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1 Introduction

These notes review the basic equations of EKF (extended Kalman Filter) SLAM (Simulta-
neous Localization and Mapping).

1.1 The Notion of a “Map”

Let ~pRk denote the robot’s position at time tk. We assume that the robot’s exteroception
sensor suite can identify and recognize “landmarks” which will make up the map (where
the landmarks play the role of a “beacon”). We will assume that the robot can process the
sensory data associated with the landmark so that a unique point can be associated to each
landmark. Hence, each landmark can be associated to the coordinates of that point. Let
~plj denote the coordinates of the jth landmark. While we assume that the landmarks are
stationary, we assume that any measurements of their location is noisy, and therefore the
estimate of the landmark’s location overy time will hopefully converge to its true relative
location.

An estimator, in this case an Extended Kalman Filter (EKF) will be used to update the
estimate of the robot’s position and the landmark’s position. The state of the filter will
consist of the robot’s state as well as the landmark positions. Let ~zk denote the system state

~zk =


~pRk
~pl1k
...
~plN

 ,

[
~pRk
~ML
k

]

where N is the number of landmarks, and ~ML
k is the vector of all landmark positions, which

defines the “map” which is to be maintained by the SLAM algorithm.

1.2 The System Dynamic model

We assume that the dynamics of the robot’s motion can be captured by a discrete time
model of the following form:

~pRk+1 = f(~pRk , uk) + ~ηk

where ~pRk is the robot’s position and uk is the robot’s control input at time k, while ~ηk models
process disturbances at tk.
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Since the landmarks are assumed to be stationary, their true positions are assumed to be
constant over time:

~p
lj
k+1 = ~p

lj
k ∀ j = 1, . . . , N .

Hence, the dynamics take the form:

~zk+1 =

[
~pRk+1
~ML
k+1

]
= f̃(~zk, uk) =

[
f(~pRk , uk)

~ML
k

]
We assume that the robot can measure the range and bearing to the landmark. Let us
assume for now that the robot can “see” all N landmarks. Then, the measurment is:

~yk =


rl1k
φl1
k
...

rlNk
φlN
k

+ ~ωk = h(~rLk (~zk), ~φL
k (~zk)) + ~ωk

where r
lj
k and φ

lj
k are the range and bearing measurements of the jth landmark:

r
lj
k (~pRk , ~p

lj
k ) = ||~pRk − ~p

lj
k || =

√
(xRk − x

lj
k )2 + (yRk − y

lj
k )2 (1)

φ
lj
k (~pRk , ~p

lj
k ) = Atan2[(yRk − y

lj
k ), (xRk − x

lj
k )] + θRk (2)

and ~ωk represents measurement noise. The vectors ~rLk and ~φR
k represent all range and bearing

measurments at time tk. The measurement function h(·) is a function of both the robot’s
state and the map states.

2 Localization Updates: Naive case

Assume that an estimate (and covariance of the estimate) of the robot state and landmark
map is available at time tk: ẑk|k, Pk|k. Further, let us assume that the robot moves from its
location at time tk to a new location at time tk+1. At tk+1 let us unrealistically assume that
the robot can measure the range and bearing to all N landmarks. In this case, we use the
EKF to update the estimate of the robot’s position, as well as to improve the estimate of
the relative locations of the landmarks.

Dynamic State Update: The dynamic update of the state estimate and its covariance is
given by:

ẑk+1|k = f̃(ẑk|k, uk) (3)

Pk+1|k = F̃kPk|kF̃
T
k + Vk (4)
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where Vk is the covariance1 and matrix Fk is the linearization of the robot’s dynamics at the
current best state estimate:

Fk =
∂

∂~z
f̃(~zk, uk)

∣∣
(~z,~u)=(ẑk|k,~uk)

.

Note that Fk has an appealing structure:

F̃k =


∂f(~pR,uk)

∂~pR
0 · · · 0

0 I · · · 0
...

...
. . . 0

0 0 · · · I


(~pR,~uk)=(~pR

k|k,~uk)

,

[
Fk 0
0 I

]
(5)

Note that the covariance matrix of the system state estimate, Pk|k, has the following struc-
ture:

Pk|k =

[
PRR
k|k PRLk|k

PLR
k|k PLL

k|k

]
(6)

where PRR is the uncertainty in the robot’s state estimate, PLL is the uncertainty in the
landmark location estimates, and PRL = (PLR)T is the correlation between the robot’s
undercertainty and the landmarks’ uncertainties. Because of this structure, Equation (4)
has the simplified structure:

Pk+1|k =

[
Fk 0
0 I

] [
PRR
k|k PRL

k|k
PLR
k|k PLL

k|k

] [
Fk 0
0 I

]T
+ Vk =

[
FkP

RR
k|k F

T
k FkP

RL
k|k

(FkP
RL
k|k )T PLL

k|k

]
+ Vk.

Since the landmarks are assumed to be stationary (but with imprecisely known locations),
their covariance does not change during the dynamic update! When the map becomes large
(e.g., dozens of landmarks or more), this structure also leads to computational savings.

Measurement Update: The measurement update of the Kalman Filter is:

~νk+1 = ~yk+1 − h(~zk+1) (7)

Sk+1 = Hk+1Pk+1|kH
T
k+1 +Qk (8)

Kk+1 = Pk+1|kH
T
k+1S

−1
k+1 (9)

ẑk+1|k+1 = ẑk+1|k +Kk+1~µk+1 (10)

Pk+1|k+1 = (I −Kk+1Hk+1)Pk+1|k (11)

where Qk is the covariance of the measurement noise, and Hk+1 is the linearization of the
meaasurement equation:

Hk+1 =
∂h(z)

∂z

∣∣
z=ẑk+1|k

.

1The covariance of the disturbance, which is assumed to be a zero mean Gaussian continuous random
variable, can be found as E~ηk [~ηk~ηTk ], where E denotes expectation.
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3 Some Issues to Consider in an Actual EKF SLAM

Implementation

An actual SLAM implementation has to incorporate many additional issues. Here we only
summarize a few issues, and then some procedures to address these issues.

• Adding new landmarks to the map.

• Updating the map when only some of the landmarks are visible.

• Associating sensory data to landmark identity.

3.1 Incorporating new states into the map

Let us assume that at time tk the robot has “built” a map consisting of N − 1 land-
marks. At time tk+1 the robot finds a new landmark, lnew, and chooses to incorporate
it into its map to be the N th landmark. Hence, at tk the augmented state vector is ~zk =[
~pRk ~pl1k . . . ~p

lN−1

k

]T
. At tk+1 the state vector is enlarged: ~zk =

[
~pRk ~pl1k . . . ~p

lN−1

k ~plnew
k

]T
.

The addition of this new state also implies that the covariance matrix will grow in size, and
that it must be properly initialized to include a reasonable estimate of the newly found
landmark’s position uncertainty.

Let us assume that the newly enlarged covariance matrix has the structure PRR PRL PRlnew

PLR PLL PLlnew

P lnewR P lnewL P lnew,lnew


where R indicates robot-related states, L indicates the states of the previously known land-
marks, and lnew indicates the states associated with the newly found landmark.

Note that to update the covariance matrix during the measurement update, we will need
to linearize the measurement equations. Hence, we need to have an initial estimate of the
landmark’s location (and the uncertainty in that location) in order to process all of the
measurements at tk+1. A logical estimate of the landmark’s position is to add the robot-to-
landmark distance (as measured using the range and bearing sensors) to the best estimate
of the robot’s current position (at tk+1|k) to

p̂lnew

k+1|k = p̂Rk+1|k +

[
rlnew
k+1 cos(φlnew

k+1 + θ̂k)

rlnew
k+1 sin(φlnew

k+1 + θ̂k)

]
(12)

If we assume that the noise experienced during the measurement of the new landmarks’s
location at tk+1 is uncorrelated with the noise in the robot’s position at time tk (an excellent
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assumption), then it would be natural to estimate the uncertainty of the robot’s position at
tk+1 to be

P lnewlnew

k+1|k+1 = JlnewRP
RR
k+1|kJ

T
lnewR +Qk+1

where Qk+1 is the covariance, or uncertainty, in the measurement of the landmark’s position
(relative to the robot). The matrix JlnewR is a Jacobian matrix which measures the sensitivity
of the landmark’s location to changes in the robot’s position. The Jacobian can generally
be calculated as follows. If we have a formula for the landmark’s position as a function of
the robot’s position (e.g., exactly the formula (12), then the Jacobian is the linearization of
this formula:

JlnewR =
∂~plnew

∂~pR
.

However, after initializing the landmark’s location and uncertainty, we will carry out a com-
plete measurement update step at tk+1, which will incorporate the measurement uncertainty
related to the new landmark. Hence, we would “double count” the measurement uncer-
taintly in this proposed approach. I.e., conceptually we would like to estimate P lnewlnew

k+1|k , the

covariance before we take into account the measurement (and its uncertainty) of the new
landmark at tk+1 upon the entire system state. Hence,

P lnewlnew

k+1|k+1 = JlnewRP
RR
k+1|kJ

T
lnewR

Before completing the measurement update at tk+1, we also need initial estimates for PRlnew

and PLlnew at tk+1|k. If one carefully scrutinizes the construction of the covariance formulas
in the measurement update equations, then a reasonable estimate of these matrices can be
constructed as:

PRlnew

k+1|k = PRRJT
lnewR (13)

PRlnew

k+1|k = PLRJT
lnewR (14)

4 Updating the Map with Limited Landmark Visibility
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