

CDS 101/110: Lecture 10.3 Final Exam Review

December 2, 2016

Schedule:

- (1) Posted on the web Monday, Dec. 5 by noon.
- (2) Due Friday, Dec. 9, at 5:00 pm.
- (3) Determines 30% of your grade

Instructions on Front Page.

- Five hour limited time take-home.
- Same collaboration rules as Mid-Term

Key Concepts up to Mid Term

Review:

- Frequency domain Convert control system description to 1st order form
- Solution and characterization of o.d.e.s
 - Matrix exponential, equilibria, stability of equilibria, phase space
- Lyapunov Function and stability
- System linearization, and stability/stabilization of linearized models.
- Convolution Integral, impulse response
- Performance characterization for 1st and 2nd order systems:
 - Step response overshoot, rise time, settling time
- System Frequency Response
- Discrete Time System
- State Feedback, eigenvalue placement
- Reachability, reachable canonical form, test for reachability

Key Concepts From Mid-Term Onward

Review:

- Frequency Domain Concepts
 - Transfer Function (poles/zeros)
 - Block Diagram Algebra
 - Bode Plot
- Loop Diagram Concepts
 - Loop Transfer Function (closed loop poles and zeros)
 - Nyquist Plot and Nyquist Criterion for closed loop stability
 - Gain, Phase, and Stability Margins
- PID Controllers
 - Effect of "P", "I", and "D" terms of closed loop behavior
 - Reachability, reachable canonical form, test for reachability
- Loop Shaping
 - Lead/Lag compensators
 - Converting requirements/spec.s to frequency domain equivalents
 - Sensitivity Functions ("gang of four")

Frequency Domain Modeling

Defn. The frequency response of a linear system is the relationship between the gain and phase of a sinusoidal input and the corresponding steady state (sinusoidal) output.

Transfer Function Properties

$$\begin{split} y(t) &= C e^{At} \Big(x(0) - (sI-A)^{-1}B \Big) + \Big(C(sI-A)^{-1}B + D \Big) e^{st} \\ & \text{transient} \\ \end{split} \label{eq:steady-state}$$

Theorem. The transfer function for a linear system $\Sigma = (A, B, C, D)$ is given by

$$G(s) = C(sI - A)^{-1} + D \qquad s \in \mathbb{C}$$

Theorem. The transfer function G(s) has the following properties (for SISO systems):

- G(s) is a ratio of polynomials n(s)/d(s) where d(s) is the characteristic equation for the matrix A and n(s) has order less than or equal to d(s).
- The steady state frequency response of Σ has gain $|G(j\omega)|$ and phase arg $G(j\omega)$:

 $u = Msin(\omega t)$ $y = |G(i\omega)|Msin(\omega t + \arg G(i\omega)) + transients$

Remarks

- G(s) is the Laplace transform of the impulse response of Σ
- Typically we write "y = G(s)u" for Y(s) = G(s)U(s), where Y(s) & U(s) are Laplace transforms of y(t) and u(t).
- MATLAB: G = ss2tf(A, B, C, D)

Laplace Transform Review

Constant Coefficient O.D.E.: Laplace Transform (assuming zero initial conditions)

$$\mathcal{L}\{\cdot\} \bigvee \begin{array}{c} \frac{d^n}{dt^n} y(t) + a_1 \frac{d^{n-1}}{dt^{n-1}} y(t) + \dots + a_n y(t) = b_1 \frac{d^{n-1}}{dt^{n-1}} u(t) + \dots + b_n u(t) \quad (*) \\ & (s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n) Y(s) = (b_1 s^{n-1} + \dots + b_n) U(s) \\ & & & \\ & & \\ & & \\ & & G(s) = \frac{Y(s)}{U(s)} = \frac{(b_1 s^{n-1} + \dots + b_n)}{(s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n)} = \frac{n(s)}{d(s)} \end{array}$$

- Roots of d(s) are called the *poles* of transfer function G(s)
 - If p is a system pole, then $y = e^{pt}$ is a solution to (*) with u(t) = 0
 - Poles are strictly defined by matrix A..
- Roots of *n*(*s*) are called the *zeros* of *G*(*s*)
 - If s is a pole of G(s), then $G(s)e^{st}$ is an output if $d(s) \neq 0$.
 - Out put is zero at s if n(s) = 0.

Poles and Zeros

$$\dot{x} = Ax + Bu \qquad G(s) = \frac{n(s)}{d(s)}$$
$$y = Cx + Du \qquad d(s) = \det(sI - A)$$

- Roots of d(s) are called *poles* of G(s)
- Roots of *n*(*s*) are called *zeros* of *G*(*s*)

7

Poles of G(s) determine the stability of the (closed loop) system

- Denominator of transfer function = characteristic polynomial of state space system
- Provides easy method for computing stability of systems
- Right half plane (RHP) poles (Re > 0) correspond to unstable systems

Zeros of G(s) related to frequency ranges with limited transmission

- A pure imaginary zero at s = i ω blocks any output at that frequency (G(i ω) = 0)
- Zeros provide limits on performance, especially RHP zeros

MATLAB: pole(G), zero (G), pzmap(G)

Block Diagram Algebra

Туре	Diagram	Transfer function
Series	$\xrightarrow{u_1} H_{y_1u_1} \xrightarrow{y_1} H_{y_2u_2} \xrightarrow{y_2}$	$H_{y_2u_1} = H_{y_2u_2}H_{y_1u_1} = \frac{n_1n_2}{d_1d_2}$
Parallel	$u_1 \qquad H_{y_1u_1} \qquad y_3 \qquad H_{y_2u_1}$	$H_{y_3u_1} = H_{y_2u_1} + H_{y_1u_1} = \frac{n_1d_2 + n_2d_1}{d_1d_2}$
Feedback	$\begin{array}{c} r \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$H_{y_1r} = \frac{H_{y_1u_1}}{1 + H_{y_1u_1}H_{y_2u_2}} = \frac{n_1d_2}{n_1n_2 + d_1d_2}$

- These are the basic manipulations needed; some others are possible
- Formally, could work all of this out using the original ODEs (\Rightarrow nothing really new)

Sketching the Bode Plot for a Transfer Function (1/2)

Evaluate transfer function on imaginary axis

Sketching the Bode Plot for a Transfer Function (2/2)

Bode Plot Units

What are the units of a Bode Plot?

- **Magnitude:** The ordinate (or "y-axis") of magnitude plot is determined by $20 \log_{10} |G(i\omega)|$
 - Decibels," names after A.G. Bell
- Phase: Ordinate has units of degrees (of phase shift)
- The abscissa (or "x-axis") is log₁₀(frequency) (usually, rad/sec)

Example: simple first order system: $G(s) = \frac{1}{1+\tau s}$

• Single pole at
$$s = -1/\tau$$

•
$$|G(i\omega)| = \left|\frac{1}{1+i\tau\omega}\right| = \frac{1}{\sqrt{1+\omega^2\tau^2}}$$

• In decibels:

$$20 \log_{10} |G(i\omega)| = 20 \log_{10} 1 - 20 \log_{10} (1 + (\omega\tau)^2)^{\frac{1}{2}}$$
$$= -10 \log_{10} (1 + (\omega\tau)^2)$$

Basic Nyquist Plot (review)

Nyquist Contour (Γ):

- Start from 0, and move along positive Imaginary axis (increasing frequency)
- Follow semi-Circle, or arc at infinity, in clockwise direction (connecting the endpoints of the imaginary axis)
- From $-i\infty$ to zero on imaginary axis
- Note, portion of plot corresponding to $\omega < 0$ is mirror image of $\omega > 0$

Nyquist Plot

- Formed by tracing s around the Nyquist contour, Γ, and mapping through L(s) to complex plane representing magnitude and phase of L(s).
- I.e., the image of L(s) as s traverses Γ is the Nyquist plot
- Goal: from complex analysis, we're trying to find number of zeros (if any) in RHP, which leads to instability

Nyquist Criterion

Thm (Nyquist). Consider the Nyquist plot for loop transfer function L(s). Let

- *P* # RHP poles of open loop L(s)
- *N* # clockwise encirclements of -1 (counterclockwise is negative)
- Z # RHP zeros of 1 + L(s)

Then

$$Z = N + P$$

Consequence:

- If $Z \ge 1$, then (1 + L(s)) has RHP zeros, which means that $G_{yr}(s)$ has RHP poles.
- *G_{yr}(s)* is unstable with simple unity feedback, and control *C*(*s*)

What can you do with a Nyquist Analysis?

Set Up (somewhat artificial):

- **Given:** *P*(*s*)
 - (any unstable roots known)
- **Given:** *C*(*s*)
 - (any unstable roots known)
- **Q:** can negative output feedback stabilize the system (stable *G*_{yr}(*s*))?

Possible Solutions:

$$G_{yr}(s) = \frac{PC}{1 + PC} = \frac{n_p(s)n_c(s)}{d_p(s)d_c(s) + n_p(s)n_c(s)}$$

- Compute and check poles of G_{yr}
- Find another way to determine existence of unstable poles without computing roots of

 $d_P(s)d_C(s) + n_P(s)n_C(s)$

The Nyquist plot *logic*

• Poles of $G_{yr}(s)$ are zeros of

$$1 + P(s)C(s) = \frac{d_P(s)d_C(s) + n_P(s)n_C(s)}{d_P(s)d_C(s)}$$

- If $G_{yr}(s)$ is unstable, then it has at least one pole in RHP
- An unstable pole of $G_{yr}(s)$ implies and unstable (RHP) zero of 1 + P(s)C(s)
- Nyquist plot and Nyquist Criterion allow us to determine if 1 + PC has RHP zeros *without* polynomial solving.

Nyquist Example (unstable system)

Nyquist Contour and Plot

Nyquist Example (unstable system)

Nyquist Contour and Plot

Accounting:

- One open loop pole in RHP: P = 1
- One clockwise encirclement of -1 point: N = 1
- $Z = N + P = 1 + 1 = 2 \implies$ two unstable poles in closed loop system

Overview: PID control

$$u = k_p e + k_i \int_0^t e(\tau) d\tau + k_d \frac{de}{dt}$$
$$= k_p \left(e + \frac{1}{T_i} \int_0^t e(\tau) d\tau + T_d \frac{de}{dt} \right)$$

Parametrized by:

- k_p , the "proportional gain"
- k_i , the "integral gain"
- k_d , the "derivative gain"

Alternatively:

$$k_p$$
, $T_i = \frac{k_p}{k_i}$, $T_d = \frac{k_d}{k_p}$

Utility of PID

- PID control is most common feedback structure in engineering systems
- For many systems, only need PI or PD (special case)
- Many tools for tuning PID loops and designing gains

Proportional Feedback

Simplest controller choice: $u = k_p e$

- Effect: lifts gain with no change in phase
- Good for plants with low phase up to desired bandwidth
- Bode: shift gain up by factor of kp
- Step response: better steady state error, but with decreasing stability

Time t

Proportional + Integral Compensation

Use to eliminate steady state error

- Effect: lifts gain at low frequency
- Gives zero steady state error
- Bode: infinite SS gain + phase lag
- Step response: zero steady state error, with smaller settling time, but more overshoot

 $k_p>0, \quad k_i>0$

Proportional + Integral + Derivative (PID)

$$egin{aligned} C(s) &= k_p + k_i rac{1}{s} + k_d s \ &= k(1 + rac{1}{T_i s} + T_d s) \ &= rac{kT_d}{T_i} rac{(s+1/T_i)(s+1/T_d)}{s} \end{aligned}$$

Bode Diagrams

General Loop Transfer Functions

22

Key Loop Transfer Functions

F(*s*) = 1: Four unique transfer functions define performance ("Gang of Four")

Sensitivity: Function	$G_{er} = S(s) = \frac{1}{1 + L(s)}$	L(s) = P(s)C(s)
Complementary Sensitivity Function:	$G_{yr} = T(s) = \frac{L(s)}{1+L(s)}$	"Gang of Four"
Load Sensitivity Function:	$G_{yd} = PS(s) = \frac{P(s)}{1+L(s)}$	(the "sensitivity" functions)
Noise Sensitivity Function:	$G_{yn} = CS(s) = \frac{C(s)}{1+L(s)}$	Characterize most performance criteria of interest

Rough Loop Shaping Design Process

A Process: sequence of (nonunique) steps

- **1. Start with plant and performance specifications**
- 2. If plant not stable, first stabilize it (e.g., PID)
- 3. Adjust/increase simple gains
 - Increase proportional gain for tracking error
 - Introduce integral term for steady-state error
 - Will derivative term improve overshoot?

4. Analyze/adjust for stability and/or phase margin

- Adjust gains for margin
- Introduce Lead or Lag Compensators to adjust phase margin at crossover and other critical frequencies
- Consider PID if you haven't already

Summary of Specifications

Key Idea: convert closed loop specifications on

$$G_{yr}(s) = \frac{P(s)C(s)}{1 + P(s)C(s)} = \frac{L(s)}{1 + L(s)}$$

to equivalent specifications on *loop* system L(s)

• Time domain spec.s can often be converted to frequency domain spec.s

Steady-state tracking error < *X*%

Tracking error < Y% up to frequency f_t Hz

Bandwidth of ω_b rad/sec

Usually needed for rise/settling time spec.

- $\Rightarrow |L(0)| > 1/X$
- $\Rightarrow |L(i\omega)| > 1/Y \text{ for } \omega < 2\pi f_t$

$$\Rightarrow |L(i\omega_b)| = 1$$

Summary of Specifications

Overshoot < Z%

Phase/Gain margins (Specified Directly)

- For robustness
- Typically, at least gain margin of 2 (6 dB)
- Usually, phase margin of 30-60 degrees

Summary: Loop Shaping

Loop Shaping for Stability & Performance

- Steady state error, bandwidth, tracking response
- Specs can be on any input/output response pair

Things to remember (for homework and exams)

- Always plot Nyquist to verify stability/robustness
- Check gang of 4 to make sure that noise and disturbance responses also look OK

Main ideas

- Performance specs give bounds on loop transfer function
- Use controller to shape response
- Gain/phase relationships constrain design approach
- Standard compensators: proportional, lead, PI

Lead & Lag Compensators

Lead: K > 0, a < b

- Add phase near crossover
- Improve gain & phase margins, increase bandwidth (better transient response).

Lag: K > 0, a> b

- Add gain in low frequencies
- Improves steady state error

Lead/Lag:

• Better transient and steady state response

Bode's Integral Formula and the Waterbed Effect

Bode's integral formula for $S(s) = \frac{1}{1+L(s)} = G_{er} = G_{yn} = G_{vd} = -G_{en}$

- Let p_k be the unstable poles of L(s) and assume relative degree of $L(s) \ge 2$
- **Theorem:** the area under the sensitivity function is a conserved quantity:

$$\int_{0}^{\infty} \log_{e} |S(j\omega)| d\omega = \int_{0}^{\infty} \log_{e} \frac{1}{|1 + L(j\omega)|} d\omega = \pi \sum \operatorname{Re} p_{k}$$
Sensitivity Function
Waterbed effect:
•Making sensitivity smaller over

- Making sensitivity smaller over some frequency range requires *increase* in sensitivity someplace else
- Presence of RHP poles makes this effect worse
- Actuator bandwidth further limits what you can do
- •Note: area formula is linear in ω ; Bode plots are logarithmic

