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Problem 1

Consider the system whose dynamics are given by:

τ
d x

d t
=−x +u y = x

We know the response is y(t ) =C A−1e At B +D −C A−1B where C = 1, B = 1
τ , A =− 1

τ .

Plugging in and simplifying, we get y(t ) = 1−e
t
τ

Time to get to 0.1yss → 0.1 = 1−e
t
τ → t = 0.105τ

Time to get to 0.9yss → 0.9 = 1−e
t
τ → t = 2.3τ.

Rise time tr = (2.3−0.105)τ= 2.2τ≈ 2τ.

1% Settling time: → 0.99 = 1−e
t
τ → t = 4.6τ

2% Settling time: → 0.98 = 1−e
t
τ → t = 3.91τ≈ 4τ

5% Settling time: → 0.95 = 1−e
t
τ → t = 3.0τ

Problem 2

Consider the system

ẍ +2ζw0ẋ +w2
0 x = w2

0u

Part (a): Convert the dynamic system to first order form
Denote x1 = x, x2 = ẋ.
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d

d t

[
x1

x2

]
=

[
0 1

−w2
0 −2ζw0

][
x1

x2

]
+

[
0

w2
0

]
u

Part (b): Determine and plot the impulse response of this system for the case C = [1 0]
Response h(t ) =Ce At B
A =V DV −1 where

V =
[
− (ζ+

p
ζ2−1)

w0
− (ζ−

p
ζ2−1)

w0

1 1

]
D =

[
−w0(ζ−

√
ζ2 −1) 0

0 −w0(ζ+
√
ζ2 −1)

]

h(t ) =Ce At B =CV eDt V −1B

h(t ) =
[
− (ζ+

p
ζ2−1)

w0
− (ζ−

p
ζ2−1)

w0

][
exp(−w0(ζ−

√
ζ2 −1)) 0

0 exp(−w0(ζ+
√
ζ2 −1))

]−
w 2

0 (ζ−
p
ζ2−1)

2
p
ζ2−1

w 2
0 (ζ+

p
ζ2−1)

2
p
ζ2−1


The impulse response for w0 = 1, ζ = 0.5 is shown below (with code for finding the impulse
response and generating the plot).

%Find Impulse Response
syms w0 zed t
A = [0 1; -w0^2 -2*zed*w0];
B = [0; w0^2];
C = [1 0];
[V, D] = eig(A);
%Get the eigendecomposition
V = simplify(V);
D = simplify(D);
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y_unit = simplify(C*A^-1*V*expm(D*t)*V^-1*B - C*A^-1*B);

%Pick w_0=1 and zed=0.5 and plot impulse response
w0 = 1;
zed = 0.5;
A = [0 1; -w0^2 -2*zed*w0];
B = [0; w0^2];
C = [1 0];

time = 1500;
t = zeros(1,time);
response = zeros(1,time);
hline = zeros(1,time);
for i = 1:time

t(i) = i*0.01;
response(i) = C*expm(A*t(i))*B;

end
plot(t, response)
hold on
plot(t, hline, ’k--’)
hold off

Part (c): Find the response of this system to a unit step input, assuming that x(0) = 0, ẋ(0) = 0.

Response h(t ) =C A−1e At B −C A−1B

h(t ) = 1−e−ζw0t cos(wd t )− ζ√
1−ζ2

e−ζw0t si n(wd t )

where wd = w0

√
ζ2 −1.

See Lectures notes from 10/21/2016 (Slides 5-8) for detailed derivation.

Part (d): Determine the time until the first peak in response. Knowing this time, derive an
expression for the peak overshoot.

tpeak = π

w0

√
1−ζ2

ypeak = 1− exp(πζ/
√

1−ζ2)√
1−ζ2

si n(π+θ)

where θ = cos−1(ζ).
See Lectures notes from 10/21/2016 (Slides 5-8) for detailed derivation.

Part (e): Estimate the rise time, which is the time it takes from the onset of the step input
until the time that the response first reaches a magnitude of one (the amplitude of the step
input).
The step response can be written:
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y(t ) = 1− 1√
1−ζ2

e−ζw0t si n(wd t +ζ)

When y = 1, then 1p
1−ζ2

e−ζw0t si n(wd t +θ) = 0

Thus si n(wd t +θ) = si n(w0

√
ζ2 −1t + cos−1(ζ)) = 0

tr = π− cos−1(ζ)

w0

√
ζ2 −1

Problem 3

Show that P = ∫ ∞
0 e AT τQe Aτdτ defines a Lyapunov function of the form V = xT P x given that

Q is positive definite.
For fixed x, V = xT P x = ∫ ∞

0 (e Aτx)T Q(e Aτx)dτ.
Since Q is positive definite, then (e Aτx)T Q(e Aτx) > 0 ∀x/{0} ∈Rn ,τ ∈R
Therefore V(x) > 0 and V(0) = 0.

V̇ = ẋT P x +xT P ẋ = xT (AT P +PA)x

AT P +PA =
∫ ∞

0
(AT e AT τxQe Aτ+e AT τxQe AτA)dτ=

∫ ∞

0

d

dτ
(e AT τxQe Aτ)dτ=−Q

Therefore
V̇ = xT (AT P +PA)x =−xT Qx

Since Q is positive definite, then V̇ < 0 and we can conclude that V = xT P x defines a valid
Lyapunov function.

Problem 4

Part (a):

x[k +1] = Ax[k]+Bu[k] y[k] =C x[k]+Du[k]

Proof by induction.
Consider

x[k] = Ak x[0]+
k−1∑
i=0

Ak−1−i Bu[i ]

At the initial point,
x[1] = Ax[0]+Bu[0]
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Now,

x[k +1] = Ak+1x[0]+
k∑

i=0
Ak−i Bu[i ]

= A(Ak x[0])+
k−1∑
i=0

Ak−i Bu[i ]+Bu[k]

= A(Ak x[0])+ A
k−1∑
i=0

Ak−1−i Bu[i ]+Bu[k]

= Ax[k]+Bu[k]

So,

x[k] = Ak x[0]+
k−1∑
i=0

Ak−1−i Bu[i ]

Then,

y[k] =C x[k]+Du[k] =C Ak x[0]+
k−1∑
i=0

C Ak−1−i Bu[i ]+Du[k]

Part (b):
For checking asymptotic stability, assume u = 0.
Then x[k] = Ak x[0].
Consider the eigendecomposition of A =V DV −1 where D is diagonal with eigenvalues on the
diagonal and V is an orthonormal matrix (represents a change of basis).

x[k] = Ak x[0] =V DkV −1x[0]

(if direction)
If eigenvalue of A has magnitude strictly less than 1, Dk → 0 as k →∞ because D is a diagonal
matrix and its diagonal are the eigenvalues. Consequently, x[k] → 0. Therefore, the system is
asymptotically stable.

(only if direction)
If eigenvalue of A has magnitude equal to 1, Dk → D = I as k →∞. Consequently, x[k] = x[0]
for all x[0] 6= 0.

If eigenvalue of A has magnitude greater than 1, Dk →∞ as k →∞. Consequently, x[k] →∞
for all x[0] 6= 0.

Therefore, the systems are not asymptotically stable.

Part (c):
Consider the input u = e i wk

y[k] =C Ak x[0]+
k−1∑
j=0

C Ak− j−1Be i w j +De i wk
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If we assume asymptotic stability, then C Ak x[0] → 0.

y[k] =C
k−1∑
j=0

Ak− j−1Be i w j +De i wk =C
k−1∑
j=0

Ak− j−1

e i w(k− j−1)
(e i w(k−1))+De i wk

y[k] =C (I − A

e i w
)−1(e i w )−1e i wk +De i wk = [C (e i w I − A)−1 +D]e i wk

Thus the response to e i wk is:

y[k] = [C (e i w I − A)−1 +D]e i wk

Thus by linearity, the response to si n(wk) = e i wk−e−i wk

2i will be:

y[k] = [C (e i w I − A)−1 +D]e i wk − [C (e−i w I − A)−1 +D]e−i wk

2i

Part (d):
As in the continuous time case, we let z = x −xe , v = u−ue , and w = y −h(xe ,ue ). Expanding
the dynamics in a Taylor series, we have:

x[k +1] = f (xe ,ue )+ d f

d x
(x[k]−xe )+ d f

du
(u[k]−ue )+h.o.t .

y[k] = h(xe ,ue )+ dh

d x
(x[k]−xe )+ dh

du
(u[k]−ue )+h.o.t .

The resulting linearized system is obtained by assuming the higher order terms can be ne-
glected and the dynamics become:

z[k +1] = Az[k]+B v[k] w[k] =C z[k]+Dv[k]

where

A = d f

d x (xe ,ue )
B = d f

du (xe ,ue )
C = dh

d x (xe ,ue )
D = dh

du (xe ,ue )
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