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Abstract

We present a formalism for comparing the asymptotic dynamics of dynamical systems with physical systems that they
model based on the spectral properties of the Koopman operator. We first compare invariant measures and discuss this in
terms of a “statistical Takens” theorem proved here. We also identify the need to go beyond comparing only invariant er-
godic measures of systems and introduce an ergodic—theoretic treatment of a class of spectral functionals that allow for this.
The formalism is extended for a class of stochastic systems: discrete Random Dynamical Systems. The ideas introduced
in this paper can be used for parameter identification and model validation of driven nonlinear models with complicated
behavior. As an illustration we provide an example in which we compare the asymptotic behavior of a combustion sys-
tem measured experimentally with the asymptotic behavior of a class of models that have the form of a random dynamical
system.
© 2004 Elsevier B.V. All rights reserved.

1. Introduction

This paper is concerned with the issue of comparison of different dynamical system models of a physical
system or models of a physical system with the system itself. There are various ways of comparing the behavior
of two dynamical systems. All of them involve defining a metric or convergence. Within the dynamical systems
community, this led the investigation of the above issue in the direction of defining different topologies on spaces
of dynamical systems. The definitions of weak and strong topologies for automorphism groups are[di§¢0in
These are based on the comparison of the action of dynamical systems on open sets of the phase space, and ar
effectively requirements that the two systems actions be close everywhere. For example, convergence of a sequence
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of automorphismg7;} to T in the strong topology means thid;} andT coincide on a larger and larger portion of

the phase space aBicreases. In the context of modeling, the requirement that the action of two dynamical systems
be close everywhere is too strong. Consider, for example systems treated in statistical mechanics. The relationshi
PV = RT is recovered by employing a model consisting of noninteracting particles in a container. This model is
certainly not very close (in the sense that the dynamical action of the model on the phase space is not close) tc
the real dynamics of molecules of monatomic gases for some regimes. But, they possess tiraes@averaged
properties Another situation of interest occurs when systems with (formally) infinite number of degrees of freedom
are truncated using e.g. Galerkin method to obtain a finite system of ordinary differential equations. In this case,
only a proper subset of the initial conditions available for the infinite-dimensional system can be propagated in time
by the finite-dimensional truncation, and the comparison in the detailed sense of strong or weak topologies is not
possible. These considerations naturally lead to the study of asymptotic dynamics of selected trajectories and this
approach was taken [4], where the emphasis is on comparing invariant measures. In the case when one of the two
systems has a smaller space of initial conditions than the other (e.g. Galerkin projections), projection of invariant
measures is used. The approach that we pursue here is related to the method of comparison of time series espous
by Moeckel and Murray29]. In fact, the first part of this paper in which we deal with invariant measures, connects
directly to that paper and clarifies some issues regarding ergodic—theoretic properties of the app2Sheahnéhits
relationship with the Takens theorem. While in numerical experiments and analytical work the full state of a system
is an observable, in experiments this is typically not the case. Usually the value of one oleseradbhction on

the phase space — is measured. This observation lead to the development of the Takens embedding@&eorem
that was followed by a large number of works in which the theorem was used to illuntipetiegical properties

of experimental data sef§]. As far asstatistical propertie®f data are concerned, Takens embedding theorem has
been used by Mischaikow et 28] to identify symbolic dynamics from experimental time series. In the prior work

of Froyland et al[13] a suggestion is made on getting invariant measures from data (upon embedding the data
using Takens theorem) using representation of the dynamical system as a random system, triangulating the dat
and assigning weight to each triangular section according to the properties of the associated random system. Th
motivation in[13] is that there are many problems in which the length of signal in time is not sufficient to perform
averaging operations and compute statistics. However, there are a variety of problems in which long data traces ar
available, and we develop here a direct approach using time averages of functions, which can be associated witl
eigenfuncions of the Koopman operaf@6,30] of the dynamical system at hand. In order to pursue this, we need

to prove €onstructively that ergodic partitions and invariant measures of systems can be compared using a single
observable. This leads to what we call the statistical Takens thedreeofem 2. Using this result, we develop
pseudometrics on spaces of dynamical systems allowing us to compare asymptotic dynamics of systems.

In some contexts though, comparing invariant measures is not enough. Consider, for example two systems
that have a (geometrically) identical globally attracting limit cycle, but on the limit cycle of the first system the
dynamics is given by = w1 and on the limit cycle of the second system the dynamics is giveh-byv,, where
w1 # wp. While these two systems have identical invariant measures supported on the same geometrical object.
theirasymptotic speeid different. This is related to the description of the cycling behavior of dynamical systems,
the study of which was pursued by Dellnitz and Jufigd. In that work, the formalism is based on the Perron—
Frobenius operator of the associated stochastic systems. In their work, the concept of eigenmeasures, extending tt
idea of invariant measures, is introduced. In examples that Dellnitz and Junge treat stochasticity is associated witt
the round-off truncation in the computation of deterministic dynamical systern},IRerron—Frobenius operator
is also analyzed from the spectral perspective. We propose here an alternative formalism based on harmonic analys
of the Koopman operator that extends the concept of comparing the invariant measures using time-averages. Th
regularity results allowing us to do this in the context of deterministic systems are contajdédl Me show that
information beyond that obtained using time averages can be acquired by taking harmonic averages if the system ha
afactorthat is a rotation on a circle. The relationship between spectrum at eigenvalue 1 and invariant measures on
the phase space is extended by associating complex measures (constructed explicitly using the Riesz representati
theorem) with eigenvalues of the form'& for w + 0.
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As pointed out above, both the concepts of invariant measure and the harmonic average formalism developed
here are related to spectral properties (in particular, the point spectrum) of the so-called Koopman operator
a linear operator that acts on functions on the phase-g28c80] We stress that in this context questions of
identification or validation of asymptotic properties of nonlinear finite-dimensional systems with complex dynamics
is transferred to questions of identification or validation of a linear, albeit infinite-dimensional Koopman operator.
Our hope is that some of the methods developed in control theory of linear systems can be used to study these issue:
further (for a combination of linear system identification procedures with dynamical systems analydid])sée
addition, there has been a substantial interest recently in improving the Galerkin projection methods for obtaining
low-dimensional models of formally infinite-dimensional systems by introducing stochastic terms to account for
neglected moded5,6,39,31,3,23,7JA dynamical systems perspective on such modelling is provided in the work
of Dellnitz and collaboratorfl1,10]in the context of Perron—Frobenius operator for stochastic systems. Here, we
develop a formalism for stochastic systems in the context of Koopman operator akin to that of deterministic systems
that allows for a systematic comparison of different models or data with stochastic elements. In this extension
of the deterministic theory we study deterministic factors of stochastic sgsteanconcept that might help in
understanding e.g. the abundance of oscillatory phenomena on various time-scales in climate dynamics (see e.g.
[33]). The example of experimental data analysis and comparison with models is given towards the end of the
paper. The data — experimental data from a combustion rig — has stochastic features and the models are randon
dynamical systems. Our methods allow for model parameter identification in this context. They also allow for
an easy distinction between processes having a deterministic factor on a circle (deterministic limit cycling) with
additive noise, and lightly damped but stable (i.e. deterministic factor has a fixed point)roaegiestion that
received some interest in the literat(i22,17]

The paper is organized as follows: 8ection 2 we discuss the relationship between invariant measures and
time averages of a certain set of functions on the phase space. Extending the i@a27h Based on this we
discuss different pseudometrics on the space of dynamical systems that split that space into equivalence sets of
system having the same (according to the chosen pseudometric) asymptotic dynamics and we present some ex-
amples showing both the strength and the weaknesses of the method. To remedy the weakrizsses) Bwe
turn to analyzing the spectral properties of observables of a dynamical system, by introducing a class of func-
tionals on trajectories (or equivalently, a class of operators on functions induced by the dynamical system) of
which the time-averaging functional is a member. Spectral properties are discussed and methods for comparing
spectra introduced. I8ection 4 we extend these ideas to a specific class of stochastic systems, discrete Random
Dynamical Systems. IiBection 5 an example of using the theory to model and analyze an experimental com-
bustion system is presented. Optimization of the model parameters is attempted using the ideas on comparing
asymptotic dynamics described$ections 2-4Proofs of some of the main theoretical results are provided in the
Appendix A.1

2. Comparison of long-term dynamics: ergodic partitions and invariant measures
2.1. Invariant measures from a single variable

We consider a dynamical system in discrete time defined by

xip1 = T(x;), yi = f(xi), 1)

wherei € Z,x; € M, T : M — M is measurable anflis a smooth real function on a compact Riemannian manifold
M endowed with the Borel sigma algebra. Every continuous dynamical system on a compact manifold possesses
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an invariant measure. We call the functionf* the time average of a functiofiunderT if

n—1

.1 i
1@ = lim =37 (T)
i=0

almost everywhere (a.e.) with respect to the meaguwmeM. The time averagg™ is a function of the initial state.
The operatorPr : LY — L1 such thatP7(f) = f* is called the time-averaging operator. Note that by Birkhoff's
pointwise ergodic theoreii80], if T is measure-preserving;* exists for every functiorf e L1(M).

A partition ¢ of M is defined to be a collection of disjoint sels,, wherea is some indexing set, such that
,,L(ng) = u(M) (see[32]). A productcs \/ A of two partitionsg, 2 is a patrtition into setsz)ag)’\ =D N Dg i.e.
sets that are intersections of elements of the two partitions. For a finite or countable pradysrtitions¢;,
we write { = \/; ¢;. The key object in our considerations is partition of the phase space into sets on which the
time-averages are constant, i.e. into level setg*ofin particular, letf be a continuous function dv. The family
of setsCy, @ € R such thatC, = (f*)"1() is a (measurable) partition &1. We denote this partition by, and
call it the partition induced by.

Every partition s splits the phase space into sets on which the time-averagiésofonstant. It turns out that
for continuousy the measure zero set on whighi is not defined is independent ¢f[24] whenM is a compact
metric space. An important partition associated with a dynamical syBtierits ergodic partition partition of the
phase space into (invariant) sets on whidl ergodic (for a precise definition, see thppendix A.J). Intuitively,
if we pick a set in the ergodic partition, the system will sample that set well on almost every trajectory in the set.

Example 1. Let ! =[—1, 1]. Consider the (non-invertible) map: I — I, defined byl'(x) = 2x, (mod[-1, 1])

(seeFig. D that preserves the Lebesgue measure (line length) on the inkte@labrly,D; = (0, 1]andD,; = [—1, 0)

are invariant sets. The map restricted to each of these sets is ergodic. The ergodic pattitiofis, D»}. Note

that ergodic partition is defined up to measure zero: thus we did not need to include the fixed point O in the ergodic
partition.

Our goal is to use time averages obtained frosingle observabléo construct the ergodic partition and thus
allow for reconstruction of the ergodic partition from experiments (note however that if there is more than one set
in the ergodic partition, we will need to sample that observable from more than one initial condition, as should be
clear fromExample }.

Theorem 2. Let M be a compact Riemannian manifold of dimension mi/2et | f| andk;, i € N* a sequence of
continuous periodic functions @([—1/2, [/2]) that is complete. Consider a countable set of functiﬁ;ps,,im+l =

-1

Fig. 1. The map considered iExample 1
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Kiy(f) - kip(f o T) - ... Kig, i (f O T2m) (whereiy, ip, ..., ions1 € NT). Then for C",r > 1 pairs (£ T) it is a
generic property that the ergodic partition of a dynamical systeom™ is

le = \/ C,fil,.“,ig,,,_,_l'

Mseenslop g

The proof is provided in théppendix A.1, and it relies on two lemmas. The first one extends an argument in
ergodic theory which says that the ergodic partition is partition into joint level sets of time averages of a count-
able, dense set of continuous functions (for the proof and applicatiorf25@&) to allow for taking only joint

level sets of time averages of a complete set of functions. The second lemma tells us how to generate such a
complete set of functions using only one observable. The essence of the above result is the following. By Tak-
ens theorem, we know that we can embed the sigif@l), j € Z* of a continuous observablg of a system

T into an 2n + 1 dimensional boX8 of sidel, where|f| < I/2. We prove Appendix A.1 Lemma 20 that to

find the ergodic partition we only need to exhibit a dense countable subset of continuous functions. Such a subset
is going to be provided by products of compositions of: 2 1)—products of complete set of continuous peri-

odic functions onR of period/ with a generic observablg, i.e. we only need to compute the time-averages of
functions

ki () - ki (f 0o T()) - -+ Kig 1 (f © T?"(x)).

Example 3. The set of products of functions sing2)ny), cos((2r/Dky), (1/2), y € R, k, e, n € NT isa complete
setinC(B). If m = 1 (i.e. the embedding dimension is 3), we should compute time averages of products

2 2 2
A (T”nf(sz)) f2 <7nkf(TX)> fa <7”jf(x)) ,
where f;(z) = sin(z), or cost) andk, n, j € N*.

Example 4. Theorem 2can be used to identify invariant sets (and ultimately the ergodic partition) of a system
without measuring all of its variables for all time. All that is needed is knowledge of initial conditions and knowledge
of a single variable time trace. Consider the standard map on a torus, given by

(@)

I' = I + esin(2r9), d1
0 =0+ I + esin(210),

Physically, this can be derived as a Poirgcarap of a plane pendulum kicked periodically with an impulsive force.
Assume that we know the initial conditions: the actiband the angl®, but we can only measugedynamically.
Theorem 2suggests that we can find the ergodic partition from these measuremekig. Pa we show contour
plot visualizing the level sets of finite time averagiéN + fz*’N + f;“N + f:’N, where

N
1 . o )
N = 5 E sin(2e6/) sin(2e6/71),
j=1

N
=

zl e

N
> sin(2r307) cos(2r30/ 1),
=1
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Fig. 2. (a) Contour plot showing the level setsf@f" + /3" + f3" + £V, Simulation forN = 100 iterates, 10,000 initial conditions on a
regular 100x 100 grid. The parameter= 0.03. (b) Phase space plot of the standard map for 400 initial conditions on a regua2@®Qrid.
The parameter = 0.03.

N
1 . .
f3 = 5 ) sin(@r56%) cos(2rse’ ),
j=1
18 : :
fiV =3 cos(@8) sin(2r8s ),
j=1

Note that joint level sets of}", /5, f3, f; are notequivalentto level sets §f + f5 + f3 + f, —in particular two
different joint level sets of ', 15, f3. f; might be subsumed into a single level set of the sum, but we getreasonable
results visualizing joint level sets this way. The problem of visually depicting joint level sets of many functions is
not a simple one (it goes under the name of image segmentation in computer science). Simuktogarwas
performed forN = 100 iterates, 10,000 initial conditions on a regular 30000 grid. Simulation irFig. 2b shows

the usual representation of the phase-space trajectories and was performed for 100 iterates, 400 initial condition:
on a regular 26« 20 grid. Both figures were obtained foe= 0.03. The contour plot, that was calculated by taking
time averages of observables according to prescriptidin@orem Zhows close resemblance to the phase portrait.
For our test functiondi, f2, f3, fa we chose some of the products suggested in the previous example. Note that
we have embedded the time-traces into a boA 0« [0, 1] c R? by observing thaf is defined mod1. Also note

that, since we know the dimensienof the phase space in this example, we did not embed the sigR&I'ht, but

in R™.

As the above example shows, the idea3lmorem 2allow for visualization of structures in the phase space of a
system even if only a single variable can be measured dynamically (but we have knowledge of initial conditions).
This might be particularly important for conservative systems such as the one treBteghiple 4 Even if initial
conditions are known only on a subset of the phase space (such as in numerical simulation of partial differential
equations, where, due to the vast phase space it is impossible to obtain results for a large set of initial conditions),
application of these ideas will lead to splitting initial conditions into equivalence classes that possess the same
asymptotic dynamics (in the sense of invariant measures).

The same result as statedTiheorem Zholds for systems not defined on compact spaces, but whose attractors
are compact sets that are not necessarily manifolds. The extension of Takens theorem for this case can be found i
[34].
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2.2. Pseudometrics

According to the above description, the asymptotic dynamics partitions the phase space into invariant sets. A
sequence of number§ . isassociated with each setin the partition. We can base different pseudometrics on
spaces of dynamical systems by using the partition L eé a Borel measure on the compact metric spacé/e
are going to call systems for whigft exists for everyf e L1(M) B-regular[9]. We could use time averages to dis-
tinguish between systems: e.g.TgetandT» be two continuoud3-regular transformations aif. Then, we could use

d*(T1, T2) = max |Pr.(f) — Pr(f)l

feC(M) | £ ' ®)

an “asymptotic pseudodistance” betwerand 7>, where| f| can be any suitable function norm, eld. norm.

Example 5. ConsiderTy, T» : R? — R2 for which all trajectories tend t§* e R? but the dynamics ofy » on S is
given by — 0 + a1 2, where botlw1 anda; are irrational and the map is mod1. The pseudodistdt(@, 7>) = 0.
On the other hand, i, is rational, the pseudodistance is nonzero.

Thus, even (3) might not be too useful for comparing the statistics: on one hand it does not distinguish between
the systems having very different dynamics but equal statistics like ifexaenple 5 and on the other hand it
distinguishes between the systems described in the following example:

Example 6. Let 7y : x;™ = ax} and 7o, : x5 = A(xh, — €4) + €, Wherexy, x2 € [-1,1], |e,| < 1 and O<

A < 1. The first system has an asymptotically stable fixed poiny at O and the second one & = ¢,,. The
pseudodistanc&* (71, T2,) > a > 0 fore,, = 1/m (i.e.a is a lower bound on the pseudodistance) as there exists

a continuous functiory’ with arbitrarily small L1 norm on [-1, 1] that is zero at zero and equal to any given
value ate.

As shown in the above example, two systems that have attractors that are very close in space can be distant
according taZ“. Thus, we come to the point where we define a very natural distance between two systems when
we are only interested in matching the asymptotic dynamics on some scale: choose a finite number of functions
(i.e. introduce a cut-off) on the phase space and compare the statistics on those. The pseudodistancg b&ween
relative to a functiorny : M — R is defined as

|PT1(f) — PTz(f)l
| f1

The most important property oi“} that it renders systems that have “close” attractors “close’Example 6
makinge, smaller would makd’' converge taly in d;{ for any smoothf. Obviously, the sum of any number
of pseudometrics is a pseudometric. In a specific problem, it is typically easy to identify the imptstantour
thermodynamic example from the introduction it can be the energy of the system. In the case of oscillators, it will
be the amplitude of oscillation, etc. [A9] various types of pseudometrics are discussed for a particular choice of
functionsf that are compositions of indicator functions on "box" sets in indicator space with time-delay embedded
observable. We use such functions in our applicaBention 5

The pseudometrics of type (4) are still not entirely satisfactory, as they loose all the “timescale” information
about the system. For example, all the irrational rotations on the circle are again identifielxamiple 5 To treat
this problem, we need to extend our formalism to include spectral information.

di(T1, T2) = ; @

3. Comparison of long-term dynamics: harmonic analysis

We pointed out in the introduction that two systems that have equal statistics in the sense of invariant measures,
can have very different asymptotic dynamics. We provided the following example (here in discrete time): consider
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two systems that have a (geometrically) identical global attractor which is a circle, but on the attractor of the
first system the dynamics is given BYy= 6 + w1 (mod1) and on the attractor of the second system the dynamics
is given by#’ = 0 + w> (modl), wherew; # wp and both frequencies are irrational. While these two systems
have identical invariant measures supported on the same geometrical objedsymejptotic speei$ different.
Clearly, this has to do with the spectral properties of the two systems, and in particular with asymptotic spectral
properties.

In the previous section, we have introduced the operBtor f — f*. Note thatf™ is an eigenfunction corre-
sponding to eigenvalue 1 of the so-called Koopman opetator.! — L, which is defined by

Uf(x) = foT(x),

as f* is constant on orbits i.d/f*(x) = f*(x). The operatorP; can be considered as a member of a family of
operatorsPy,

=
[PRNIG) = fo(x) = lim = &2 f(T(x)),
j=0

wherew € [-0.5, 0.5). Note thatPr = Pg and f(T/(x)) is the time series of the observabfeon the trajectory

of the systenT starting at the point at time 0. Thus, for fixed, f;(x) is just the Fourier transform of this time
series, and it is simple to calculate using FFT. In this section, we will discuss the dynamical meaning of the spatial
dependence of these Fourier transforms.

Example 7. Consider the map#y, 7> : R?2 — R2 for which all trajectories tend t61 € R? but the dynamics of
T12 0n St is given byt = 60 + a1,2, where bothyy anday are irrational. The pseudodistanﬁ%(Tl, 1) = 0 for

any continuous (or eveh' function f. In this case Py (€2™) = 0 for allw € S, w # —a, while P (€2™) = 0
forallw €S, w # —ao.

Like the time-averages, the functiorf§ also play an important role in the spectral analysisiof they are the
eigenfunctions associated with eigenvalue$® [30]:

n—1 n—1
Uf(;k(x) — lim } Z ei27rja)f(Tj+1(x)) — e—iZJm) lim } Z ei2ﬂ(j+1)wf(Tj+l(x)) — e—ianf;(x)'
n—oon = n =

n—o00

It is easy to deduce using methods[#1] that existence of these averages is true forategularT’s, as the
existence of harmonic averages depends only on the existence of certain autocorrelations which in turn depend:
on the existence of time-averages of functioA$.is nonzero only on at most a countable setusf (Lemma in
Section 4 of[41]). But, when it is non-zero, it can provide substantial new information about the process that we
are studying.

It is easy to show that eigenfunctions@fcan only be of the forny}: in fact, a nonzeray is the orthogonal
projection operator onto the eigenspacé/aissociated with the eigenvalue’®® (see the first remark on pg. 215
in [42]). In the case ofP? = Py the theory of invariant measures provides a connection of objects defined on the
phase spach! with the properties ofPr. In the next section we provide such a connection#grby showing
that it is associated with certain complex measures on M. We characterize these complex measures for an ergodi
transformation in terms of its ergodic measure and the eigenvalues of the associated Perron—Frobenius operatc
and provide an example where the eigenvalues and eigenfunctions of a map which has both point and continuous
spectrum are numerically computed.
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3.1. Harmonic analysis and factor maps

We turn to the case when there are eigenfunctioisthiat are associated with complex eigenvalues of an ergodic
transformatior?” : A — A, whereA C M. In the following we relate these eigenfunctions with rotating factors of
the mapT. Recall that existence of a factr: B— B of Ton A C M is established by proving that there is a
measurabléactor mapF : A — BsuchthatF o T = S o F a.e. andu(F~1(E)) = v(E) for all measurabl& c B,
and measureg, v, whereT preserves andSpreserves. We have the following

Proposition 8. Leth,, : A — C be a non-constant eigenfunctionidfassociated with the eigenvalae'?™ . Then
h, is a factor map and T has a factor that is a rotation on a circle by arfgle. Conversely, if T admits a factor
map to rotation on the circle by angRrw then there is an eigenfunction of U associated with eigenvettfé®.

Proof. First observe that the modulus/iof is constant on trajectorieSi,| o T = |hy o T| = | € 2™h,| = |hy|.
Thus, the modulus df,, is constant a.e. ais ergodic orA. Without loss of generality we assume thvat| = 1.
Defined(x) by h,(x) = €127 We have

he(Tx) = e7i2n9(Tx) — efi2muhw(x) — efinta) efiZm’-?(x) — e7i2n(6(x)+w). (5)

Thus, it is clear tha#(7x) = 6(x) + w i.e. h, o T = S o h,, WhereSthe clockwise rotation by anglera on the
circle of radius 1. Now define a measuren the circle byw(E) = u(h,;*(E)) wherep is the ergodic measure for
T, andE is a Borel set. We get

W(STHE)) = nhy (STHE))) = 1((S 0 ho) HE)) = 11((he o T) HE)) = w(TX(hy X (E)))
= p(h,,(E)) = W(E).

v is invariant undelS and we are done with the first part of the claim. The converse is clear by the following
construction: let) : M — S be a factor map of such that

n(Tx) — n(x) = o,
i.e.n mapsT to a rotation on the circle by an angled. Then let

W(Tx) = e 12m(Y) — g=2n(i)+e) _ g-i2nw gi2mn(x) — g=i2mwp (y)

andh is an eigenfunction associated with eigenvalul8 . a

Corollary 9. Let A be a set in the ergodic partition of P7( f) is not constant (zero) on A for evefy: M — C
if and only if T has a factor that is a rotation on the circle by an angjtev.

These results turn our attention to the more detailed study of eigenfunctions associated with complex eigenvalues.
Before we do that let us present an example of a map with a periodic factor.

Example 10. Consider a magd on the intervall = [—1, 1] such thatT = —(2x) mod [-1, 1] (seeFig. 3). At
every step, every point in [(L] is mapped intof1, 0] and vice versa. Thus, the mapfrom I to the circle of
radius 1 in the complex plane defined Byx) = e 27 = 1 forx € [0, 1] and F(x) = e = —1 for x € [—1, 0)

is a factor map. The factor is rotation on the circle by anglee. frequency 12. Clearly, if F(x) = e™7 = —1
then F(Tx) = €27 = 1 and if F(x) = e 2" = 1 then F(Tx) = € " = —1. So F(Tx) = € " F(x) and F is an
eigenfunction associated with frequeney= 1/2. Note that the second iterate of the nf&p= 4x mod1 on (01]
andT? = 4xmod (1) on [-1, 0) so the map is ergodic ahwith respect to the Lebesgue measure. However, if
we could only measure the observable Re(/ — R the behavior we would measure would be pure cycling from
—1to 1. Note that can also be considered as a maps8n= {—1, 1} instead ons?.
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1

-1

Fig. 3. The map considered Example 10
3.2. Eigenmeasures

For almost allr with respect tqu, the time-average of any functiohe C(M) endowed with the sup norm can
be represented as

£ = /M £ dus.

wherepu, is an ergodic invariant measure fbf24]. The question that we investigate next is: are there objects on the
phase space that can be used for a similar representation of the eigenfuyfi;#afie have the following definition
[11]:

Definition 11. A complex-valued measur that satisfies
&(T1E) = e 2™ P(E)

is called an eigenmeasure associated with eigenvalg&e

There is a direct way of defining eigenmeasures using harmonic averages, akin to the methods used in proving the
ergodic decomposition theorem (as proved e.§2#). LetT : M — M be as above. Lexj be the set of points

on which the harmonic averagf exists for every continuoug : M — R. By the strong results of Wiener and
Wintner[41] this set of measure one can be taken to be independentet C(M) be endowed with the sup norm.

Note thatLy : C(M) — R defined by

. 1 n—1 ‘ '
LYf = 30 = PRAG) = lim =3 €27 f(1i()

j=0

is a bounded linear functional. Thus, there exists a complex mea$usach that
LY = £50) = PR = [ et
for any f € C(M)[18]. Using continuity ofT it can be shown that¥ is an eigenmeasure:

f foTdul(x) =LY foT = PR(f o T)(x) = € 2™ PP f(x) = e—‘zﬂw/ fdug.
M M
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3.3. The Perron—Frobenius operator

Similar to the case of invariant measurf0{, Theorem 4.1.1) eigenmeasures can be discussed in terms of the
point-spectral properties of the Perron—Frobenius operator. In its most general form, the Perron—Frobenius operator
is an operator on the space of Borel measureafodefined by

Pu=poT™t

and so

/dPu=/ du,
A T-1A

for any Borel setA. In the context of deterministic systems to avoid difficulties of working with measures that are
singular we can define the Perron—Frobenius operator on the function ha¢® Define the Perron—Frobenius
operatorP : L' — L adjoint to the Koopman operatéf : L> — L [20] by

[PfdMZ/ fdu,
A T-1A

wherepu is a Borel measure oM.

Proposition 12. Let @ be a complex measure given by
o) = [ g ©)

whereg € L1(M), A measurable. Theg is an eigenmeasure associated with the eigenvaiiiend only if g is an
eigenfunction of the Perron—Frobenius operator associated with the eigehvalue

Proof. Letg, € L(M) be an eigenfunction associated with eigenvaloé P. Let a complex measuk be defined
asin (6) withg = g,. Then

o(T~1A) = / xaoTgdu = / xaPgdu = /\/ XA&. du = A P(A).
M M M

Conversely, let> be an eigenmeasure given by (6) for some LY(M). We know thatp(T—1A) = e 270 @p(A) =
[, e 2mgdu. Butalsod(T1A) = [}, xa o Tgdu = [,, xa Pgdu by the facttha : L! — LYandU : L>® —
L*° are adjoint, and so

/ xa€ 7 gdy = / XxaPgdu.

M M

As this is valid for every Borel set, we have that
Pg — e—iang’

and thusg is an eigenfunction oP. O
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If T preserves:, Pf = f o T~ for invertible T. It is easy to show that if; is an eigenfunction ot/ associated
with the eigenvalue,, then it is also an eigenfunction &fassociated with eigenvalug¢Xland vice versa. A® is
unitary, it has the following property: i is an eigenvalue oP, theni~1 is an eigenvalue oP. The same is valid
for U. Thus, the point spectra é¢f andU are exactly the same. For ergodieach of the eigenvalues is simple (i.e.
the associated eigenspace is one-dimensi¢da]) Thus, the eigenvalues & are also simple for ergodiE.

Definition 13. Let T be a transformation oll. The partition ofM into level sets of an eigenfunctigfy of U is
called ther-phase partition.

Clearly, the 0-phase partition is trivial (the whole Bétan be taken as the only element of the partitior)ig
ergodic. From the above analysis we get a very simple description of the phase space partitioningsvengodic.
If there are no eigenvalues other than the simple eigenvalue at zero we can spbakefandomization.

A study of the Perron—Frobenius operator in the context of eigenmeasures of stochastic systems that exhibit
cycling behavior, was pursued jfal]. Additionally, in [10] eigenmeasures of interval exchange transformations
were studied.

3.4. An example of harmonic analysis: the conservative case

Broer and Taken$5] studied the mapx = x + wg, y) = y + x) on the unit torus that, as they show, has a
mixed spectrum, i.e. the spectrum consists of a point part with eigenvali®@&“e, n € Z and the associated
eigenfunctions €27 » e Z and a continuous part that is Lebesgue. The map is ergodig i irrational, but
not mixing or even weakly mixing. It can be extended to a family of area-preserving fhiqggasametrized by the
amplitudea :

X' = x + wo + asin(2ry)

, , mod1

Y =y+x+asin(2ry)
A trajectory of the mafiy, witha = 0, starting fronx = y = 0.3 is shown in thé=ig. 4. The orbit samples the phase
space well, in accordance with the fact that the map is ergodic for that parameter viige5/we show numerically
computed spectral information for the above map witk 0, wp = 1/(2+/2). As we mentioned, the properties of
the spectrum are known analytically, but this case gives us a good validation point for our computations. In the
top row ofFig. 5, we show on the left values of the functigin = 0.25 cos(Zrx) + 0.25 sin(2ry) on the trajectory
shown inFig. 4, for the first 100 iterates. This plot has a distinctly “stochastic” look. In the middle of the top row

Phase space

0.9 1

Fig. 4. Orbit of Ty, starting fromx = y = 0.3; 50,000 iterates.
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Fig. 5. Spectral properties @f. See text for description.

of Fig. 5, we show values of the (complex valued) quantity

N-1
1 o :
P7 fi(xo, yo) = v Z €27 f1(TJ (xo, yo))-
=0

The rightmost dot, on the real axis, represents the time average of the funfgt{@s, yo) = 0.5. The two complex
conjugate values farthest from the origin, at approximatelyl 8 i0.05 correspond te = +1/(2./(2)). On the
right of the top row ofFig. 4we show| P f1(xo, yo)| as a function ofv. The computation is done ovar = 5000
iterates, but the only thing that changes for larfyefwe computed up t&v = 100,000), is that all the values of
P f1(xo, yo) shrink to zero, except for.B and two complex conjugate values described above. In the top row
rightmost figure, there are peaks presenb@bnd 1— wg since the projection of; to any eigenspace except for
the ones at @270 g2« js zero (note that we chose the horizontal axis in the top right figure to,d father
than [-1/2, 1/2)). Computation starting with different initial conditions and smaller number of iterates (down to
about only 500) shows very similar features. Note the remarkable disparity between the aperiodic “appearance
of the signal and the spectrum that has a single clear peak. It is true that for the map in question, we know the
importance of» = 1/(2+/2) and its harmonics. However, the reader should imagine an unknown system with an
observable producing the top left figure as its time trace. Computing the harmonic averages would identify the
relevant frequency automatically.

In the second row, the same quantities are plotted for the fungtiea tan(cos(zx/7)) — m, wherem is the
mean of tan(cos¢2x/7)) on [0, 1) (thus f> has mean zero on [Q) x [0, 1)). The functionf,> does not depend on
y and thus its behavior in time is quasiperiodic. The eigenvalues are of the fofi“e, and, in contrast with the
first row, there are peaks in the rightmost plot Bf f2(xo, yo)| indicating several harmoniegvg. This means that
the functionf, has non-zero projection onto eigenspaces of the Koopman operator that correspond towvarious
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Fig. 6. Imaginary part of the harmonic average fafunder7p for v = 1/(2,/(2)), taken over 10,000 iterates, on a grid of 4@0 initial
conditions.

In the first and third plot of the third row we present iterates of the functiand its power spectral density. The
function y does not contain any “rotation” by angi® and thus does not contain any distinguished peaks. More
precisely, the projection of to the space spanned by the eigenfunctions is 0. Of course, computationally, there is
an error to this exact result and it is clear from the figure that it is of the ordet fbd 5000 iterates. In thEig. 6,
we show the imaginary part of the harmonic averﬂ’égé f1 for wo = 1/(24/(2)), taken over 10,000 iterates, on a
grid of 40 x 40 initial conditions. We know that this function is in the linear span of cesand sin(Zx) and the
calculation confirms this. Note that despite the fact that the dynamical system is ergedie fyrwe can (partially)
tell where the trajectory came from by computing its phase. Of course, we cannot tell theyihitiehorizontal
initial conditions are distinguished.

Next we consider the case= 0.01. A trajectory of the mafip o1 starting fromx = y = 0.3 is shown in the
Fig. 7. Appearence of islands is clear from this figure, but there is still a single large zone in the phase space that
appears to be ergodic. In this case, the spectrum of a trajectory starting in the ergodic zone changes only slightly
from the case = 0, as shown in th€&ig. 8 The ordering of plots is the same as in Big. 5. In theFig. 9, we show
the imaginary part of the harmonic avera@%lOfl for wo = 1/(2+/(2)), taken over 50,000 iterates, on a grid of
400 initial conditions. The computation is much harder in this case, due to the coupling in the system, but features of
the eigenfunction are clearly close to the case 0, with the exception of isolated zones corresponding to islands in
theFig. 7. We computed harmonic averages forfithstead off; just to get a better contrast in the plot — of course,
the resulting harmonic average is just a constant (10) multiple of the one that would be obtained by computing
harmonic average of1. We also performed some smoothing over frequeneigs the range [(B535 0.3545] -

0.50.6 0.7 0.8 0.9 1
X

Fig. 7. Orbit ofTp 1, starting fromx = y = 0.3; 100,000 iterates.
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Fig. 8. Spectral properties @f,01. See text for description.

one has to remember that we are computing highly non-smooth quantities. For the-<cfiglis was not necessary
due to the nice convergence properties.

In theFig. 10 we show the plot equivalent to thoseHigs. 5 and 8computed for 25,000 iterates with= 0.5.
In this case,P‘T"O.s(f) evaluated at the point (8 0.3) becomes smaller and smaller in the range of the number of
iterates up taV = 25,000. The phase seems to be randomized outside of the island that exists in the phase-space
plot at the upper left corner.

0001 02 03 04 05 06 0.7 08 09 1.0
X

Fig. 9. Imaginary part of the harmonic average ofiQnderTp 01 for o = 1/(24/(2)), taken over 50,000 iterates, on a grid of 40@00 initial
conditions.
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Fig. 10. Spectral properties @§ 5. See text for description.

3.5. Examples of harmonic analysis: the dissipative case

In this subsection, we present examples of the use of above harmonic analysis ideas for dissipative maps on i
torus. First we consider the following simple map:

7
y/=y+_x ()

/
X =ylx wo)+wo}m0d1

Under assumption thabg is irrational and O< y < 1, the above map has an invariant circlexat wg, on
which the dynamics is given by irrational rotation=y + wo (seeFig. 11b where a trajectory of the map (7)
with wg = 0.5613245623, starting ap = 0.8, yo = 0.2 is shown). InFig. 11a, we show the contour plot of the
argument of the complex eigenfunction obtained by taking the harmonic averages withy of the function
g = cos(25 cos(2ry) + 2.5 sin(2rx)) over the trajectories of the map. In particular, we know that the eigenfunction
can be written as exp(2r6(xo, o)), wherer is the (constant) modulus (note that the map is ergodic with respect to
the delta measure concentrated on the invariant cirale=atyg, and thus any eigenfunction has constant modulus).
In Fig. 11a, we plot contour plot of(xo, yo). All the points of the same straight skewed line contour have the
same "asymptotic phase", i.e. their trajectory asymptotically approaches the trajectory of the point that is on the
intersection of that line and = wp. Note that the eigenspace jat= exp(2rwp) is two-dimensional, but the-
partition is accurately representeddfyo, yo). Next, consider the following dissipative perturbation of an integrable



I. Mezi, A. Banaszuk / Physica D 197 (2004) 101-133 117

o 02 -
! 0.1} P .
g - 3 i i i | X

0.1020.30405060.7080.910 @ @ 0 0.10203040506070809 |

X X

Fig. 11. (a) Angle of the harmonic averagegftinder map (7) fow = wo = 0.5613245623, taken over 1000 iterates, on a grid ok ZD
initial conditions. (b) Trajectory of the map (7) with = wp = 0.5613245623, starting ap = 0.8, yo = 0.2.

twist map:

, .
xl =1-y)x +£.1 sin?(2ry) } mod1 ®)

Y = y+x+a sin(2ry)

wherey = 0.06123456756432: = 0.03. For sufficiently small a, it can be shown that there is an invariant circle
close tox = 0.25 (seeFig. 12 where a trajectory of the map (8) startingxat= 0.8, yo = 0.2 is shown). In

Fig. 12a, we show the contour plot of the argument of the complex eigenfunction obtained by taking the harmonic
averages ab = 0.245 ofthe functiory = cos(25 cos(Zry) + 2.5 sin(2rx)) over the trajectories of the map. Clearly,

the “asymptotic phase” for this map has much more complicated distribution than that in the previous example.
Harmonic partitions can be obtained from embedded data as well, i.e. when we do not have ability to measure
the full state of the system. IRig. 13 we show the imaginary part of the finite-time harmonic averagg of

f2+ f3+ fa from Example 2 In particular, we show contour plot visualizing the level sets of finite time average

i A5 5+ S wnere

N
1 . .
= 5 Y " exp(2rijo) sin(2t67) sin(2r67 ),

0.9
0.8
0.7
0.6

0.4¢
0.3
0.2r
0.14

i

'y, I | A SR P
(b) 0 010203040506 070809 1
x

(a)

Fig. 12. (a) Angle of the harmonic averagegofinder map (8) foro = 0.245, taken over 1000 iterates, on a grid ofX3@0 initial conditions.
(b) Trajectory of the map (8) with = 0.06123456756432 = 0.03, starting ako = 0.8, yo = 0.2.
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Fig. 13. (a) Imaginary part of the harmonic averageg'of+ f2 + f3 + f4 under map (8) forw = 0.245, taken over 5000 iterates, on a grid of
50 x 50 initial conditions.

N
1 . .
fa = 5 D exp(arije) sin(2r30’) cos(2r37 ),
j=1
1Y , ,
fia = 5 D exp(arije) sin(2r56’) cos(2r5o’ ).
j=1
1Y . ,
fi’f)v =N Zexp(zrijw) cos(2r86/) sin(2786/ 1),

~
Il
iR

4. Stochastic systems

The above theory can be extended to stochastic systems. We will present the application of the above ideas to
stochastic system in the next section and we provide the theoretical framework and relevant results here.

4.1. Introduction and set-up

For our purpose, the most convenient context in which to analyze stochastic systems is that of Random Dynamical
Systems (RDS]2]. We will work with the Discrete Random Dynamical System (DRDS)

xiv1 = T(x;, &), &ir1 = S(&), yi = f(xi) ()]

wherei € Z, x € M a compact Riemannian manifolel= {..., £ 1,0, &1, ...} € NZ, i.e.&/ € N, whereN is a
compact Riemannian manifold endowed with a probability meagutet is absolutely continuous with respect
to the Lebesgue measure oh The product spac&/Z is endowed with the standard product measQres is
the shift transformatiors{..., &1, &9, &1 ..} ={..., €0, &1, £2,...}. We consider observables: M — R or

C, f € LY(M). We denoteré"(x) = Ty-10...0 T whereT;(x) = T(x, &). We assume thalf(x) is C", r > 1in

x for every& € N. With some abuse of notation, we will call the above DRD@ote thatT denotes a family of
transformations indexed ovéyrather than any particular superposition). A probabilistic meagsumeM endowed
with the Borel sigma algebra is invariant for measurabit

E[w(T (B, £))] = u(B)
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for every measurablB whereE[u(T~1(B, £))] = [z u(T~1(B, £))d(&). The analogue of the Koopman operator
is thestochastic Koopman operatdr, defined by

Usf(x) = E[f o T(x, &)],

whereE[ f o T(x, §)] = [yz f o T(x, §)dQ2(&). Theexpectation of the time-average ptinderT is given by

n—1

* P 1 i
Ef*(x)= lim ~ ; Ul f(x). (10)

The partition ofM into level sets o f* is denoted by, ;. An ergodic measure dvl is an invariant measupe such
thatE f*(x) = [,, f(x)du(x) a.e. onM for every f € LY(M). The ergodic partitiorg, of M underT is a partition
into setsD,, such that on each s, there exists an ergodic measurg, and its properties are equal to the situation
described for the deterministic case in tygpendix A.1

4.2. Ergodic partitions and invariant measures

To state results equivalentitneorem 2ve need to use a stochastic version of the Takens embedding theorem. This
has recently been provided[8i7] (see e.g. Theorem 7 there). In particular, assumeMhsia compact manifold and
p absolutely continuous with respect to the Lebesgue measu¥e Bar genericC”, r > 1 pairs (f, T) and almost
everyt € NZ, the mape : M — R?"+1 given componentwise by(x) = (f(x), f(Tx), f(TEx), ..., f(TZ"x))is
an embedding and thugM) is a compact submanifold &2"+1, Again, it is then necessarily contained in a
sufficiently large boxB of side lengthls > 2 - max; | f(x)| centered at the origin @2+l We can regard as a
torusT2"*1 i.e. the embedding can be regarded as a mapM — T2"+1,

Theorem 14. Let M be a compact Riemannian manifold of dimension thua compact manifold of dimension n
endowed with a measure p that is absolutely continuous with respect to the Lebesgue measure g Ne Dét
be a sequence of continuous periodic function€({f-1:/2, l¢/2]) that is complete. Consider a countable set
of functionsf,-l,,,,,,-Zm+l =iy (f) ki(foTe) ... Kip, . (fo TSZ’”) whereiy, i, ..., i2n+1 € N. Then, for almost
everyg, for C", r > 1 pairs(f, T) it is a generic property that the ergodic partition of&, r > 1 DRDS Ton M is

le = \/ f_f}l,..‘,iz,,ﬁl ’

i1yl g

The proof of this theorem closely resembles the steps taken in the deterministic case. The Markov property of the
DRDS allows for the use of ergodic partition technique provided by Yogl@h The stochastic version of the
Takens embedding theorem proven as Theorem 37his used.

4.3. Harmonic analysis

The family of operator& P?,
1 n—1
) — ® __ i - 27wy 7i
EPP(f) =Ef;= lim =~ ZO e>euL
j:

plays the role analogous to the fami®y’ in the deterministic case. In particular, a nonzew: is the orthogonal
projection operator onto the eigenspacdgfassociated with the eigenvalug'&® (see the first remark on pg.



120 I. Mezi¢, A. Banaszuk / Physica D 197 (2004) 101-133

215in[42]). Itis interesting to discusdeterministic factor®f random dynamical systems. A deterministic factor
of a DRDSTon A C M isamaps : B— B such that there is a measurabdetor map(or homomorphism) :

A — B,E(FoT)=SoFa.e.andu(F~1(E)) = v(E) for all measurablé&Z and measures, v, whereT preserves

u andSpreserves. Assume thaT is ergodic onA with an invariant ergodic measutey. We have the following:

Theorem 15. Let T be an invertible DRD%,, : A — C be a non-constant eigenfunction @f associated with
the eigenvalue—'2™. Thenh,, is a factor map and T has a factor that is a rotation on a circle by an arglew.
Conversely, if T admits a factor map to rotation on the circle by an aBgte then there is an eigenfunction of T
associated with eigenvalgs 27,

We provide the proof in thAppendix A.1since it is in spirit the same as in the deterministic case, but differs in a
variety of technical issues.

Corollary 16. Let A be a set in the ergodic partition of IEP{(f) is not constant on A for every : M — C if
and only ifT has a factor that is a rotation on the circle by an anglew.

We can now define eigenmeasures as complex meagutes satisfyE(®(T(E, &) = e 2" @(E). The complex
measure defined b§(E) = EP{(xg) is clearly an eigenmeasure. The stochastic Perron—Frobenius opgrator
L1 — L1 can be defined by

/aﬂwwm=E/ﬁuwanwm,
C A

for f € L1(A). Itis easy to see that the operafris adjoint to the stochastic Koopman operator. The connection
between the eigenvalues Bf and eigenmeasures is the same as in the deterministic case:

Proposition 17. Let @ be a complex measure given by

o(8) = [ gau. GE

E
whereg € L1(M). Then® is an eigenmeasure associated with the eigenvaliiand only ifg is an eigenfunction
of the stochastic Perron—Frobenius operator associated with the eigenvallve callg, the charge density.
The proof follows the lines of the deterministic case and we omit it.
Example 18. Consider a DRDS given by
+1 _ 1. @(%-l)’ %-H-l — Séi, (12)

Wherex e[-1,1],¢ € [0, 1]V, O(&') = &, whereé&! is the value of the sequenge= {..., &, ... & | & &,

. ..} atindex 0, and the probability measyrés the Lebesgue measure on 1Q. The factor map for (12)
is glven byF [-1,1] - {—1, 1}, F(x) = —1if xe€[-1,0], F(x) = 1if x € (O, 1]. The deterministic factor is
G(a) = —a, wherea € {—1, 1}.

The above example is in some sense canonical: from the prddfexirem 15n the Appendix A.] it is clear that

the random process moves points from a level set of an eigenfunction with modulus 1 to another level set of the

same eigenfunction, with probability 1.

This completes our discussion of discrete random dynamical systems. The system (9) can be also regarded as

control system (see e.[12,40). When we considef as a control input, the whole ergodic partition khx NZ
becomes an interesting object to study. For the discussion of invariant measures in this direction[Zee e.g.

Now we turn to practical considerations. The concepts defined above allow us to propose procedures for iden-
tification of parameters of complex nonlinear systems. We discuss these methods and apply them to experimenta

data from a combustion experiment in the next section.
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5. Identification of parameters of nonlinear complex systems

We believe that the ideas introduced above can be turned into a practical tool for analyzing and modeling
the behavior of dynamical systems with complex dynamics. The whole formalism is based on data from a single
observable and, in contrast to previous uses of Takens’ theorem recovers statistical information linked to geometrical
properties of the attractor instead of the purely geometrical information. In this section, we use them to analyze and
estimate parameters for a model of an experimentally studied combustion process. In the next subsection, we review
the methods that are usually used in such analysis and connect them with the methods that we have developed here
We apply the new procedures to the experimental data in Section 5.2.

5.1. Probability histograms

The rigorous results proven above suggest that we should take time-averages of a complete set of continuous
functions to study properties of invariant measures. In applications such as analysis of experimental data, what is
typically available is probability histograms. Here, we show that these involve a similar construction to the one
provided above, a composition of (discontinuous!) functionsR — R with an observablg : M — R.

In the context of chaotic dynamical systems the probabilistic approach is often taken and a system is described
in terms of a histogram of a specific functignon the phase space. Letbe the bin size for the histogram and
zj € R, j e Zasequence of numbers such that; = z; + b. By the histogram we mean a step function, constant
oneveryinterval; = (z; — b/2,z; + b/2]:

. 1 n—1 '
Hy (1, x) = lim =% icj o g(T'(x)) = (),
i=0

wherex € M. HgT(Ij, x) tells us the proportion of time the time-series spends in the intéyvdhe functionk ; is
the characteristic function onthe interval= (z; — b/2, z; + b/2],i.e.k;j(u) = 1ifz; —b/2 <u < z; + b/2 and
zero otherwise. IT is ergodic,H is the same function for almost every initial conditianA possible pseudometric
for ergodic systems would be

d(T1. Ty) = Y [HT (1)) — HI (1)1
J

where the sum is over some finite setj&f

The lesson learned from the rigorous study is that we should take time-averages (i.e. histograms) of products
of (ko g(T(x)) wherei =0,...,2m, and include them into the pseudometric. The appropriate experimental
procedure would be to: (1) get the data from observah(@) determine the dimensionality of the system using
the appropriate embedding theorem; (3) formulate the model of the same dimension; (4) form histograms of products
ofkjo g(T(x)) for experiment and model; (5) compare these histograms in some metric.

Example 19. Probability histograms for correlated processes. As mentioned above, one of the common ways of
comparing behavior of two systems with complex behavior is taking histograms for a single observable. To show
the dangers of this approach when the dynamics of the system is not completely decorrelated and usefulness of the
Lemma 21in this context, consider two systems having limit cycle attractors in the delay phase space shown in
Fig. 14 Both of the limit cycles are elliptical, one of them having its major axis aligned with thezgxtae other

with z2. The dynamics on both limit cycles is assumed to be symmetric with respect tesbantdzo axis and thus

the probability histogram of (denoted byp(f) in Fig. 14 is the same for both systems. However,dgebe the

indicator function on the interval (@). Thenk.(f) - «+(f o T)is the indicator function for the upper right quadrant
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Fig. 14. An example in which two different limit cycles give the same histograrm of

of the box of sidd shown in theFig. 14 Clearly. the amount of time that these two systems spend in the upper
right quadrant is different and thus the time average of this product function reveals the difference in the invariant
measures supported on the limit cycles.

We can also define spectral histograms by considetfi(g ;) = ()7 . Histogramsinthe case of stochastic processes
are defined similarly.

5.2. An example: Identification of parameters of a combustion model with noise

In this section, we present an example of using the formalism developed above to optimize parameters of a

model describing a United Technologies Research Center (UTRC) 4MW single-nozzle combustion rig operating
close (in parameter space) to instability associated with a lean condition, i.e, with low value of fuel to gt 84}io (
This was done in a non-automatized manner, by trial-and-error search for the best parameters due to computing
time limitations induced by the number of parameters. Of course, an automatized procedure could in principle be
designed based on the above considerations on pseudometrics. There are several points we wanted to make in tt
example. One is that the method is quite sensitive to change of parameters of the model and easily distinguishes, fo
example, between a limit cycling and a stable noisy system. Another is that phase information is important even in
noisy processes. Namely, the data studied here exhibits harmonic averages consistent with the process being clo:
to one with a deterministic factor.

A simple model of a combustion process is an interconnection of a linear acoustic model and nonlinear heat
release model that consists of a delay and a saturation function. The system is driven by broad-band stochasti
disturbance. More precisely, a discrete-time model equations used to simulate pressure oscillations in the UTRC
combustion rig were

X = (—a + cos@oTy))x} — sin(oTy)x?,

x2, 1 = sin@oTy)x} + (—a + cos@oTy))x? + Ksh(Koxi ) + Kuni, (13)
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Fig. 15. Time average plot for indicator functions from experimental data.

whereT, = 0.0005,w9 = 27fp, K3 = 0.0525, and: is a saturation function defined &A&:) = u for —s < u < s,

h(u) = —sforu < —s,andh(u) = sfors < u. Variables»cil, xl-2 are unsteady components of pressure in the combus-
tor at two different times, while variablg represents noise. The model was implemented in Simulink. To simulate
noise, a Simulink model of a band-limited white noise with pow&l10wvas used. Note that the model described
by (13) is a Discrete Random Dynamical System (DRDS) of the type that was studsedtion 4 We choose a
two-dimensional embedding space for the system.

To obtain the harmonic averages 20,000 samples (10 s sampled at 2 kHz) of experimentally obtained combustor
pressure and pressure from Simulink model simulations were used. The experimental data presents a spectrum
with a single peak at aboyt = 207. We examined the results of harmonic analysis results for a range of model
parameters lead by this spectral information. ValuegoV, «, K2, s, andK; were varied until a good agreement
between harmonic averages of results of simulations and experimental data was found. A good fit to experimental
data was obtained for parametgis= 207,N = 10,« = 0.03, K2 = 2000,s = 5, K1 = 0.0788.

Let p(i) be the vector of two subsequent values of the pressure at time$)(20000,//2000 obtained from
experimental data or the mod€igs. 15 and 16ve show the plot of time-averages

20000
X)) = 20000 ; XGi.) (@)

of indicator functionsy;, ;) on squares defined in the embedding space (an indicator function is 1 if a point is inside
the square of side lengthand 0 elsewhere). A grid of 10 10 indicator functions was used witk= 2 psi, their
time-averages computed and assigned to nodes labell@dnherei, j vary from 1 to 10 (for this approach to
experimental data analysis and discussion of related distance functiofig9Be&he results shown in 15, for the
experimental data and 16 for the model that we found a good fit to the data are, for the sake of better visualization,
linearly interpolated shaded contour-plots of the time-averages. To show the sensitivity of the model (in the sense
that some model parameters produce very poor approximation to experimental data) we shéigiritfie time
averages for the case of model parameters bging 207,N = 9, = 0.03, K2 = 2000,s = 5, K1 = 0.0788.

In Fig. 18 we show the absolute value of the difference between the time average of indicator functions obtained
from experimental data and that obtained from model that is deemed a good representation for the experimental data.
The values are an order of magnitude smaller than the values presehtgd.ih5 and 16Thus, the approximation
error is about 10%. In thieig. 19 we show the absolute value of the difference between the time average of indicator
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Fig. 16. Time averages for indicator functions for model with parameters that provide a good match with the experimental data.

functions obtained from experimental data and that obtained from model that is deemed a bad representation fol
the experimental data. The model error in that case is of the same order of magnitude as the data itself.

Using the developed methods of data analysis it is relatively easy to distinguish systems that exhibit noisy limit
cycles from those exhibiting stable, lightly damped behavior with noise (in our case a system possessing a spiral-
node fixed point). IrFig. 20 we show (on top) both the spectrum of signals from experimental data (blue) and stable,
lightly damped model (red) for model parametefs= 207,N = 10,a = 0.03,K2 = 9.52,5s = 15,K; = 0.0788.

It is clear that while the spectra are very similar, the probability density functions shown in the bottom plot show a
strong difference.

While the difference of the limit cycling and stable lightly damped system is clear already from the probability
density function, we investigate it in the context of the tools developed in the theory part of the pdfigr.2f
we show the plot of the time averages of indicator functions presented in the same fashion as Higself

F10.045
| 0.04
0.035
0.3
0.025
0.02
0.015

0.01

0.005

Fig. 17. Time averages for indicator functions for model with parameters that provide a poor match for the experimental data.
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Fig. 18. Absolute value of the difference between the time averages for experimental data and the model with parameters corresponding to good
fit.

and 16 The nature of the distribution of the time-averages is clear: there is a peak centered at theshdkibis
where the stationary point of the underlying stable lightly damped deterministic systemk{yith0 in (13)) is.

Itis interesting to also examine the phase information provided by experimental data and different models in the
context of the theory provided above. Figs. 22—-24we present contour plots of the absolute value of harmonic
averages

q 20000
Xoi.j) = 20000 > @) (p(0)
i=1

10 0.035
0.3
0.025
| 0.02
0.015

0.01

0.005

1 2 3 45 6 7 8 9 10

Fig. 19. Absolute value of the difference between the time averages for experimental data and the model with parameters corresponding to poor
fit.
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Fig. 20. Top: spectrum of experimental data (blue) and stable, lightly damped, noisy model (red). Bottom: probability density functions of the
signal for experimental data (blue) and stable, lightly damped, noisy model (red). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of the article.)
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Fig. 21. Plot of the time averages of indicator functions for the stable, lightly damped noisy model of the experimental data.
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1 2 3 45 6 7 8 9 10

Fig. 22. Contour plot of the harmonic averages of indicator functions for frequency corresponding to the peak obtained from the experimental
data.

obtained at the frequeney where the experimental data and models (“good fit” limit cycling model and stable
lightly damped model) have a peak. While both the plot from the experimental daig.iB2and from the “good
fit” model in Fig. 23 have well-defined features around the geometric location of the noisy limit cycle, the plot
obtained from the stable, lightly damped model at the same frequency is comparatively featureless — as shown in
Fig. 24 This is to be expected, given that in limit cycling system with noise the factor analysis proviSedtion
4 suggests existence of a non-uniform signed measure such that the average of density of the measure over boxe:
(i, j) is approximated by the harmonic averages. This density is concentrated at the location of the limit cycle.
In the stable lightly damped model, the phase is “randomized” - there is no factor and no “true” cycling in the
system.

It is also worth pointing out that by taking the “wrong” model obtained by setting> —x1 (reflection across
x2 axis) and using the parameters of the “good fit” limit cycling model we obtain a model whoséniensional
probability density plot matches that of the experimental data, shown in bkig.i20while the two-dimensional
plot of time averages showsg. 16reflected across, axis, thus exhibiting behavior describeddrample 19

In [22], the question of characterization of limit cycling instability in jet engine combustors was investigated.
The classical method of PDF analysis was used in conjunction with the Takens embedding theorem to provide such
characterization. The methods we exhibited here, that use the new, statistical version of the Takens theorem are
suitable for taking such a study further, to the realm of model parameter identification and model validation, the
importance of which in the context of combustion processes was indicatgd]in

5.3. Effect of finite data sets and finite sets of functions

The data analysis method that we propose requires analysis of a basis of functions on the phase space (our
functionsk;) whose statistical properties are analyzed starting from a finite-time data set. If the trajectory of a
system is time-periodic or quasi-periodic, the harmonic averages will converge at gratbdren is the number
of data points (for discussion of this simple fact and a specific applicatiorj268e When the trajectory is in a
chaotic zone, and the system is strongly mixing, converegence will typically be of the grde) and therefore
quite slow.
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Fig. 23. Contour plot of the harmonic averages of indicator functions for frequency corresponding to the peak obtained from the “good fit” limit
cycling model.

The choice of different functions will determine the "spatial” (i.e. phase space) scale of comparison of systems.
For example, wavelet bases can be employed to detect spatially localized features of a system such as high orde
resonances in the standard nfiafy]. In the example presented in this section itis the interplay between the time-scale
of the data and spatial scale of the feature in the phase space that determines the spatial scale of thecfunctions
used.

x10°

1 2 3 4 5 6 7 8 9 10

Fig. 24. Contour plot of the harmonic averages of indicator functions for frequency corresponding to the peak obtained from the stable, lightly
damped noisy model.
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6. Conclusions

In this paper, we presented some ideas that serve as a framework within which model validation and analysis of
nonlinear and/or stochastically driven systems can be done.

Practitioners of experimental and numerical analysis of dynamical systems have found great use of Takens
embedding theorem type results. But, embedding methods are often supplemented by statistical considerations suck
as analysis of probability density functions and spectral analysis. This is especially the case when data is polluted
by noise. Here, we linked Takens embedding type results with ergodic theory analysis to provide an ergodic—
theoretic understanding of probability density and spectral data, both for deterministic and random dynamical
systems.

Following the premise thattime averages of certain functions on the phase space of a system can be easily obtainec
experimentally, while complete invariant measures are hard to observe, we have studied the relationship between
the two. We have also argued that invariant meastioamtdescribe (even in the sense of statistics) everything we
would like to know about the asymptotic dynamics of systems. We introduced a family of operators on the space
of functions and discussed how the question about the difference of asymptotic dynamics can be transformed into
a question on the behavior of this family of operators. Based on this, we introduced pseudometrics on the space
of dynamical systems that split this space into equivalence classes of systems having the same (in the sense of the
chosen pseudometric) asymptotic dynamics. We presented an example in which this formalism is used to optimize
parameters of a model of a combustion experiment. As opposed to much of the previous work in this direction, our
interest lies not in getting the correct short-term (relative to the time-scales of the problem) prediction but getting
the correct long-time trends — in terms of geophysics, we are not interested in weather prediction but in the climate.

We stress that questions of identification or validation of asymptotic properties of nonlinear finite-dimensional
systems with complex dynamics are in this approach transferred to questions of identification or validation of a
linear, albeit infinite-dimensional Koopman operator. Our hope is that some of the methods developed in control
theory of linear systems can be used to study these issues further.

On the practical side, we provided a constructive method for obtaining relevant statistics from experiments. This
method depends ondhoiceof a particular complete set of periodic functions on an interval. While this choice is
irrelevant from the perspective of the theoryaay choice of a complete set will givall of the required statistical
information, the practical issues arising from this are numerous. For example: which complete set do we choose in
order to obtain approximate (finite data, finite set of functions) results that are optimal in some sense? We hope to
resolve some of these questions in future studies.
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Appendix A

A.1. Ergodic partition of a dynamical system

Ergodic partitionz, of M underT is a partition into setd, such that on each sé, there exists an ergodic
measureu p, such that
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1) /JLD(,(Dot) =1,
(2) foreveryf € LY(M), f*(x € Do) = [}, fdup, a.e.with respect tap, and
(3) for any invariant measune, and any measurable sBf

w8 = [ 1, (B) du(o),
where D, (x) is the element of the partition such that D,.

A.2. Proof ofTheorem 2

The proof relies on two lemmas. The first one extends a standard argument in ergodic theory which says that the
ergodic partition is partition into joint level sets of time averages of a countable, dense set of continuous functions
(for the proof and applications sg#h,27)) to allow for taking only joint level sets of time averages of a complete set
of functions. The second lemma tells us how to generate such a complete set of functions using only one observable

Lemma 20. Let M be a compact metric space afid M — M aC", r > 1, diffeomorphism. Assume there exist
a complete system of functiohs}, f; € C(M), i € N* i.e.finite linear combinations of; are dense irC(M). The
ergodic partition of aC”, r > 1 diffeomorphisn? : M — M on M is

Ce = \/ £ (A1)

ieNt

Proof. It can be shown (sgd@5,27)) thatz, = \/feS ¢ r, whereSis any countable dense setiiiM). Note that finite
linear combinations over rationals of functiogisform a dense, countable s&t in C(M). The partition induced
by this set of functions,

=\ ¢

ieN+
is clearly the same a¢f ;g ;- O

Lemma 21. Let M be a compact Riemmanian manifold of dimensipilmM — M aC", r > 1diffeomorphism,

f a real C" function on M andk;, i € N a sequence of continuous periodic functionsCii—1/2, 1/2]) that is
complete. Then, for pail§; T) it is a generic property that finite linear combinations over rationals of the sequence
of functionsc;, (f) - ki,(f o T) - ... Kip, . (f © T2m) (whereiy, ip, . . ., ians1 € Nt are dense in C(M))

Proof. By Takens embedding theord88,37], for generic (f T) the mape : M — R?"+1 given componentwise
by

e(x) = (f(x), F(Tx), f(T2x), ..., F(T?"x))

is an embedding and thugM) is a compact submanifold @211, It is then necessarily contained in a sufficiently
large boxB of side length centered at the origin &2” 1. We can regard as a torug'?”*1, i.e. the embedding

e can be regarded as a mapM — T?"*1. The embedding is a diffeomorphism betweevi ande(M), and thus
for any continuous : M — R, g = hoe 1 : ¢(M) — R is a continuous function. By Tietze extension theogem
admits an extension to a continuous functgodefined onB. The functionsc;, (1) - ki, (72) - . . . - Kip, 1 (T2m+1)s
wherer; is theith coordinate functionr;(x) = x; € R, constitute a complete set @(B) [36] and thus finite linear
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combinations over rationals of these functions are den&¢li). In particular, for any we can find a finite number
of rationalc;,;,...i,,., Such that

|¢§ - Zciliz...iz,,l+1’(i1 cKig oo Ki2,,1+1| = max |<§(y) - Zcilizu.izm_*_llcil cKip e Ki2m+1(y)| < €.
yeTZHH»l

But this implies
goe— Z Ciliz..‘iszrlKil(f) : Kiz(f © T) et Ki2m+1(f o T2m)|
2 MAXIR(X) = D Cinipeaipyatia (F () i (f 0 T@) - iy a(f 0 T ()] < e

Becausé is an arbitrary continuous function amds arbitrarily small, we are done. O

Theorem 4s thus proven.
A.3. Proof of Theorem 15

First observe that the expectation of the modulusofs constant a.e. with respect to an invariant measure as
[ Bkl Ty dhea =E [ (holo e chin = [ thol dua.
A A A

by invariance ofu 4. In addition,E(|i,| o Tt) = E(|hy o Te|) > |E(hy o Te)| = le~12m@p | = |h,|. It follows that
|ho| = E(lhe| o T¢) a.e. and thus the modulus iof is constant a.e. abis ergodic onA.

Lemma 22. Leth,, be an eigenfunction associated with the eigenvaltf@@® of Uy. Thenv,, o Tx(x) = €127h,,(x)
for almost every: € N.

Proof. Assume not. We have
Ushe(x) = Ehy, o Te(x) = €278, ().

Sincelh,| is constant ori, without loss of generality, we assuriig,| = 1. Thus

[Bhy o T4 =1 [ oo Te(082@) < [ 1ho o Te(a) de2e) = 1.
N N
Equality holds iffz,, o Tz(x) is constant for almost evety But since we know
|Ehy o Te(x)] = €72 h,(x)| = 1,

we get a contradiction with the assumption thgto T¢(x) is not constant for almost evegy O

Corollary 23. For any measurabl& c S, for an eigenfunctiotk,, associated with the eigenvalee?™ of Uy,
we have

ua{x € AlEh, o Te(x) € E} = pafx € Alhy, o Te(x) € E}, (A.2)

for almost every: € N.
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Proof. LetC = {x € A|Eh,, o T¢(x) € E}, De = {x € A|h, o Te(x) € E}. Assume thereisasétC N, Q(F) > 0
such thafus (Dg) # 1 a(C) for everyé e F. Consider the sef = {(x, §) € (A x N)|¢ € F,x € (C/Dg)}. Clearly,
(ks x 2)(G) > 0 and this contradicts the fact that, bgmma 22for everyx € C, for almost eveng € N, we
haveh,, o T¢(x) € E. ]

Proof (Proof of Theorem 13 Without loss of generality we assume tivat| = 1. Define theangle variable(see
[42], pg. 392)(x) by h,(x) = €727 We have

E(/’lw o TS) — e—i2nwhw — e—i27m) e—iZJT@(x) — e—i27r((9(x)+w).

Thus, itis clear thak(h,, o T¢) = S o h,, WhereSthe rotation by an angle 27w on a circle of radius 1. Now define
a measure on the circle byw(E) = /,LA(/’l;]'(E)) wherepu 4 is the ergodic measure far We get

(STHE)) = palhy,t o STHE)) = 1a((S 0 ho) ME)) = na((Bhy o Tr)"(E))
Now by Corollary 23we have
1a((Bhy o Te) HE)) = Epa((ho o Te) ME)  =Eua(Ty o hyME) = palhy, (E)) = v(E).

The converse is clear by the following construction:AetM — S be a factor map such that the factorTois a
clockwise rotation by an anglet. Then

E(h(Tex)) - h~Y(x) = €27,

and# is an eigenfunction associated with eigenvalug® . |
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