & Battin, Fundamentals & Applications of Modern Flow Control, Ch 5

"Loop Shaping": Design Loop Transfer Function





Translate specs to "loop shape"

$$L(s) = P(s)C(s)$$

Naïve Idea: let L(s) have desired properties, then $C(s) = \frac{L(s)}{P(s)}$

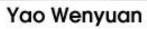
Design C(s) to obey constraints

- High gain at low frequency
 - Good tracking, disturbance rejection at low freqs
- Low gain at high frequency
 - Avoid amplifying noise
- Sufficiently high bandwidth
 - Good rise/settling time
- Shallow slope at crossover
 - Sufficient phase margin for robustness, low overshoot

Loop shaping is *trial and error*

Culture, not Control

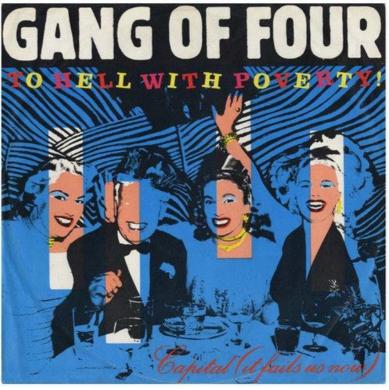
Gang of Four at trial, 1981.



Jiang Qing

Zhang Chunqiao

Wang Hongwen



Aside: Relation of Gain to Phase in Bode Plot

If no poles/zeros in RHP (a *minimum phase system*), then (see A&M 10.4) phase curve uniquely related to gain curve

$$\arg G(i\omega_0) = \frac{\pi}{2} \int_0^\infty f(\omega) \frac{d \log|G(i\omega)|}{d \log \omega} d \log \omega$$

$$\approx \frac{\pi}{2} \frac{d \log|G(i\omega_0)|}{d \log \omega_0}$$

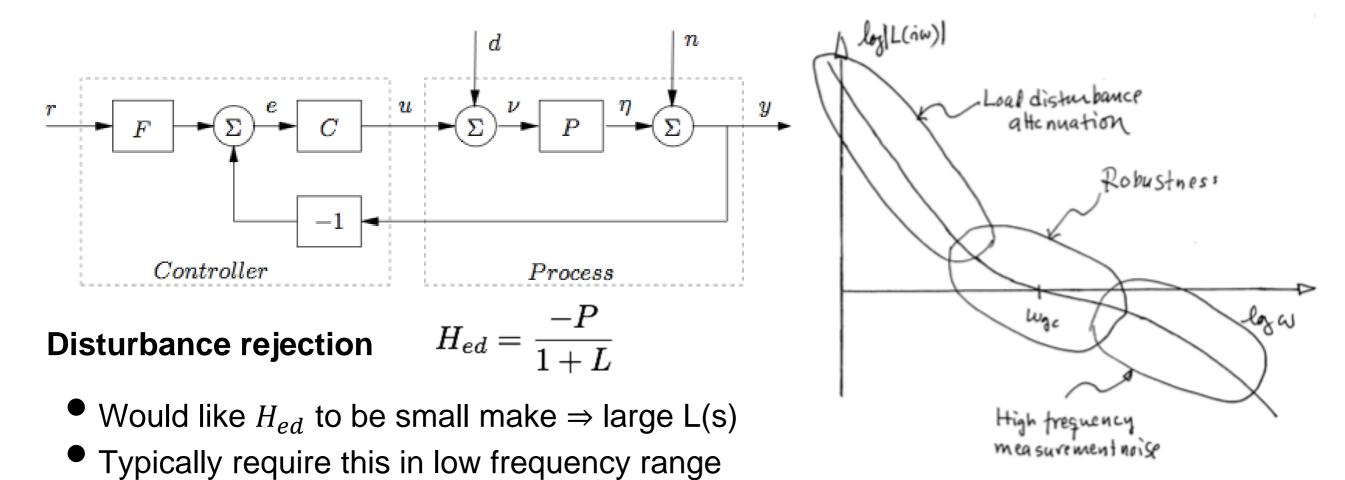
Where

$$f(\omega) = \frac{2}{\pi} \log \left| \frac{\omega + \omega_0}{\omega - \omega_0} \right|$$

Consequence:

- Shape of phase curve is dictated by shape of gain curve
- Phase curve is weighted average of derivative of the gain curve
- Where gain curve is ~constant slope, phase curve is constant

Loop Shaping: Basic Approach



High frequency measurement noise

$$H_{un} = \frac{-L}{P(1+L)}$$

- Want to make sure that H_{un} is small (avoid amplifying noise) \Rightarrow small L(s)
- Typically generates constraints in high frequency range

Robustness: gain and phase margin

- Focus on gain crossover region: make sure the slope is "gentle" at gain crossover
- Fundamental tradeoff: transition from high gain to low gain through crossover

Design Method #1: Process Inversion

Simple trick: invert out process

- Write performance specs in terms of desired loop transfer function
- Choose L(s) to satisfy specfications
- Choose controller by inverting P(s)

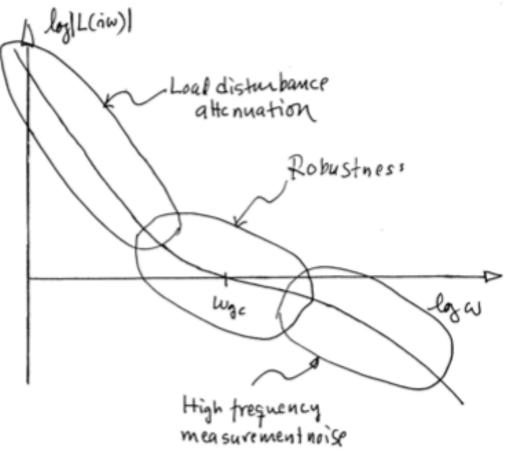
$$C(s) = L(s)/P(s)$$

Pros

- Simple design process
- L(s) = k/s often works very well
- Can be used as a first cut, with additional tuning

Cons

- High order controllers (at least same order as plant)
- Requires "perfect" process model (due to inversion)
- Can generate non-proper controllers (order(num) > order(den))
 - Difficult to implement, plus amplifies noise at high frequency $(C(\infty) = \infty)$
 - Fix by adding high frequency poles to roll off control response at high frequency
- Does not work if right half plane poles or zeros (internal instability)



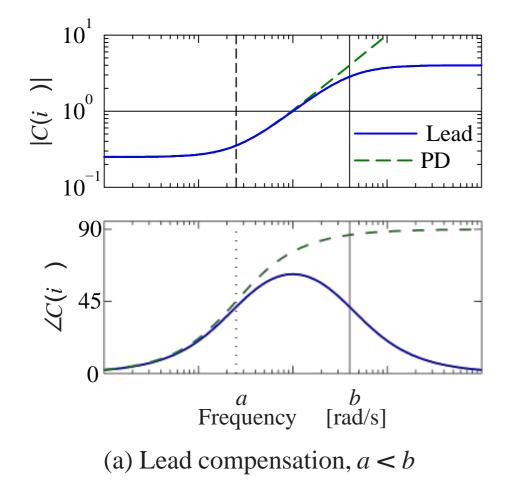
Lead & Lag Compensators

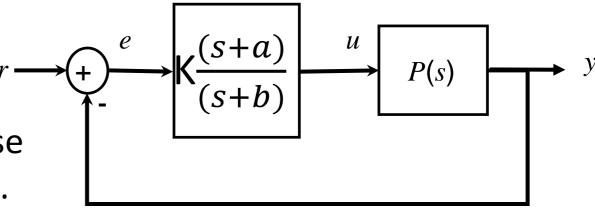
Lead: K > 0, a < b

- Add phase near crossover
- Improve gain & phase margins, increase bandwidth (better transient response).

Lag: K > 0, a > b

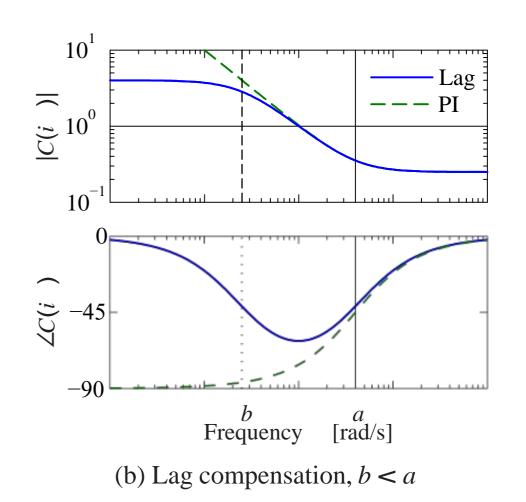
- Add gain in low frequencies
- Improves steady state error





Lead/Lag:

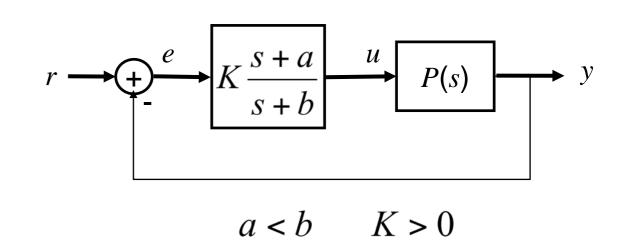
 Better transient and steady state response

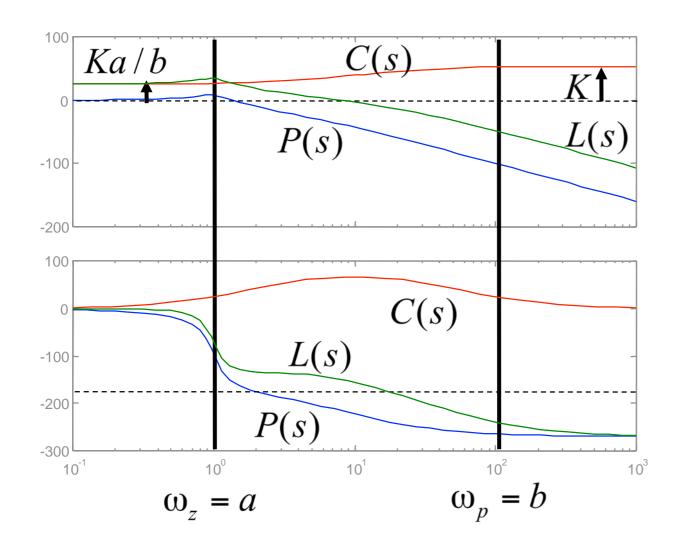


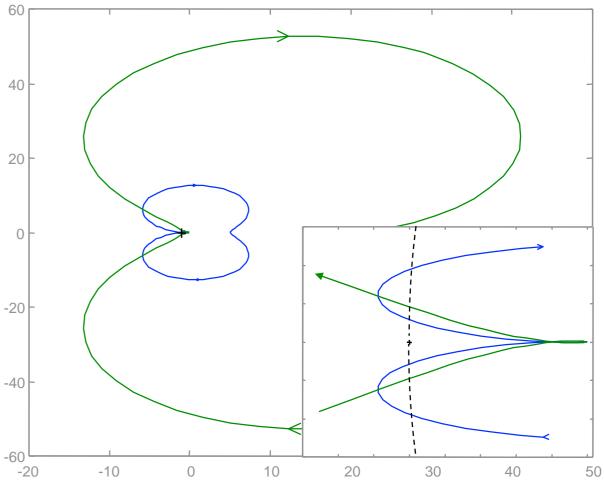
Design Method #2: Add Lead, Lag, Lead/Lag compensation

Lead: increases phase in frequency band

- Effect: lifts phase by increasing gain at high frequency
- Increases PM
- Bode: add phase between zero and pole
- Nyquist: increase phase margin







Example: Lead Compensation for Second Order System

System description

$$P(s) = rac{p_1 p_2}{(s+p_1)(s+p_2)}$$

• Poles: $p_1 = 1$, $p_2 = 5$

Control specs

- Track constant reference with error < 1%
- Good tracking up to 100 rad/s (less than 10% error)
- Overshoot less than 10%
 - Gives PM of ~60 deg

Try a lead compensator

$$C(s) = K \frac{s+a}{s+b}$$



- Want gain cross over at approximately 100 rad/sec => center phase gain there
- Set zero frequency gain of controller to give small error $\Rightarrow |L(0)| > 100$
- a = 20, b = 500, K = 10,000 (gives |C(0)| = |L(0)| = 400)

Better Loop Shaping Design Process

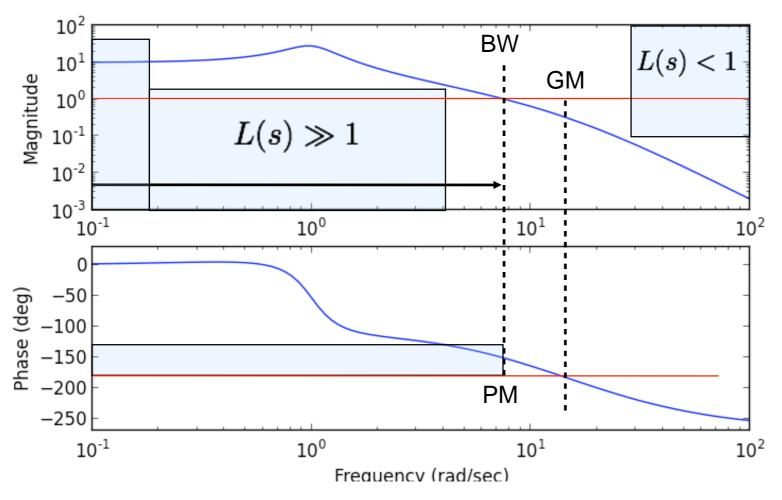
A Process: sequence of (nonunique) steps

- 1. Start with plant and performance specifications
- 2. If plant not stable, first stabilize it (e.g., PID)
- 3. Adjust/increase simple gains
 - Increase proportional gain for tracking error
 - Introduce integral term for steady-state error
 - Will derivative term improve overshoot?
- 4. Analyze/adjust for stability and/or phase margin
 - Adjust gains for margin
 - Introduce Lead or Lag Compensators to adjust phase margin at crossover and other critical frequencies
 - Consider PID if you haven't already

Summary: Loop Shaping

Loop Shaping for Stability & Performance

- Steady state error, bandwidth, tracking response
- Specs can be on any input/output response pair



Things to remember (for homework and exams)

- Always plot Nyquist to verify stability/robustness
- Check gang of 4 to make sure that noise and disturbance responses also look OK

Main ideas

- Performance specs give bounds on loop transfer function
- Use controller to shape response
- Gain/phase relationships constrain design approach
- Standard compensators: proportional, lead, PI

