
ME 132a - Lab 3 - Quadrotor Planning

Released: Wednesday 02/22/2017 Due: Wednesday 03/08/2017

This guide describes how to design a simple planner for a quadcopter. It starts by getting familiar

with the virtual environment we are going to use and the set of libraries ROS. The learning curve for

ROS may be very steep at the beginning but we encourage you to do the tutorial in their webpage1.

The guide will start by using the simulator environment Gazebo, embedded in ROS. This tool will

allow us to test code without the risk of crashing the vehicle. It will show how to do a open planner,

a simple controller and a point to point planner. Once the code in the simulator is working, the

students will allocate a time slot with the TAs to test their code in hardware.

Install Hector quadrotor

1. Install Hector Quadrotor using the install_lab3.sh. It will:

(a) Install Hector Quadrotor, following the wiki http://wiki.ros.org/hector_quadrotor/Tutorials/

Quadrotor%20indoor%20SLAM%20demo

(b) Install a keyboard controller.

2. If you are running this on your own machine instead of the virtual machine you may encounter

these errors:

(a) Error [Node.cc:90] No namespace foundMake sure Gazebo is included in the

system path. There is an error when it is trying to get the models from the repository. To

solve this issue download all models by tiping:

1 $ wget -r -R "index\.html*" http://models.gazebosim.org/

$ sudo sh -c ’echo "deb http://packages.osrfoundation.org/gazebo/ubuntu

trusty main" > /etc/apt/sources.list.d/gazebo-latest.list’

Check that you execute the simulation in the same folder you have downloaded the files.

(b) ImportError: No module named rospkg: if you used python in the computer

the path might be corrupted for ROS. Check that the python path is not corrupted by

typing:

$ export PYTHONPATH=$PYTHONPATH:/usr/lib/python2.7/dist-packages

Another known errors are related with internet connectivity issues and outdated Linux distribu-

tions. Make sure you have connection and the Linux distribution is updated (run $ sudo apt-get

update)

3. Analyze the default configuration of the simulation. This will be very useful later to debug your

code.

(a) Open the outdoor demo (it may take a while).
1http://wiki.ros.org/ROS/Tutorials

ME 132a - Lab 3 Page 1

http://wiki.ros.org/hector_quadrotor/Tutorials/Quadrotor%20indoor%20SLAM%20demo
http://wiki.ros.org/hector_quadrotor/Tutorials/Quadrotor%20indoor%20SLAM%20demo

1 $ roslaunch hector_quadrotor_demo outdoor_flight_gazebo.launch

You should see two windows, one for Gazebo and another for RVIZ. Check the errors in

the terminal. To stop a ROS node just press Ctrl+C.

(b) Use ros_graph to analyze the topic/node structure by typing the following command in

a new terminal. Use this tool everytime you change the code to debut it visually. Make

sure the nodes are connected as expected

1 $ rqt_graph

Figure 1: Rqt_graph for the original simulation.

Figure 2: Screen shoot of outdoor_flight_gazebo.

(c) Later we will close the diagram by reading /tf and publishing /cmd_vel. To see all

tranformations in /tf, open rqt by just typing $ rqt in a new terminal. Open Plugins ->

Visualization -> TF Tree. It will show something similar to Figure 3c.

ME 132a - Lab 3 Page 2

Figure 3: Transformation frames hierarchy.

4. Instantiate a keyboard controller and fly the drone around. This will send commands to cmd_vel

The keys are written on the terminal.Type in a new terminal:

1 $ rosrun teleop_twist_keyboard teleop_twist_keyboard.py

Note: before using any other commands you must first take off using the button ’t’. Check

your new rqt_grah,it should look like Figure 4. See the new node at the left.

5. If you want to manually fly in a more challenging environment you can take a look to the indoor

environment we will use for next homework as seen below, but for this week’s tasks we will be

using the outdoor environment.

1 $ roslaunch hector_quadrotor_demo indoor_slam_gazebo.launch

Create Open Loop Planner

1. The first task is to create a node that makes the drone follow simple circle in open loop. You

should publish to the /cmd_vel topic. There is a template called open_loop_template.py that

might be useful. You should copy it to a catkin workspace (follow the tutorials to create a

catkin workspace and a package) and compile it as described here. Don’t forget to make the

file executable! There are also two copies of the tutorials files listener and talker for anyone

ME 132a - Lab 3 Page 3

http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber(python)

Figure 4: Rqt_graph using the keyboard and gazebo.

new to ROS. Your rqt_graph should look similar to the case with a keyboard. Run your node

by

1 $ rosrun _packageName_ open_loop_template.py

Some guidelines to understand how to use a topic in ROS:

• Check the message type of your topic. You can use the terminal command $ rostopic type

nameTopic. Another approach is to use rqt topic visualization. Once you know your topic

type, you can analyze the message structure by the command

1 $ rosmsg show _msgName_

Another tool to debug your code is

1 rospy.loginfo(_variableToPrint_)

Create Closed Loop Planner

The next task is to read the transformation frame to correct for errors. This allows us to create a

controller in the simplified dynamics of the vehicle given by the inner control running inside the drone.

• What is the relationship between this simplified dynamics and the original dynamics?

• What are the advantages and drawbacks of using this simplified dynamics

Write a node that reads the transformation frame between the world and the drone. Use the open

loop template as starting point. Your new rqt_graph should look like Figure 5. Use this node to

write a simple mission, 30 seconds, of the drone following that path. The student should design a

simple path in 3D and then test that the drone can follow it in simulation. A simple PD should suffice

to track the error between the desired path and the current position from tf. Some ideas are: your

name in 3D, Lorenz Attractor, Bernoulli spiral.. The path should be contained within a cube of size

S (use S = 10m for initial testing).

ME 132a - Lab 3 Page 4

Figure 5: Rqt_graph for the closed loop system.

Hardware Testing

We are using the platform Bebop 2. It is a light quadrotor designed as ready-to-fly use. We connect

to it using the published API for Parrot Drones. It allows us to retrieve odometry data, camera images

and send velocity commands. If you need more information there is more in their website.

1. Smartphone control: the easiest way to start using the drone is by the the App, available for

iPhone and Android. Connect the drone and take a demo flight. What are the inputs to the

drone?

Next, you should connect the drone to your computer by running the bebop_driver

1 $ roslaunch bebop_driver bebop_node.launch

If you cannot connect check that you are connected to the drone WIFI. As usual with ROS, analyze

the topics and the rqt_graph. What are the differences with respect to the simulator?

1. Take-off and landing: the first step is to take-off and land (horizontally) using the computer

and ROS. Open a rqt terminal and the plugin Topics -> Message Publisher. Create a new

instances for topics takeoff, land and cmd_vel. Your screen should look similar to Figure 1

Figure 6: Predefined messages to operate the drone.

ME 132a - Lab 3 Page 5

2. Joystick control: it allows smoother control than the keyboard. Run in a new terminal:

1 $ roslaunch bebop_tools joy_teleop.launch

3. Zombie mode: flight the quadrotor in manual flight and then play the commands back using

rosbag. Note: be ready to take control using the joystick at any moment. Be ready to kill

all the communication with the drone and establish a new communication (maybe using the

smartphone)

(a) Put the drone in a flat area easy to identify. We are going to take off from the same spot

later.

(b) Start the drone node

(c) Start the joystick node

(d) Start recording the topics using rosbag record

1 $ rosbag record -O _bagName_ /bebop/cmd_vel /bebop/land /bebop/

odometry /bebop/takeoff /bebop/image_raw

(e) Flight around 1 min and then land.

(f) Stop recording by killing the terminal with ctrl+c

(g) Check the new bag file with rosbag info. Register the number of messages for each topic

in the report.

1 $ rosbag info _bagName_

(h) Come back to the original position and play the registered bag

$ rosbag play _bagName_

How far is the landing spot of the replay commands compared to the original landing spot?

Why that difference?

Homework Deliverables

1. Show the results on your work on the original simulator. Include a screenshot of your simulator

running. [20 points]

2. Show the results of your open loop planner, that includes short description of your implemen-

tation, a screen shot of the virtual environment and your code. [20 points]

3. Show the results of your closed loop planner. Include the code, a short description and some

screen shots. [20 points]

4. Include a short report of your hardware testing, including any code used and a discussion of

vehicle performance. [30 points]

5. How would you improve the drift of the vehicle when it is following a path? Briefly discuss how

this could be achieved. [10 points]

ME 132a - Lab 3 Page 6

