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Abstract

We present a formalism for comparing the asymptotic dynamics of dynamical systems with physical systems that they
model based on the spectral properties of the Koopman operator. We first compare invariant measures and discuss this in
terms of a “statistical Takens” theorem proved here. We also identify the need to go beyond comparing only invariant er-
godic measures of systems and introduce an ergodic–theoretic treatment of a class of spectral functionals that allow for this.
The formalism is extended for a class of stochastic systems: discrete Random Dynamical Systems. The ideas introduced
in this paper can be used for parameter identification and model validation of driven nonlinear models with complicated
behavior. As an illustration we provide an example in which we compare the asymptotic behavior of a combustion sys-
tem measured experimentally with the asymptotic behavior of a class of models that have the form of a random dynamical
system.
© 2004 Elsevier B.V. All rights reserved.

1. Introduction

This paper is concerned with the issue of comparison of different dynamical system models of a physical
system or models of a physical system with the system itself. There are various ways of comparing the behavior
of two dynamical systems. All of them involve defining a metric or convergence. Within the dynamical systems
community, this led the investigation of the above issue in the direction of defining different topologies on spaces
of dynamical systems. The definitions of weak and strong topologies for automorphism groups are given in[16,30].
These are based on the comparison of the action of dynamical systems on open sets of the phase space, and are
effectively requirements that the two systems actions be close everywhere. For example, convergence of a sequence
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of automorphisms{Ti} to T in the strong topology means that{Ti} andT coincide on a larger and larger portion of
the phase space asi increases. In the context of modeling, the requirement that the action of two dynamical systems
be close everywhere is too strong. Consider, for example systems treated in statistical mechanics. The relationship
PV = RT is recovered by employing a model consisting of noninteracting particles in a container. This model is
certainly not very close (in the sense that the dynamical action of the model on the phase space is not close) to
the real dynamics of molecules of monatomic gases for some regimes. But, they possess the sametime-averaged
properties. Another situation of interest occurs when systems with (formally) infinite number of degrees of freedom
are truncated using e.g. Galerkin method to obtain a finite system of ordinary differential equations. In this case,
only a proper subset of the initial conditions available for the infinite-dimensional system can be propagated in time
by the finite-dimensional truncation, and the comparison in the detailed sense of strong or weak topologies is not
possible. These considerations naturally lead to the study of asymptotic dynamics of selected trajectories and this
approach was taken in[4], where the emphasis is on comparing invariant measures. In the case when one of the two
systems has a smaller space of initial conditions than the other (e.g. Galerkin projections), projection of invariant
measures is used. The approach that we pursue here is related to the method of comparison of time series espoused
by Moeckel and Murray[29]. In fact, the first part of this paper in which we deal with invariant measures, connects
directly to that paper and clarifies some issues regarding ergodic–theoretic properties of the approach in[29] and its
relationship with the Takens theorem. While in numerical experiments and analytical work the full state of a system
is an observable, in experiments this is typically not the case. Usually the value of one observable – a function on
the phase space – is measured. This observation lead to the development of the Takens embedding theorem[38],
that was followed by a large number of works in which the theorem was used to illuminatetopological properties
of experimental data sets[1]. As far asstatistical propertiesof data are concerned, Takens embedding theorem has
been used by Mischaikow et al.[28] to identify symbolic dynamics from experimental time series. In the prior work
of Froyland et al.[13] a suggestion is made on getting invariant measures from data (upon embedding the data
using Takens theorem) using representation of the dynamical system as a random system, triangulating the data
and assigning weight to each triangular section according to the properties of the associated random system. The
motivation in[13] is that there are many problems in which the length of signal in time is not sufficient to perform
averaging operations and compute statistics. However, there are a variety of problems in which long data traces are
available, and we develop here a direct approach using time averages of functions, which can be associated with
eigenfuncions of the Koopman operator[20,30]of the dynamical system at hand. In order to pursue this, we need
to prove (constructively) that ergodic partitions and invariant measures of systems can be compared using a single
observable. This leads to what we call the statistical Takens theorem (Theorem 2). Using this result, we develop
pseudometrics on spaces of dynamical systems allowing us to compare asymptotic dynamics of systems.

In some contexts though, comparing invariant measures is not enough. Consider, for example two systems
that have a (geometrically) identical globally attracting limit cycle, but on the limit cycle of the first system the
dynamics is given bẏθ = ω1 and on the limit cycle of the second system the dynamics is given byθ̇ = ω2, where
ω1 �= ω2. While these two systems have identical invariant measures supported on the same geometrical object,
theirasymptotic speedis different. This is related to the description of the cycling behavior of dynamical systems,
the study of which was pursued by Dellnitz and Junge[11]. In that work, the formalism is based on the Perron–
Frobenius operator of the associated stochastic systems. In their work, the concept of eigenmeasures, extending the
idea of invariant measures, is introduced. In examples that Dellnitz and Junge treat stochasticity is associated with
the round-off truncation in the computation of deterministic dynamical systems. In[8], Perron–Frobenius operator
is also analyzed from the spectral perspective. We propose here an alternative formalism based on harmonic analysis
of the Koopman operator that extends the concept of comparing the invariant measures using time-averages. The
regularity results allowing us to do this in the context of deterministic systems are contained in[41]. We show that
information beyond that obtained using time averages can be acquired by taking harmonic averages if the system has
a factor that is a rotation on a circle. The relationship between spectrum at eigenvalue 1 and invariant measures on
the phase space is extended by associating complex measures (constructed explicitly using the Riesz representation
theorem) with eigenvalues of the form e−i2πω for ω �= 0.
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As pointed out above, both the concepts of invariant measure and the harmonic average formalism developed
here are related to spectral properties (in particular, the point spectrum) of the so-called Koopman operatorU,

a linear operator that acts on functions on the phase-space[20,30]. We stress that in this context questions of
identification or validation of asymptotic properties of nonlinear finite-dimensional systems with complex dynamics
is transferred to questions of identification or validation of a linear, albeit infinite-dimensional Koopman operator.
Our hope is that some of the methods developed in control theory of linear systems can be used to study these issues
further (for a combination of linear system identification procedures with dynamical systems analysis, see[14]). In
addition, there has been a substantial interest recently in improving the Galerkin projection methods for obtaining
low-dimensional models of formally infinite-dimensional systems by introducing stochastic terms to account for
neglected modes[15,6,39,31,3,23,7]. A dynamical systems perspective on such modelling is provided in the work
of Dellnitz and collaborators[11,10] in the context of Perron–Frobenius operator for stochastic systems. Here, we
develop a formalism for stochastic systems in the context of Koopman operator akin to that of deterministic systems
that allows for a systematic comparison of different models or data with stochastic elements. In this extension
of the deterministic theory we study deterministic factors of stochastic systems – a concept that might help in
understanding e.g. the abundance of oscillatory phenomena on various time-scales in climate dynamics (see e.g.
[33]). The example of experimental data analysis and comparison with models is given towards the end of the
paper. The data – experimental data from a combustion rig – has stochastic features and the models are random
dynamical systems. Our methods allow for model parameter identification in this context. They also allow for
an easy distinction between processes having a deterministic factor on a circle (deterministic limit cycling) with
additive noise, and lightly damped but stable (i.e. deterministic factor has a fixed point) process – a question that
received some interest in the literature[22,17].

The paper is organized as follows: inSection 2, we discuss the relationship between invariant measures and
time averages of a certain set of functions on the phase space. Extending the ideas in[25,27]. Based on this we
discuss different pseudometrics on the space of dynamical systems that split that space into equivalence sets of
system having the same (according to the chosen pseudometric) asymptotic dynamics and we present some ex-
amples showing both the strength and the weaknesses of the method. To remedy the weaknesses, inSection 3we
turn to analyzing the spectral properties of observables of a dynamical system, by introducing a class of func-
tionals on trajectories (or equivalently, a class of operators on functions induced by the dynamical system) of
which the time-averaging functional is a member. Spectral properties are discussed and methods for comparing
spectra introduced. InSection 4, we extend these ideas to a specific class of stochastic systems, discrete Random
Dynamical Systems. InSection 5, an example of using the theory to model and analyze an experimental com-
bustion system is presented. Optimization of the model parameters is attempted using the ideas on comparing
asymptotic dynamics described inSections 2–4. Proofs of some of the main theoretical results are provided in the
Appendix A.1.

2. Comparison of long-term dynamics: ergodic partitions and invariant measures

2.1. Invariant measures from a single variable

We consider a dynamical system in discrete time defined by

xi+1 = T (xi), yi = f (xi), (1)

wherei ∈ Z,xi ∈ M,T : M → M is measurable andf is a smooth real function on a compact Riemannian manifold
M endowed with the Borel sigma algebra. Every continuous dynamical system on a compact manifold possesses
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an invariant measureµ. We call the functionf ∗ the time average of a functionf underT if

f ∗(x) = lim
n→∞

1

n

n−1∑
i=0

f (T ix)

almost everywhere (a.e.) with respect to the measureµ onM. The time averagef ∗ is a function of the initial statex.
The operatorPT : L1 → L1 such thatPT (f ) = f ∗ is called the time-averaging operator. Note that by Birkhoff’s
pointwise ergodic theorem[30], if T is measure-preserving,f ∗ exists for every functionf ∈ L1(M).

A partition ς of M is defined to be a collection of disjoint setsD
ς
α, whereα is some indexing set, such that

µ(∪
α
Dς

α) = µ(M) (see[32]). A productς
∨

λ of two partitionsς, λ is a partition into setsDς
∨

λ

(α,β) = D
ς
α ∩ Dλ

β i.e.

sets that are intersections of elements of the two partitions. For a finite or countable productζ of partitionsζi,
we write ζ = ∨

i ζi. The key object in our considerations is partition of the phase space into sets on which the
time-averages are constant, i.e. into level sets off ∗. In particular, letf be a continuous function onM. The family
of setsCα, α ∈ R such thatCα = (f ∗)−1(α) is a (measurable) partition ofM. We denote this partition byζf and
call it thepartition induced byf .

Every partitionζf splits the phase space into sets on which the time-average off is constant. It turns out that
for continuousf the measure zero set on whichf ∗ is not defined is independent off [24] whenM is a compact
metric space. An important partition associated with a dynamical systemT is itsergodic partition: partition of the
phase space into (invariant) sets on whichT is ergodic (for a precise definition, see theAppendix A.1). Intuitively,
if we pick a set in the ergodic partition, the system will sample that set well on almost every trajectory in the set.

Example 1. Let I = [−1,1]. Consider the (non-invertible) mapT : I → I, defined byT (x) = 2x, (mod[−1, 1])
(seeFig. 1) that preserves the Lebesgue measure (line length) on the intervalI. Clearly,D1 = (0,1] andD2 = [−1,0)
are invariant sets. The map restricted to each of these sets is ergodic. The ergodic partition isζ = {D1,D2}. Note
that ergodic partition is defined up to measure zero: thus we did not need to include the fixed point 0 in the ergodic
partition.

Our goal is to use time averages obtained from asingle observableto construct the ergodic partition and thus
allow for reconstruction of the ergodic partition from experiments (note however that if there is more than one set
in the ergodic partition, we will need to sample that observable from more than one initial condition, as should be
clear fromExample 1).

Theorem 2. Let M be a compact Riemannian manifold of dimension m. Letl/2 > |f | andκi, i ∈ N
+ a sequence of

continuous periodic functions inC([−l/2, l/2]) that is complete. Consider a countable set of functionsfi1,...,i2m+1
=

Fig. 1. The map considered inExample 1.



I. Mezić, A. Banaszuk / Physica D 197 (2004) 101–133 105

κi1(f ) · κi2(f ◦ T ) · . . . · κi2m+1(f ◦ T 2m) (wherei1, i2, . . . , i2m+1 ∈ N
+). Then, for Cr, r � 1 pairs (f, T ) it is a

generic property that the ergodic partition of a dynamical system TonM is

ζe =
∨

i1,...,i2m+1

ζfi1,...,i2m+1
.

The proof is provided in theAppendix A.1, and it relies on two lemmas. The first one extends an argument in
ergodic theory which says that the ergodic partition is partition into joint level sets of time averages of a count-
able, dense set of continuous functions (for the proof and applications see[25,27]) to allow for taking only joint
level sets of time averages of a complete set of functions. The second lemma tells us how to generate such a
complete set of functions using only one observable. The essence of the above result is the following. By Tak-
ens theorem, we know that we can embed the signalf (T j), j ∈ Z

+ of a continuous observablef of a system
T into an 2m + 1 dimensional boxB of side l, where|f | < l/2. We prove (Appendix A.1, Lemma 20) that to
find the ergodic partition we only need to exhibit a dense countable subset of continuous functions. Such a subset
is going to be provided by products of compositions of (2m + 1)−products of complete set of continuous peri-
odic functions onR of period l with a generic observablef , i.e. we only need to compute the time-averages of
functions

κi1(f (x)) · κi2(f ◦ T (x)) · · · · · κi2m+1(f ◦ T 2m(x)).

Example 3.The set of products of functions sin((2π/l)ny), cos((2π/l)ky), (1/2), y ∈ R, k, e, n ∈ N
+ is a complete

set inC(B). If m = 1 (i.e. the embedding dimension is 3), we should compute time averages of products

f1

(
2π

l
nf (T 2x)

)
f2

(
2π

l
kf (Tx)

)
f3

(
2π

l
jf (x)

)
,

wherefi(z) = sin(z), or cos(z) andk, n, j ∈ N
+.

Example 4. Theorem 2can be used to identify invariant sets (and ultimately the ergodic partition) of a system
without measuring all of its variables for all time. All that is needed is knowledge of initial conditions and knowledge
of a single variable time trace. Consider the standard map on a torus, given by

I ′ = I + ε sin(2πθ),

θ′ = θ + I + ε sin(2πθ),

}
mod1. (2)

Physically, this can be derived as a Poincaré map of a plane pendulum kicked periodically with an impulsive force.
Assume that we know the initial conditions: the actionI and the angleθ, but we can only measureθ dynamically.
Theorem 2suggests that we can find the ergodic partition from these measurements. InFig. 2a we show contour
plot visualizing the level sets of finite time averagef

∗,N
1 + f

∗,N
2 + f

∗,N
3 + f

∗,N
4 , where

f
∗,N
1 = 1

N

N∑
j=1

sin(2πθj) sin(2πθj−1),

f
∗,N
2 = 1

N

N∑
j=1

sin(2π3θj) cos(2π3θj−1),
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Fig. 2. (a) Contour plot showing the level sets off
∗,N
1 + f

∗,N
2 + f

∗,N
3 + f

∗,N
4 . Simulation forN = 100 iterates, 10,000 initial conditions on a

regular 100× 100 grid. The parameterε = 0.03. (b) Phase space plot of the standard map for 400 initial conditions on a regular 20× 20 grid.
The parameterε = 0.03.

f
∗,N
3 = 1

N

N∑
j=1

sin(2π5θj) cos(2π5θj−1),

f
∗,N
4 = 1

N

N∑
j=1

cos(2π8θj) sin(2π8θj−1),

Note that joint level sets off ∗
1 , f ∗

2 , f ∗
3 , f ∗

4 are not equivalent to level sets off ∗
1 + f ∗

2 + f ∗
3 + f ∗

4 – in particular two
different joint level sets off ∗

1 , f ∗
2 , f ∗

3 , f ∗
4 might be subsumed into a single level set of the sum, but we get reasonable

results visualizing joint level sets this way. The problem of visually depicting joint level sets of many functions is
not a simple one (it goes under the name of image segmentation in computer science). Simulation inFig. 2a was
performed forN = 100 iterates, 10,000 initial conditions on a regular 100× 100 grid. Simulation inFig. 2b shows
the usual representation of the phase-space trajectories and was performed for 100 iterates, 400 initial conditions
on a regular 20× 20 grid. Both figures were obtained forε = 0.03. The contour plot, that was calculated by taking
time averages of observables according to prescription inTheorem 2shows close resemblance to the phase portrait.
For our test functionsf1, f2, f3, f4 we chose some of the products suggested in the previous example. Note that
we have embedded the time-traces into a box [0,1] × [0,1] ⊂ R

2 by observing thatθ is defined mod1. Also note
that, since we know the dimensionm of the phase space in this example, we did not embed the signal inR

2m+1, but
in R

m.

As the above example shows, the ideas inTheorem 2allow for visualization of structures in the phase space of a
system even if only a single variable can be measured dynamically (but we have knowledge of initial conditions).
This might be particularly important for conservative systems such as the one treated inExample 4. Even if initial
conditions are known only on a subset of the phase space (such as in numerical simulation of partial differential
equations, where, due to the vast phase space it is impossible to obtain results for a large set of initial conditions),
application of these ideas will lead to splitting initial conditions into equivalence classes that possess the same
asymptotic dynamics (in the sense of invariant measures).

The same result as stated inTheorem 2holds for systems not defined on compact spaces, but whose attractors
are compact sets that are not necessarily manifolds. The extension of Takens theorem for this case can be found in
[34].
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2.2. Pseudometrics

According to the above description, the asymptotic dynamics partitions the phase space into invariant sets. A
sequence of numbersf ∗

i1,...,i2m+1
is associated with each set in the partition. We can base different pseudometrics on

spaces of dynamical systems by using the partition. Letµ be a Borel measure on the compact metric spaceM. We
are going to call systems for whichf ∗ exists for everyf ∈ L1(M) B-regular[9]. We could use time averages to dis-
tinguish between systems: e.g. letT1 andT2 be two continuous,B-regular transformations onM. Then, we could use

da(T1, T2) = max
f∈C(M)

|PT1(f ) − PT2(f )|
|f | , (3)

an “asymptotic pseudodistance” betweenT1 andT2, where|f | can be any suitable function norm, e.g.L1 norm.

Example 5. ConsiderT1, T2 : R
2 → R

2 for which all trajectories tend toS1 ∈ R
2 but the dynamics ofT1,2 onS1 is

given byθ → θ + α1,2, where bothα1 andα2 are irrational and the map is mod1. The pseudodistanceda(T1, T2) = 0.
On the other hand, ifα2 is rational, the pseudodistance is nonzero.

Thus, even (3) might not be too useful for comparing the statistics: on one hand it does not distinguish between
the systems having very different dynamics but equal statistics like in theExample 5, and on the other hand it
distinguishes between the systems described in the following example:

Example 6. Let T1 : xi+1
1 = λxi

1 andT2m : xi+1
2 = λ(xi

2 − εm) + εm, wherex1, x2 ∈ [−1,1], |εm| < 1 and 0<
λ < 1. The first system has an asymptotically stable fixed point atx1 = 0 and the second one atx2 = εm. The
pseudodistanceda(T1, T2m) > a > 0 for εm = 1/m (i.e.a is a lower bound on the pseudodistance) as there exists
a continuous functionf with arbitrarily smallL1 norm on [−1,1] that is zero at zero and equal to any given
value atε.

As shown in the above example, two systems that have attractors that are very close in space can be distant
according toda. Thus, we come to the point where we define a very natural distance between two systems when
we are only interested in matching the asymptotic dynamics on some scale: choose a finite number of functions
(i.e. introduce a cut-off) on the phase space and compare the statistics on those. The pseudodistance betweenT1, T2
relative to a functionf : M → R is defined as

da
f (T1, T2) = |PT1(f ) − PT2(f )|

|f | , (4)

The most important property ofda
f that it renders systems that have “close” attractors “close”. InExample 6,

makingεm smaller would makeTm
2 converge toT1 in da

f for any smoothf . Obviously, the sum of any number
of pseudometrics is a pseudometric. In a specific problem, it is typically easy to identify the importantf ’s. In our
thermodynamic example from the introduction it can be the energy of the system. In the case of oscillators, it will
be the amplitude of oscillation, etc. In[29] various types of pseudometrics are discussed for a particular choice of
functionsf that are compositions of indicator functions on "box" sets in indicator space with time-delay embedded
observable. We use such functions in our applicationSection 5.

The pseudometrics of type (4) are still not entirely satisfactory, as they loose all the “timescale” information
about the system. For example, all the irrational rotations on the circle are again identified, as inExample 5. To treat
this problem, we need to extend our formalism to include spectral information.

3. Comparison of long-term dynamics: harmonic analysis

We pointed out in the introduction that two systems that have equal statistics in the sense of invariant measures,
can have very different asymptotic dynamics. We provided the following example (here in discrete time): consider
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two systems that have a (geometrically) identical global attractor which is a circle, but on the attractor of the
first system the dynamics is given byθ′ = θ + ω1 (mod1) and on the attractor of the second system the dynamics
is given byθ′ = θ + ω2 (mod1), whereω1 �= ω2 and both frequencies are irrational. While these two systems
have identical invariant measures supported on the same geometrical object, theirasymptotic speedis different.
Clearly, this has to do with the spectral properties of the two systems, and in particular with asymptotic spectral
properties.

In the previous section, we have introduced the operatorPT : f → f ∗. Note thatf ∗ is an eigenfunction corre-
sponding to eigenvalue 1 of the so-called Koopman operatorU : L1 → L1, which is defined by

Uf (x) = f ◦ T (x),

asf ∗ is constant on orbits i.e.Uf ∗(x) = f ∗(x). The operatorPT can be considered as a member of a family of
operatorsPω

T ,

[Pω
T (f )](x) = f ∗

ω(x) = lim
n→∞

1

n

n−1∑
j=0

ei2πjωf (T j(x)),

whereω ∈ [−0.5,0.5). Note thatPT = P0
T andf (T j(x)) is the time series of the observablef on the trajectory

of the systemT starting at the pointx at time 0. Thus, for fixedx, f ∗
ω(x) is just the Fourier transform of this time

series, and it is simple to calculate using FFT. In this section, we will discuss the dynamical meaning of the spatial
dependence of these Fourier transforms.

Example 7. Consider the mapsT1, T2 : R
2 → R

2 for which all trajectories tend toS1 ∈ R
2 but the dynamics of

T1,2 on S1 is given byθ′ = θ + α1,2, where bothα1 andα2 are irrational. The pseudodistanceda
f (T1, T2) = 0 for

any continuous (or evenL1 functionf . In this case,Pω
T1

(ei2πθ) = 0 for all ω ∈ S1, ω �= −α1, whilePω
T2

(ei2πθ) = 0

for all ω ∈S1, ω �= −α2.

Like the time-averages, the functionsf ∗
ω also play an important role in the spectral analysis ofU: they are the

eigenfunctions associated with eigenvalues e−i2πω [30]:

Uf ∗
ω(x) = lim

n→∞
1

n

n−1∑
j=0

ei2πjωf (T j+1(x)) = e−i2πω lim
n→∞

1

n

n−1∑
j=0

ei2π(j+1)ωf (T j+1(x)) = e−i2πωf ∗
ω(x).

It is easy to deduce using methods in[41] that existence of these averages is true for allB-regularT’s, as the
existence of harmonic averages depends only on the existence of certain autocorrelations which in turn depends
on the existence of time-averages of functions.Pω

T is nonzero only on at most a countable set ofω’s (Lemma in
Section 4 of[41]). But, when it is non-zero, it can provide substantial new information about the process that we
are studying.

It is easy to show that eigenfunctions ofU can only be of the formf ∗
ω : in fact, a nonzeroPω

T is the orthogonal
projection operator onto the eigenspace ofU associated with the eigenvalue e−i2πω (see the first remark on pg. 215
in [42]). In the case ofP0

T = PT the theory of invariant measures provides a connection of objects defined on the
phase spaceM with the properties ofPT . In the next section we provide such a connection forPω

T by showing
that it is associated with certain complex measures on M. We characterize these complex measures for an ergodic
transformation in terms of its ergodic measure and the eigenvalues of the associated Perron–Frobenius operator
and provide an example where the eigenvalues and eigenfunctions of a map which has both point and continuous
spectrum are numerically computed.
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3.1. Harmonic analysis and factor maps

We turn to the case when there are eigenfunctions ofU that are associated with complex eigenvalues of an ergodic
transformationT : A → A, whereA ⊂ M. In the following we relate these eigenfunctions with rotating factors of
the mapT. Recall that existence of a factorS : B → B of T on A ⊂ M is established by proving that there is a
measurablefactor mapF : A → B such thatF ◦ T = S ◦ F a.e. andµ(F−1(E)) = ν(E) for all measurableE ⊂ B,

and measuresµ, ν, whereT preservesµ andSpreservesν. We have the following

Proposition 8. Lethω : A → C be a non-constant eigenfunction ofU associated with the eigenvaluee−i2πω. Then
hω is a factor map and T has a factor that is a rotation on a circle by angle2πω. Conversely, if T admits a factor
map to rotation on the circle by angle2πω then there is an eigenfunction of U associated with eigenvaluee−i2πω.

Proof. First observe that the modulus ofhω is constant on trajectories:|hω| ◦ T = |hω ◦ T | = | e−i2πωhω| = |hω|.
Thus, the modulus ofhω is constant a.e. asT is ergodic onA. Without loss of generality we assume that|hω| = 1.
Defineθ(x) by hω(x) = e−i2πθ(x). We have

hω(Tx) = e−i2πθ(Tx) = e−i2πωhω(x) = e−i2πω e−i2πθ(x) = e−i2π(θ(x)+ω). (5)

Thus, it is clear thatθ(Tx) = θ(x) + ω i.e. hω ◦ T = S ◦ hω whereS the clockwise rotation by angle 2πω on the
circle of radius 1. Now define a measureν on the circle byν(E) = µ(h−1

ω (E)) whereµ is the ergodic measure for
T, andE is a Borel set. We get

ν(S−1(E)) = µ(h−1
ω (S−1(E))) = µ((S ◦ hω)−1(E)) = µ((hω ◦ T )−1(E)) = µ(T−1(h−1

ω (E)))

= µ(h−1
ω (E)) = ν(E).

ν is invariant underS and we are done with the first part of the claim. The converse is clear by the following
construction: letη : M → S1 be a factor map ofT such that

η(Tx) − η(x) = ω,

i.e.η mapsT to a rotation on the circle by an angle 2πω. Then let

h(Tx) = e−i2πη(Tx) = e−i2π(η(x)+ω) = e−i2πω e−i2πη(x) = e−i2πωh(x)

andh is an eigenfunction associated with eigenvalue e−i2πω. �
Corollary 9. LetA be a set in the ergodic partition of T. Pω

T (f ) is not constant (zero) on A for everyf : M → C

if and only if T has a factor that is a rotation on the circle by an angle2πω.

These results turn our attention to the more detailed study of eigenfunctions associated with complex eigenvalues.
Before we do that let us present an example of a map with a periodic factor.

Example 10. Consider a mapT on the intervalI = [−1,1] such thatT = −(2x) mod [−1,1] (seeFig. 3). At
every step, every point in [0, 1] is mapped into [−1, 0] and vice versa. Thus, the mapF from I to the circle of
radius 1 in the complex plane defined byF (x) = e−i2π = 1 for x ∈ [0, 1] andF (x) = e−iπ = −1 for x ∈ [−1,0)
is a factor map. The factor is rotation on the circle by angleπ i.e. frequency 1/2. Clearly, ifF (x) = e−iπ = −1
thenF (Tx) = e−i2π = 1 and if F (x) = e−i2π = 1 thenF (Tx) = e−iπ = −1. SoF (Tx) = e−iπF (x) andF is an
eigenfunction associated with frequencyω = 1/2. Note that the second iterate of the mapT 2 = 4x mod1 on (0,1]
andT 2 = 4x mod (−1) on [−1,0) so the map is ergodic onI with respect to the Lebesgue measure. However, if
we could only measure the observable Re(F ) : I → R the behavior we would measure would be pure cycling from
−1 to 1. Note thatF can also be considered as a map onS0 = {−1,1} instead onS1.
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Fig. 3. The map considered inExample 10.

3.2. Eigenmeasures

For almost allx with respect toµ, the time-average of any functionf ∈ C(M) endowed with the sup norm can
be represented as

f ∗(x) =
∫
M

f dµx,

whereµx is an ergodic invariant measure forT [24]. The question that we investigate next is: are there objects on the
phase space that can be used for a similar representation of the eigenfunctionsf ∗

ω? We have the following definition
[11]:

Definition 11. A complex-valued measureΦ that satisfies

Φ(T−1E) = e−i2πωΦ(E)

is called an eigenmeasure associated with eigenvalue e−i2πω.

There is a direct way of defining eigenmeasures using harmonic averages, akin to the methods used in proving the
ergodic decomposition theorem (as proved e.g. in[24]). Let T : M → M be as above. Let3ω

0 be the set of points
on which the harmonic averagef ∗

ω exists for every continuousf : M → R. By the strong results of Wiener and
Wintner[41] this set of measure one can be taken to be independent ofω. LetC(M) be endowed with the sup norm.
Note thatLω

x : C(M) → R defined by

Lω
x f = f ∗

ω(x) = Pω
T f (x) = lim

n→∞
1

n

n−1∑
j=0

ei2πjωf (T j(x))

is a bounded linear functional. Thus, there exists a complex measureµω
x such that

Lω
x f = f ∗

ω(x) = Pω
T (f )(x) =

∫
M

f dµω
x ,

for anyf ∈ C(M)[18]. Using continuity ofT it can be shown thatµω
x is an eigenmeasure:∫

M

f ◦ T dµω
x (x) = Lω

x f ◦ T = Pω
T (f ◦ T )(x) = e−i2πωPω

T f (x) = e−i2πω

∫
M

f dµω
x .
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3.3. The Perron–Frobenius operator

Similar to the case of invariant measures ([20], Theorem 4.1.1) eigenmeasures can be discussed in terms of the
point-spectral properties of the Perron–Frobenius operator. In its most general form, the Perron–Frobenius operator
is an operator on the space of Borel measures onM, defined by

Pµ = µ ◦ T−1,

and so∫
A

dPµ =
∫
T−1A

dµ,

for any Borel setA. In the context of deterministic systems to avoid difficulties of working with measures that are
singular we can define the Perron–Frobenius operator on the function spaceL1(M). Define the Perron–Frobenius
operatorP : L1 → L1 adjoint to the Koopman operatorU : L∞ → L∞ [20] by∫

A

Pf dµ =
∫
T−1A

f dµ,

whereµ is a Borel measure onM.

Proposition 12. Let Φ be a complex measure given by

Φ(A) =
∫
A

g dµ, (6)

whereg ∈ L1(M), A measurable. ThenΦ is an eigenmeasure associated with the eigenvalueλ if and only if g is an
eigenfunction of the Perron–Frobenius operator associated with the eigenvalueλ.

Proof. Letgλ ∈ L1(M) be an eigenfunction associated with eigenvalueλ of P . Let a complex measureΦ be defined
as in (6) withg = gλ. Then

Φ(T−1A) =
∫
M

χA ◦ Tgλ dµ =
∫
M

χAPgλ dµ = λ

∫
M

χAgλ dµ = λΦ(A).

Conversely, letΦ be an eigenmeasure given by (6) for someg ∈ L1(M). We know thatΦ(T−1A) = e−i2πωΦ(A) =∫
A

e−i2πωg dµ. But alsoΦ(T−1A) = ∫
M

χA ◦ Tg dµ = ∫
M

χAPg dµ by the fact thatP : L1 → L1 andU : L∞ →
L∞ are adjoint, and so∫

M

χA e−i2πωg dµ =
∫
M

χAPg dµ.

As this is valid for every Borel setA, we have that

Pg = e−i2πωg,

and thus,g is an eigenfunction ofP . �
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If T preservesµ, Pf = f ◦ T−1 for invertibleT . It is easy to show that iffλ is an eigenfunction ofU associated
with the eigenvalueλ, then it is also an eigenfunction ofP associated with eigenvalue 1/λ and vice versa. AsP is
unitary, it has the following property: ifλ is an eigenvalue ofP , thenλ−1 is an eigenvalue ofP . The same is valid
for U. Thus, the point spectra ofP andU are exactly the same. For ergodicT each of the eigenvalues is simple (i.e.
the associated eigenspace is one-dimensional)[35]. Thus, the eigenvalues ofP are also simple for ergodicT .

Definition 13. Let T be a transformation onM. The partition ofM into level sets of an eigenfunctionfλ of U is
called theλ-phase partition.

Clearly, the 0-phase partition is trivial (the whole setM can be taken as the only element of the partition) ifT is
ergodic. From the above analysis we get a very simple description of the phase space partitioning whenT is ergodic.
If there are no eigenvalues other than the simple eigenvalue at zero we can speak ofphase randomization.

A study of the Perron–Frobenius operator in the context of eigenmeasures of stochastic systems that exhibit
cycling behavior, was pursued in[11]. Additionally, in [10] eigenmeasures of interval exchange transformations
were studied.

3.4. An example of harmonic analysis: the conservative case

Broer and Takens[5] studied the map (x′ = x + ω0, y
′ = y + x) on the unit torus that, as they show, has a

mixed spectrum, i.e. the spectrum consists of a point part with eigenvalues e−i2πnω0, n ∈ Z and the associated
eigenfunctions e−i2πnx, n ∈ Z and a continuous part that is Lebesgue. The map is ergodic ifω0 is irrational, but
not mixing or even weakly mixing. It can be extended to a family of area-preserving mapsTa parametrized by the
amplitudea :

x′ = x + ω0 + a sin(2πy)

y′ = y + x + a sin(2πy)

}
mod1.

A trajectory of the mapT0, with a = 0, starting fromx = y = 0.3 is shown in theFig. 4. The orbit samples the phase
space well, in accordance with the fact that the map is ergodic for that parameter value. InFig. 5, we show numerically
computed spectral information for the above map witha = 0, ω0 = 1/(2

√
2). As we mentioned, the properties of

the spectrum are known analytically, but this case gives us a good validation point for our computations. In the
top row ofFig. 5, we show on the left values of the functionf1 = 0.25 cos(2πx) + 0.25 sin(2πy) on the trajectory
shown inFig. 4, for the first 100 iterates. This plot has a distinctly “stochastic” look. In the middle of the top row

Fig. 4. Orbit ofT0, starting fromx = y = 0.3; 50,000 iterates.
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Fig. 5. Spectral properties ofT0. See text for description.

of Fig. 5, we show values of the (complex valued) quantity

Pω
T f1(x0, y0) = 1

N

N−1∑
j=0

ei2πjωf1(T j

0 (x0, y0)).

The rightmost dot, on the real axis, represents the time average of the function,f ∗
1 (x0, y0) = 0.5. The two complex

conjugate values farthest from the origin, at approximately 0.11± i0.05 correspond toω = ±1/(2
√

(2)). On the
right of the top row ofFig. 4we show|Pω

T f1(x0, y0)| as a function ofω. The computation is done overN = 5000
iterates, but the only thing that changes for largerN (we computed up toN = 100,000), is that all the values of
Pω

T f1(x0, y0) shrink to zero, except for 0.5 and two complex conjugate values described above. In the top row
rightmost figure, there are peaks present atω0 and 1− ω0 since the projection off1 to any eigenspace except for
the ones at e−i2πω0,ei2πω0 is zero (note that we chose the horizontal axis in the top right figure to be [0,1) rather
than [−1/2,1/2)). Computation starting with different initial conditions and smaller number of iterates (down to
about only 500) shows very similar features. Note the remarkable disparity between the aperiodic “appearance”
of the signal and the spectrum that has a single clear peak. It is true that for the map in question, we know the
importance ofω = 1/(2

√
2) and its harmonics. However, the reader should imagine an unknown system with an

observable producing the top left figure as its time trace. Computing the harmonic averages would identify the
relevant frequency automatically.

In the second row, the same quantities are plotted for the functionf2 = tan(cos(2πx/7)) − m, wherem is the
mean of tan(cos(2πx/7)) on [0,1) (thusf2 has mean zero on [0,1) × [0,1)). The functionf2 does not depend on
y and thus its behavior in time is quasiperiodic. The eigenvalues are of the form e−i2πnω0, and, in contrast with the
first row, there are peaks in the rightmost plot of|Pω

T f2(x0, y0)| indicating several harmonicsnω0. This means that
the functionf2 has non-zero projection onto eigenspaces of the Koopman operator that correspond to variousn.
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Fig. 6. Imaginary part of the harmonic average off1 underT0 for ω = 1/(2
√

(2)), taken over 10,000 iterates, on a grid of 40× 40 initial
conditions.

In the first and third plot of the third row we present iterates of the functiony and its power spectral density. The
functiony does not contain any “rotation” by angleω0 and thus does not contain any distinguished peaks. More
precisely, the projection ofy to the space spanned by the eigenfunctions is 0. Of course, computationally, there is
an error to this exact result and it is clear from the figure that it is of the order 10−3 for 5000 iterates. In theFig. 6,
we show the imaginary part of the harmonic averageP

ω0
T0

f1 for ω0 = 1/(2
√

(2)), taken over 10,000 iterates, on a
grid of 40× 40 initial conditions. We know that this function is in the linear span of cos(2πx) and sin(2πx) and the
calculation confirms this. Note that despite the fact that the dynamical system is ergodic fora = 0, we can (partially)
tell where the trajectory came from by computing its phase. Of course, we cannot tell the initialy but horizontal
initial conditions are distinguished.

Next we consider the casea = 0.01. A trajectory of the mapT0.01 starting fromx = y = 0.3 is shown in the
Fig. 7. Appearence of islands is clear from this figure, but there is still a single large zone in the phase space that
appears to be ergodic. In this case, the spectrum of a trajectory starting in the ergodic zone changes only slightly
from the casea = 0, as shown in theFig. 8. The ordering of plots is the same as in theFig. 5. In theFig. 9, we show
the imaginary part of the harmonic averageP

ω0
T0

10f1 for ω0 = 1/(2
√

(2)), taken over 50,000 iterates, on a grid of
400 initial conditions. The computation is much harder in this case, due to the coupling in the system, but features of
the eigenfunction are clearly close to the casea = 0, with the exception of isolated zones corresponding to islands in
theFig. 7. We computed harmonic averages for 10f1 instead off1 just to get a better contrast in the plot – of course,
the resulting harmonic average is just a constant (10) multiple of the one that would be obtained by computing
harmonic average off1. We also performed some smoothing over frequenciesω, in the range [0.3535,0.3545] -

Fig. 7. Orbit ofT0.01, starting fromx = y = 0.3; 100,000 iterates.
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Fig. 8. Spectral properties ofT0.01. See text for description.

one has to remember that we are computing highly non-smooth quantities. For the casea = 0 this was not necessary
due to the nice convergence properties.

In theFig. 10, we show the plot equivalent to those inFigs. 5 and 8, computed for 25,000 iterates witha = 0.5.
In this case,Pω

T0.5
(f ) evaluated at the point (0.3,0.3) becomes smaller and smaller in the range of the number of

iterates up toN = 25,000. The phase seems to be randomized outside of the island that exists in the phase-space
plot at the upper left corner.

Fig. 9. Imaginary part of the harmonic average of 10f1 underT0.01 for ω = 1/(2
√

(2)), taken over 50,000 iterates, on a grid of 400× 400 initial
conditions.
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Fig. 10. Spectral properties ofT0.5. See text for description.

3.5. Examples of harmonic analysis: the dissipative case

In this subsection, we present examples of the use of above harmonic analysis ideas for dissipative maps on a
torus. First we consider the following simple map:

x′ = γ(x − ω0) + ω0

y′ = y + x

}
mod1. (7)

Under assumption thatω0 is irrational and 0< γ < 1, the above map has an invariant circle atx = ω0, on
which the dynamics is given by irrational rotationy = y + ω0 (seeFig. 11b where a trajectory of the map (7)
with ω0 = 0.5613245623, starting atx0 = 0.8, y0 = 0.2 is shown). InFig. 11a, we show the contour plot of the
argument of the complex eigenfunction obtained by taking the harmonic averages withω = ω0 of the function
g = cos(2.5 cos(2πy) + 2.5 sin(2πx)) over the trajectories of the map. In particular, we know that the eigenfunction
can be written asr exp(2πθ(x0, y0)), wherer is the (constant) modulus (note that the map is ergodic with respect to
the delta measure concentrated on the invariant circle atx = ω0, and thus any eigenfunction has constant modulus).
In Fig. 11a, we plot contour plot ofθ(x0, y0). All the points of the same straight skewed line contour have the
same "asymptotic phase", i.e. their trajectory asymptotically approaches the trajectory of the point that is on the
intersection of that line andx = ω0. Note that the eigenspace atλ = exp(2πω0) is two-dimensional, but theλ-
partition is accurately represented byθ(x0, y0). Next, consider the following dissipative perturbation of an integrable
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Fig. 11. (a) Angle of the harmonic average ofg under map (7) forω = ω0 = 0.5613245623, taken over 1000 iterates, on a grid of 30× 30
initial conditions. (b) Trajectory of the map (7) withω = ω0 = 0.5613245623, starting atx0 = 0.8, y0 = 0.2.

twist map:

x′ = (1 − γ)x + a sin2(2πy)

y′ = y + x + a sin(2πy)

}
mod1. (8)

whereγ = 0.06123456756432, a = 0.03. For sufficiently small a, it can be shown that there is an invariant circle
close tox = 0.25 (seeFig. 12b where a trajectory of the map (8) starting atx0 = 0.8, y0 = 0.2 is shown). In
Fig. 12a, we show the contour plot of the argument of the complex eigenfunction obtained by taking the harmonic
averages atω = 0.245 of the functiong = cos(2.5 cos(2πy) + 2.5 sin(2πx)) over the trajectories of the map. Clearly,
the “asymptotic phase” for this map has much more complicated distribution than that in the previous example.
Harmonic partitions can be obtained from embedded data as well, i.e. when we do not have ability to measure
the full state of the system. InFig. 13, we show the imaginary part of the finite-time harmonic average off1 +
f2 + f3 + f4 from Example 2. In particular, we show contour plot visualizing the level sets of finite time average
f

∗,N
1,ω + f

∗,N
2,ω + f

∗,N
3,ω + f

∗,N
4,ω , where

f
∗,N
1,ω = 1

N

N∑
j=1

exp(2πijω) sin(2πθj) sin(2πθj−1),

Fig. 12. (a) Angle of the harmonic average ofg under map (8) forω = 0.245, taken over 1000 iterates, on a grid of 30× 30 initial conditions.
(b) Trajectory of the map (8) withγ = 0.06123456756432, a = 0.03, starting atx0 = 0.8, y0 = 0.2.
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Fig. 13. (a) Imaginary part of the harmonic average off1 + f2 + f3 + f4 under map (8) forω = 0.245, taken over 5000 iterates, on a grid of
50× 50 initial conditions.

f
∗,N
2,ω = 1

N

N∑
j=1

exp(2πijω) sin(2π3θj) cos(2π3θj−1),

f
∗,N
3,ω = 1

N

N∑
j=1

exp(2πijω) sin(2π5θj) cos(2π5θj−1),

f
∗,N
4,ω = 1

N

N∑
j=1

exp(2πijω) cos(2π8θj) sin(2π8θj−1),

4. Stochastic systems

The above theory can be extended to stochastic systems. We will present the application of the above ideas to a
stochastic system in the next section and we provide the theoretical framework and relevant results here.

4.1. Introduction and set-up

For our purpose, the most convenient context in which to analyze stochastic systems is that of Random Dynamical
Systems (RDS)[2]. We will work with the Discrete Random Dynamical System (DRDS)

xi+1 = T (xi, ξi), ξi+1 = S(ξi), yi = f (xi) (9)

wherei ∈ Z, x ∈ M a compact Riemannian manifold,ξ = {. . . , ξ−1, ξ0, ξ1, . . .} ∈ NZ, i.e. ξj ∈ N, whereN is a
compact Riemannian manifold endowed with a probability measurep that is absolutely continuous with respect
to the Lebesgue measure onN. The product spaceNZ is endowed with the standard product measure9. S is
the shift transformationS{. . . , ξ−1, ξ0, ξ1, . . .} = {. . . , ξ0, ξ1, ξ2, . . .}. We consider observablesf : M → R or
C, f ∈ L1(M). We denoteT i

ξ (x) = Tξi−1 ◦ . . . ◦ Tξ0 whereTξj (x) = T (x, ξj). We assume thatTξ(x) is Cr, r ≥ 1 in
x for everyξ ∈ N. With some abuse of notation, we will call the above DRDST (note thatT denotes a family of
transformations indexed overξ, rather than any particular superposition). A probabilistic measureµ onM endowed
with the Borel sigma algebra is invariant for measurableT iff

E[µ(T−1(B, ξ))] = µ(B)
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for every measurableB whereE[µ(T−1(B, ξ))] = ∫
NZ

µ(T−1(B, ξ))d9(ξ). The analogue of the Koopman operator
is thestochastic Koopman operatorUs defined by

Usf (x) = E[f ◦ T (x, ξ)],

whereE[f ◦ T (x, ξ)] = ∫
NZ

f ◦ T (x, ξ)d9(ξ). Theexpectation of the time-average off underT is given by

Ef ∗(x) = lim
n→∞

1

n

n−1∑
i=0

Ui
sf (x). (10)

The partition ofM into level sets ofEf ∗ is denoted byζf . An ergodic measure onM is an invariant measureµ such
thatEf ∗(x) = ∫

M
f (x) dµ(x) a.e. onM for everyf ∈ L1(M). The ergodic partitionζe of M underT is a partition

into setsDα such that on each setDα there exists an ergodic measureµDα and its properties are equal to the situation
described for the deterministic case in theAppendix A.1.

4.2. Ergodic partitions and invariant measures

To state results equivalent toTheorem 2we need to use a stochastic version of the Takens embedding theorem. This
has recently been provided in[37] (see e.g. Theorem 7 there). In particular, assume thatN is a compact manifold and
p absolutely continuous with respect to the Lebesgue measure onN. For generic,Cr, r � 1 pairs (f, T ) and almost
everyξ ∈ NZ, the mape : M → R

2m+1 given componentwise bye(x) = (f (x), f (Tξx), f (T 2
ξ x), . . . , f (T 2m

ξ x)) is

an embedding and thuse(M) is a compact submanifold ofR2m+1. Again, it is then necessarily contained in a
sufficiently large boxB of side lengthlξ > 2 · maxx |f (x)| centered at the origin ofR2m+1. We can regardB as a
torusT

2m+1, i.e. the embeddinge can be regarded as a mape : M → T
2m+1.

Theorem 14. Let M be a compact Riemannian manifold of dimension m and N a compact manifold of dimension n
endowed with a measure p that is absolutely continuous with respect to the Lebesgue measure on N. Letκi, i ∈ N

be a sequence of continuous periodic functions inC([−lξ/2, lξ/2]) that is complete. Consider a countable set
of functionsfi1,...,i2m+1

= κi1(f ) · κi2(f ◦ Tξ) · . . . · κi2m+1(f ◦ T 2m
ξ ) wherei1, i2, . . . , i2m+1 ∈ N. Then, for almost

everyξ, for Cr, r � 1 pairs (f, T ) it is a generic property that the ergodic partition of aCr, r � 1DRDS T on M is

ζe =
∨

i1,...,i2m+1

ζfi1,...,i2m+1
.

The proof of this theorem closely resembles the steps taken in the deterministic case. The Markov property of the
DRDS allows for the use of ergodic partition technique provided by Yosida[42]. The stochastic version of the
Takens embedding theorem proven as Theorem 7 in[37] is used.

4.3. Harmonic analysis

The family of operatorsEPω
T ,

EPω
T (f ) ≡ Ef ∗

ω = lim
n→∞

1

n

n−1∑
j=0

ei2πjωUi
sf,

plays the role analogous to the familyPω
T in the deterministic case. In particular, a nonzeroEPω

T is the orthogonal
projection operator onto the eigenspace ofUs associated with the eigenvalue e−i2πω (see the first remark on pg.
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215 in[42]). It is interesting to discussdeterministic factorsof random dynamical systems. A deterministic factor
of a DRDST onA ⊂ M is a mapS : B → B such that there is a measurablefactor map(or homomorphism)F :
A → B, E(F ◦ T ) = S ◦ F a.e. andµ(F−1(E)) = ν(E) for all measurableE and measuresµ, ν, whereTpreserves
µ andSpreservesν. Assume thatT is ergodic onA with an invariant ergodic measureµA. We have the following:

Theorem 15. Let T be an invertible DRDS,hω : A → C be a non-constant eigenfunction ofUs associated with
the eigenvaluee−i2πω. Thenhω is a factor map and T has a factor that is a rotation on a circle by an angle−2πω.
Conversely, if T admits a factor map to rotation on the circle by an angle2πω then there is an eigenfunction of T
associated with eigenvaluee−i2πω.

We provide the proof in theAppendix A.1since it is in spirit the same as in the deterministic case, but differs in a
variety of technical issues.

Corollary 16. Let A be a set in the ergodic partition of T. EPω
T (f ) is not constant on A for everyf : M → C if

and only ifT has a factor that is a rotation on the circle by an angle2πω.

We can now define eigenmeasures as complex measuresΦ that satisfyE(Φ(T (E, ξ0)) = e−i2πωΦ(E). The complex
measure defined byΦ(E) = EPω

T (χE) is clearly an eigenmeasure. The stochastic Perron–Frobenius operatorPs :
L1 → L1 can be defined by∫

C

Psf (x) dµ(x) = E

∫
A

f · (χc ◦ T (x, ξ)) dµ(x),

for f ∈ L1(A). It is easy to see that the operatorPs is adjoint to the stochastic Koopman operator. The connection
between the eigenvalues ofPs and eigenmeasures is the same as in the deterministic case:

Proposition 17. LetΦ be a complex measure given by

Φ(E) =
∫
E

g dµ, (11)

whereg ∈ L1(M). ThenΦ is an eigenmeasure associated with the eigenvalueλ if and only ifg is an eigenfunction
of the stochastic Perron–Frobenius operator associated with the eigenvalueλ. We callgλ the charge density.

The proof follows the lines of the deterministic case and we omit it.

Example 18.Consider a DRDS given by

xi+1 = −1 · Θ(ξi), ξi+1 = Sξi, (12)

wherex ∈ [−1,1], ξ ∈ [0,1]N,Θ(ξi) = ξi0, whereξi0 is the value of the sequenceξi = {. . . , ξi−n, . . . , ξ
i
−1, ξ

i
0, ξ

i
1,

. . . , ξin, . . .} at index 0, and the probability measurep is the Lebesgue measure on [0,1]. The factor map for (12)
is given byF : [−1,1] → {−1,1}, F (x) = −1 if x ∈ [−1,0], F (x) = 1 if x ∈ (0,1]. The deterministic factor is
G(a) = −a, wherea ∈ {−1,1}.
The above example is in some sense canonical: from the proof ofTheorem 15in theAppendix A.1, it is clear that
the random process moves points from a level set of an eigenfunction with modulus 1 to another level set of the
same eigenfunction, with probability 1.

This completes our discussion of discrete random dynamical systems. The system (9) can be also regarded as a
control system (see e.g.[12,40]). When we considerξ as a control input, the whole ergodic partition onM × NZ

becomes an interesting object to study. For the discussion of invariant measures in this direction, see e.g.[2].
Now we turn to practical considerations. The concepts defined above allow us to propose procedures for iden-

tification of parameters of complex nonlinear systems. We discuss these methods and apply them to experimental
data from a combustion experiment in the next section.
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5. Identification of parameters of nonlinear complex systems

We believe that the ideas introduced above can be turned into a practical tool for analyzing and modeling
the behavior of dynamical systems with complex dynamics. The whole formalism is based on data from a single
observable and, in contrast to previous uses of Takens’ theorem recovers statistical information linked to geometrical
properties of the attractor instead of the purely geometrical information. In this section, we use them to analyze and
estimate parameters for a model of an experimentally studied combustion process. In the next subsection, we review
the methods that are usually used in such analysis and connect them with the methods that we have developed here.
We apply the new procedures to the experimental data in Section 5.2.

5.1. Probability histograms

The rigorous results proven above suggest that we should take time-averages of a complete set of continuous
functions to study properties of invariant measures. In applications such as analysis of experimental data, what is
typically available is probability histograms. Here, we show that these involve a similar construction to the one
provided above, a composition of (discontinuous!) functionsκj : R → R with an observableg : M → R.

In the context of chaotic dynamical systems the probabilistic approach is often taken and a system is described
in terms of a histogram of a specific functiong on the phase space. Letb be the bin size for the histogram and
zj ∈ R, j ∈ Z a sequence of numbers such thatzj+1 = zj + b. By the histogram we mean a step function, constant
on every intervalIj = (zj − b/2, zj + b/2]:

HT
g (Ij, x) = lim

n→∞
1

n

n−1∑
i=0

κj ◦ g(T i(x)) = κ∗
j (x),

wherex ∈ M. HT
g (Ij, x) tells us the proportion of time the time-series spends in the intervalIj. The functionκj is

the characteristic function on the intervalIj = (zj − b/2, zj + b/2], i.e.κj(u) = 1 if zj − b/2 < u ≤ zj + b/2 and
zero otherwise. IfT is ergodic,H is the same function for almost every initial conditionx. A possible pseudometric
for ergodic systems would be

d(T1, T2) =
∑
j

[HT 1

g (Ij) − HT 2

g (Ij)]
2,

where the sum is over some finite set ofj’s.
The lesson learned from the rigorous study is that we should take time-averages (i.e. histograms) of products

of (κj ◦ g(T i(x)) where i = 0, . . . ,2m, and include them into the pseudometric. The appropriate experimental
procedure would be to: (1) get the data from observableg; (2) determine the dimensionalitym of the system using
the appropriate embedding theorem; (3) formulate the model of the same dimension; (4) form histograms of products
of κj ◦ g(T i(x)) for experiment and model; (5) compare these histograms in some metric.

Example 19. Probability histograms for correlated processes. As mentioned above, one of the common ways of
comparing behavior of two systems with complex behavior is taking histograms for a single observable. To show
the dangers of this approach when the dynamics of the system is not completely decorrelated and usefulness of the
Lemma 21in this context, consider two systems having limit cycle attractors in the delay phase space shown in
Fig. 14. Both of the limit cycles are elliptical, one of them having its major axis aligned with the axisz1, the other
with z2. The dynamics on both limit cycles is assumed to be symmetric with respect to bothz1 andz2 axis and thus
the probability histogram off (denoted byp(f ) in Fig. 14) is the same for both systems. However, letκ+be the
indicator function on the interval (0, l). Thenκ+(f ) · κ+(f ◦ T ) is the indicator function for the upper right quadrant
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Fig. 14. An example in which two different limit cycles give the same histogram off .

of the box of sidel shown in theFig. 14. Clearly. the amount of time that these two systems spend in the upper
right quadrant is different and thus the time average of this product function reveals the difference in the invariant
measures supported on the limit cycles.

We can also define spectral histograms by consideringPω
T (κj) = (κj)∗ω. Histograms in the case of stochastic processes

are defined similarly.

5.2. An example: Identification of parameters of a combustion model with noise

In this section, we present an example of using the formalism developed above to optimize parameters of a
model describing a United Technologies Research Center (UTRC) 4MW single-nozzle combustion rig operating
close (in parameter space) to instability associated with a lean condition, i.e, with low value of fuel to air ratio ([19]).
This was done in a non-automatized manner, by trial-and-error search for the best parameters due to computing-
time limitations induced by the number of parameters. Of course, an automatized procedure could in principle be
designed based on the above considerations on pseudometrics. There are several points we wanted to make in this
example. One is that the method is quite sensitive to change of parameters of the model and easily distinguishes, for
example, between a limit cycling and a stable noisy system. Another is that phase information is important even in
noisy processes. Namely, the data studied here exhibits harmonic averages consistent with the process being close
to one with a deterministic factor.

A simple model of a combustion process is an interconnection of a linear acoustic model and nonlinear heat
release model that consists of a delay and a saturation function. The system is driven by broad-band stochastic
disturbance. More precisely, a discrete-time model equations used to simulate pressure oscillations in the UTRC
combustion rig were

x1
i+1 = (−α + cos(ω0Ts))x

1
i − sin(ω0Ts)x

2
i ,

x2
i+1 = sin(ω0Ts)x

1
i + (−α + cos(ω0Ts))x

2
i + K3h(K2x

1
i−N ) + K1ni, (13)
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Fig. 15. Time average plot for indicator functions from experimental data.

whereTs = 0.0005,ω0 = 2πf0, K3 = 0.0525, andh is a saturation function defined ash(u) = u for −s < u < s,
h(u) = −s for u ≤ −s, andh(u) = s for s ≤ u. Variablesx1

i , x
2
i are unsteady components of pressure in the combus-

tor at two different times, while variableni represents noise. The model was implemented in Simulink. To simulate
noise, a Simulink model of a band-limited white noise with power 0.01 was used. Note that the model described
by (13) is a Discrete Random Dynamical System (DRDS) of the type that was studied inSection 4. We choose a
two-dimensional embedding space for the system.

To obtain the harmonic averages 20,000 samples (10 s sampled at 2 kHz) of experimentally obtained combustor
pressure and pressure from Simulink model simulations were used. The experimental data presents a spectrum
with a single peak at aboutf = 207. We examined the results of harmonic analysis results for a range of model
parameters lead by this spectral information. Values off0, N, α, K2, s, andK1 were varied until a good agreement
between harmonic averages of results of simulations and experimental data was found. A good fit to experimental
data was obtained for parametersf0 = 207,N = 10,α = 0.03,K2 = 2000,s = 5,K1 = 0.0788.

Let p(i) be the vector of two subsequent values of the pressure at times (l + 1)/20000,l/2000 obtained from
experimental data or the model.Figs. 15 and 16we show the plot of time-averages

χ∗
(i,j) = 1

20000

20000∑
i=1

χ(i,j)(p(i))

of indicator functionsχ(i,j) on squares defined in the embedding space (an indicator function is 1 if a point is inside
the square of side lengthl and 0 elsewhere). A grid of 10× 10 indicator functions was used withl = 2 psi, their
time-averages computed and assigned to nodes labelled (i, j) wherei, j vary from 1 to 10 (for this approach to
experimental data analysis and discussion of related distance functions, see[29]). The results shown in 15, for the
experimental data and 16 for the model that we found a good fit to the data are, for the sake of better visualization,
linearly interpolated shaded contour-plots of the time-averages. To show the sensitivity of the model (in the sense
that some model parameters produce very poor approximation to experimental data) we show in theFig. 17the time
averages for the case of model parameters beingf0 = 207,N = 9,α = 0.03,K2 = 2000,s = 5,K1 = 0.0788.

In Fig. 18, we show the absolute value of the difference between the time average of indicator functions obtained
from experimental data and that obtained from model that is deemed a good representation for the experimental data.
The values are an order of magnitude smaller than the values presented inFigs. 15 and 16. Thus, the approximation
error is about 10%. In theFig. 19, we show the absolute value of the difference between the time average of indicator
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Fig. 16. Time averages for indicator functions for model with parameters that provide a good match with the experimental data.

functions obtained from experimental data and that obtained from model that is deemed a bad representation for
the experimental data. The model error in that case is of the same order of magnitude as the data itself.

Using the developed methods of data analysis it is relatively easy to distinguish systems that exhibit noisy limit
cycles from those exhibiting stable, lightly damped behavior with noise ( in our case a system possessing a spiral-
node fixed point). InFig. 20, we show (on top) both the spectrum of signals from experimental data (blue) and stable,
lightly damped model (red) for model parameters:f0 = 207,N = 10,α = 0.03,K2 = 9.52,s = 15,K1 = 0.0788.
It is clear that while the spectra are very similar, the probability density functions shown in the bottom plot show a
strong difference.

While the difference of the limit cycling and stable lightly damped system is clear already from the probability
density function, we investigate it in the context of the tools developed in the theory part of the paper. InFig. 21
we show the plot of the time averages of indicator functions presented in the same fashion as those inFigs. 15

Fig. 17. Time averages for indicator functions for model with parameters that provide a poor match for the experimental data.
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Fig. 18. Absolute value of the difference between the time averages for experimental data and the model with parameters corresponding to good
fit.

and 16. The nature of the distribution of the time-averages is clear: there is a peak centered at the box (5,5); this is
where the stationary point of the underlying stable lightly damped deterministic system (withK1 = 0 in (13)) is.

It is interesting to also examine the phase information provided by experimental data and different models in the
context of the theory provided above. InFigs. 22–24, we present contour plots of the absolute value of harmonic
averages

χ∗
ω(i,j) = 1

20000

20000∑
i=1

ei2πjωχω(i,j)(p(i))

Fig. 19. Absolute value of the difference between the time averages for experimental data and the model with parameters corresponding to poor
fit.
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Fig. 20. Top: spectrum of experimental data (blue) and stable, lightly damped, noisy model (red). Bottom: probability density functions of the
signal for experimental data (blue) and stable, lightly damped, noisy model (red). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of the article.)

Fig. 21. Plot of the time averages of indicator functions for the stable, lightly damped noisy model of the experimental data.
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Fig. 22. Contour plot of the harmonic averages of indicator functions for frequency corresponding to the peak obtained from the experimental
data.

obtained at the frequencyω where the experimental data and models (“good fit” limit cycling model and stable
lightly damped model) have a peak. While both the plot from the experimental data inFig. 22and from the “good
fit” model in Fig. 23have well-defined features around the geometric location of the noisy limit cycle, the plot
obtained from the stable, lightly damped model at the same frequency is comparatively featureless – as shown in
Fig. 24. This is to be expected, given that in limit cycling system with noise the factor analysis provided inSection
4 suggests existence of a non-uniform signed measure such that the average of density of the measure over boxes
(i, j) is approximated by the harmonic averages. This density is concentrated at the location of the limit cycle.
In the stable lightly damped model, the phase is “randomized” - there is no factor and no “true” cycling in the
system.

It is also worth pointing out that by taking the “wrong” model obtained by settingx1 → −x1 (reflection across
x2 axis) and using the parameters of the “good fit” limit cycling model we obtain a model whose 1− dimensional
probability density plot matches that of the experimental data, shown in blue inFig. 20while the two-dimensional
plot of time averages showsFig. 16reflected acrossx2 axis, thus exhibiting behavior described inExample 19.

In [22], the question of characterization of limit cycling instability in jet engine combustors was investigated.
The classical method of PDF analysis was used in conjunction with the Takens embedding theorem to provide such
characterization. The methods we exhibited here, that use the new, statistical version of the Takens theorem are
suitable for taking such a study further, to the realm of model parameter identification and model validation, the
importance of which in the context of combustion processes was indicated in[17].

5.3. Effect of finite data sets and finite sets of functions

The data analysis method that we propose requires analysis of a basis of functions on the phase space (our
functionsκi) whose statistical properties are analyzed starting from a finite-time data set. If the trajectory of a
system is time-periodic or quasi-periodic, the harmonic averages will converge at a rate 1/n wheren is the number
of data points (for discussion of this simple fact and a specific application, see[26]). When the trajectory is in a
chaotic zone, and the system is strongly mixing, converegence will typically be of the order 1/

√
n) and therefore

quite slow.
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Fig. 23. Contour plot of the harmonic averages of indicator functions for frequency corresponding to the peak obtained from the “good fit” limit
cycling model.

The choice of different functionsκi will determine the "spatial" (i.e. phase space) scale of comparison of systems.
For example, wavelet bases can be employed to detect spatially localized features of a system such as high order
resonances in the standard map[21]. In the example presented in this section it is the interplay between the time-scale
of the data and spatial scale of the feature in the phase space that determines the spatial scale of the functionsκi

used.

Fig. 24. Contour plot of the harmonic averages of indicator functions for frequency corresponding to the peak obtained from the stable, lightly
damped noisy model.
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6. Conclusions

In this paper, we presented some ideas that serve as a framework within which model validation and analysis of
nonlinear and/or stochastically driven systems can be done.

Practitioners of experimental and numerical analysis of dynamical systems have found great use of Takens
embedding theorem type results. But, embedding methods are often supplemented by statistical considerations such
as analysis of probability density functions and spectral analysis. This is especially the case when data is polluted
by noise. Here, we linked Takens embedding type results with ergodic theory analysis to provide an ergodic–
theoretic understanding of probability density and spectral data, both for deterministic and random dynamical
systems.

Following the premise that time averages of certain functions on the phase space of a system can be easily obtained
experimentally, while complete invariant measures are hard to observe, we have studied the relationship between
the two. We have also argued that invariant measuresdo notdescribe (even in the sense of statistics) everything we
would like to know about the asymptotic dynamics of systems. We introduced a family of operators on the space
of functions and discussed how the question about the difference of asymptotic dynamics can be transformed into
a question on the behavior of this family of operators. Based on this, we introduced pseudometrics on the space
of dynamical systems that split this space into equivalence classes of systems having the same (in the sense of the
chosen pseudometric) asymptotic dynamics. We presented an example in which this formalism is used to optimize
parameters of a model of a combustion experiment. As opposed to much of the previous work in this direction, our
interest lies not in getting the correct short-term (relative to the time-scales of the problem) prediction but getting
the correct long-time trends – in terms of geophysics, we are not interested in weather prediction but in the climate.

We stress that questions of identification or validation of asymptotic properties of nonlinear finite-dimensional
systems with complex dynamics are in this approach transferred to questions of identification or validation of a
linear, albeit infinite-dimensional Koopman operator. Our hope is that some of the methods developed in control
theory of linear systems can be used to study these issues further.

On the practical side, we provided a constructive method for obtaining relevant statistics from experiments. This
method depends on achoiceof a particular complete set of periodic functions on an interval. While this choice is
irrelevant from the perspective of the theory, asanychoice of a complete set will giveall of the required statistical
information, the practical issues arising from this are numerous. For example: which complete set do we choose in
order to obtain approximate (finite data, finite set of functions) results that are optimal in some sense? We hope to
resolve some of these questions in future studies.
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Appendix A

A.1. Ergodic partition of a dynamical system

Ergodic partitionζe of M underT is a partition into setsDα such that on each setDα there exists an ergodic
measureµDα such that
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(1) µDα (Dα) = 1,
(2) for everyf ∈ L1(M), f ∗(x ∈ Dα) = ∫

Dα
f dµDα a.e. with respect toµDα and

(3) for any invariant measureµ, and any measurable setB,

µ(B) =
∫
M

µDα(x)(B) dµ(x),

whereDα(x) is the element of the partition such thatx ∈ Dα.

A.2. Proof ofTheorem 2

The proof relies on two lemmas. The first one extends a standard argument in ergodic theory which says that the
ergodic partition is partition into joint level sets of time averages of a countable, dense set of continuous functions
(for the proof and applications see[25,27]) to allow for taking only joint level sets of time averages of a complete set
of functions. The second lemma tells us how to generate such a complete set of functions using only one observable.

Lemma 20. Let M be a compact metric space andT : M → M aCr, r � 1, diffeomorphism. Assume there exist
a complete system of functions{fi}, fi ∈ C(M), i ∈ N

+ i.e.finite linear combinations offi are dense inC(M). The
ergodic partition of aCr, r � 1 diffeomorphismT : M → M on M is

ζe =
∨
i∈N+

ζfi . (A.1)

Proof. It can be shown (see[25,27]) thatζe = ∨
f∈S ζf , whereSis any countable dense set inC(M). Note that finite

linear combinations over rationals of functionsfi form a dense, countable setSfi in C(M). The partition induced
by this set of functions,

ζ =
∨
i∈N+

ζfi .

is clearly the same as
∨

f∈Sfi
ζf . �

Lemma 21. Let M be a compact Riemmanian manifold of dimension m, T : M → M aCr, r ≥ 1diffeomorphism,
f a real Cr function on M andκi, i ∈ N a sequence of continuous periodic functions inC([−l/2, l/2]) that is
complete. Then, for pairs(f, T ) it is a generic property that finite linear combinations over rationals of the sequence
of functionsκi1(f ) · κi2(f ◦ T ) · . . . · κi2m+1(f ◦ T 2m) (wherei1, i2, . . . , i2m+1 ∈ N

+ are dense in C(M)).

Proof. By Takens embedding theorem[38,37], for generic (f, T ) the mape : M → R
2m+1 given componentwise

by

e(x) = (f (x), f (Tx), f (T 2x), . . . , f (T 2mx))

is an embedding and thuse(M) is a compact submanifold ofR
2m+1. It is then necessarily contained in a sufficiently

large boxB of side lengthl centered at the origin ofR2m+1. We can regardB as a torusT2m+1, i.e. the embedding
e can be regarded as a mape : M → T

2m+1. The embeddinge is a diffeomorphism betweenM ande(M), and thus
for any continuoush : M → R, g = h ◦ e−1 : e(M) → R is a continuous function. By Tietze extension theoremg

admits an extension to a continuous functiong̃ defined onB. The functionsκi1(π1) · κi2(π2) · . . . · κi2m+1(π2m+1),
whereπi is theith coordinate function,πi(x) = xi ∈ R, constitute a complete set inC(B) [36] and thus finite linear
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combinations over rationals of these functions are dense inC(B). In particular, for anyε we can find a finite number
of rationalci1i2...i2m+1 such that

|g̃ −
∑

ci1i2...i2m+1κi1 · κi2 · . . . · κi2m+1| = max
y∈T2m+1

|g̃(y) −
∑

ci1i2...i2m+1κi1 · κi2 · . . . · κi2m+1(y)| < ε.

But this implies

g ◦ e −
∑

ci1i2...i2m+1κi1(f ) · κi2(f ◦ T ) · . . . · κi2m+1(f ◦ T 2m)|

≥ max
x∈M

|h(x) −
∑

ci1i2...i2m+1κi1(f (x)) · κi2(f ◦ T (x)) · . . . · κi2m+1(f ◦ T 2m(x))| < ε.

Becauseh is an arbitrary continuous function andε is arbitrarily small, we are done. �

Theorem 2is thus proven.

A.3. Proof of Theorem 15

First observe that the expectation of the modulus ofhω is constant a.e. with respect to an invariant measure as∫
A

E(|hω| ◦ Tξ) dµA = E

∫
A

(|hω| ◦ Tξ) dµA =
∫
A

|hω| dµA.

by invariance ofµA. In addition,E(|hω| ◦ Tξ) = E(|hω ◦ Tξ|) ≥ |E(hω ◦ Tξ)| = |e−i2πωhω| = |hω|. It follows that
|hω| = E(|hω| ◦ Tξ) a.e. and thus the modulus ofhω is constant a.e. asT is ergodic onA.

Lemma 22. Lethω beaneigenfunctionassociatedwith theeigenvaluee−i2πω ofUs.Thenhω ◦ Tξ(x) = e−i2πωhω(x)
for almost everyξ ∈ N.

Proof. Assume not. We have

Ushω(x) = Ehω ◦ Tξ(x) = e−i2πωhω(x).

Since|hω| is constant onA, without loss of generality, we assume|hω| = 1. Thus

|Ehω ◦ Tξ(x)| = |
∫
N

hω ◦ Tξ(x) d9(ξ)| ≤
∫
N

|hω ◦ Tξ(x)| d9(ξ) = 1.

Equality holds iffhω ◦ Tξ(x) is constant for almost everyξ. But since we know

|Ehω ◦ Tξ(x)| = |e−i2πωhω(x)| = 1,

we get a contradiction with the assumption thathω ◦ Tξ(x) is not constant for almost everyξ. �

Corollary 23. For any measurableE ⊂ S1, for an eigenfunctionhω associated with the eigenvaluee−i2πω ofUs,
we have

µA{x ∈ A|Ehω ◦ Tξ(x) ∈ E} = µA{x ∈ A|hω ◦ Tξ(x) ∈ E}, (A.2)

for almost everyξ ∈ N.
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Proof. LetC = {x ∈ A|Ehω ◦ Tξ(x) ∈ E}, Dξ = {x ∈ A|hω ◦ Tξ(x) ∈ E}. Assume there is a setF ⊂ N,9(F ) > 0
such thatµA(Dξ) �= µA(C) for everyξ ∈ F . Consider the setG = {(x, ξ) ∈ (A × N)|ξ ∈ F, x ∈ (C/Dξ)}. Clearly,
(µA × 9)(G) > 0 and this contradicts the fact that, byLemma 22for everyx ∈ C, for almost everyξ ∈ N, we
havehω ◦ Tξ(x) ∈ E. �

Proof (Proof ofTheorem 15). Without loss of generality we assume that|hω| = 1. Define theangle variable(see
[42], pg. 392)θ(x) by hω(x) = e−i2πθ(x). We have

E(hω ◦ Tξ) = e−i2πωhω = e−i2πω e−i2πθ(x) = e−i2π(θ(x)+ω).

Thus, it is clear thatE(hω ◦ Tξ) = S ◦ hω whereSthe rotation by an angle−2πω on a circle of radius 1. Now define
a measureν on the circle byν(E) = µA(h−1

ω (E)) whereµA is the ergodic measure forT. We get

ν(S−1(E)) = µA(h−1
ω ◦ S−1(E)) = µA((S ◦ hω)−1(E)) = µA((Ehω ◦ Tξ)

−1(E))

Now byCorollary 23we have

µA((Ehω ◦ Tξ)
−1(E)) = EµA((hω ◦ Tξ)

−1(E)) = EµA(T−1
ξ ◦ h−1

ω (E)) = µA(h−1
ω (E)) = ν(E).

The converse is clear by the following construction: leth : M → S1 be a factor map such that the factor ofT is a
clockwise rotation by an angle 2πω. Then

E(h(Tξx)) · h−1(x) = ei2πω,

andh is an eigenfunction associated with eigenvalue e−i2πω. �
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[21] Z. Levnajíc I. Mezić. Visualization of dynamical systems using harmonic analysis, 2004, UCSB preprint.
[22] T.C. Lieuwen, Experimental investigation of limit-cycle oscillations in an unstable gas-turbine combustor, J. Propulsion Power 18 (2002)

61–67.
[23] A.J. Majda, I. Timofeyev, E.V. Eijnden, Models for stochastic climate prediction Proc. Natl. Acad. Sci., 96 (1999) 14687–14691.
[24] R. Mane, Ergodic Theory and Differentiable Dynamics, Springer-Verlag, 1987.
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