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Dynamic Mode Decomposition with Control∗

Joshua L. Proctor†, Steven L. Brunton‡, and J. Nathan Kutz§

Abstract. We develop a new method which extends dynamic mode decomposition (DMD) to incorporate the
effect of control to extract low-order models from high-dimensional, complex systems. DMD finds
spatial-temporal coherent modes, connects local-linear analysis to nonlinear operator theory, and
provides an equation-free architecture which is compatible with compressive sensing. In actuated
systems, DMD is incapable of producing an input-output model; moreover, the dynamics and the
modes will be corrupted by external forcing. Our new method, dynamic mode decomposition with
control (DMDc), capitalizes on all of the advantages of DMD and provides the additional innovation
of being able to disambiguate between the underlying dynamics and the effects of actuation, resulting
in accurate input-output models. The method is data-driven in that it does not require knowledge of
the underlying governing equations—only snapshots in time of observables and actuation data from
historical, experimental, or black-box simulations. We demonstrate the method on high-dimensional
dynamical systems, including a model with relevance to the analysis of infectious disease data with
mass vaccination (actuation).
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1. Introduction. We introduce the method of dynamic mode decomposition with control
(DMDc) to analyze observational data arising from complex, high-dimensional systems that
exhibit dynamics and require control. By utilizing both measurements of the system and the
applied external control, the underlying, unforced dynamics can be extracted and specified in
an equation-free manner; i.e., the underlying equations of motion do not have to be known.
In addition, a description of how the control inputs affect the system are also discovered
and characterized. With a quantitative understanding of the input-output characteristics,
a reduced-order model can be generated for both prediction and design of controllers for
high-dimensional, complex systems.

Controlling high-dimensional systems remains an extremely challenging task as many con-
trol strategies do not scale well with the dimension of the system. In particular, controllers
developed on a full system may be computationally prohibitive to implement, introducing
unacceptably large latencies [2]. Moreover, many control laws are determined by solving a
large Riccati equation (H2) or through an iterative procedure (H∞), constituting an enormous
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DYNAMIC MODE DECOMPOSITION WITH CONTROL 143

upfront cost. Thus, practical engineering control strategies for dealing with high-dimensional
observational data revolve around dimensionality-reduction techniques. Such methods, of-
ten based on the singular value decomposition (SVD) of the data, allow one to construct
low-dimensional subspaces where computationally tractable controllers can be designed and
implemented [35, 24, 20, 40, 39, 58, 18]. Balanced truncation is a classic method developed
to specifically take advantage of underlying low-dimensional observable and controllable sub-
spaces to create a balanced, reduced-order model [35]. Generalizations of this scheme which
combine balanced truncation with the SVD on empirical data, such as the balanced proper
orthogonal decomposition, have already been shown to overcome some of the computational
difficulties associated with the high dimension of complex systems, but still require a perni-
cious linear adjoint calculation [57, 40, 21]. Further innovations around system identification
methods, such as the Eigensystem Realization Algorithm (ERA) and the Observer Kalman
Filter Identification (OKID), were developed to aid in the discovery of input-output models for
systems with control [24, 25, 13]. The dimensions of the measurements, though, were assumed
to be low and the system linear. Recent work has demonstrated that ERA can produce exactly
the same balanced input-output models as those produced by Balanced Proper Orthogonal
Decomposition (BPOD) [31]. Other system identification methods called subspace identifica-
tion methods are also focused on constructing input-output models from measurement data,
but these techniques bypass the identification of Markov parameters [38].

DMDc has a number of advantages for high-dimensional, complex systems. First, it is
based upon the dynamic mode decomposition (DMD) algorithm, which is a data-driven,
equation-free architecture that reconstructs the underlying dynamics of the system from snap-
shot measurements alone [46, 45, 41, 43, 9, 52, 51]. Substantial success has been achieved in
the application of DMD to fields such as fluid dynamics which have been historically difficult
to analyze and construct controllers due to the enormous number of spatial states required
for simulation [16, 44, 47, 3, 53, 51]. Second, DMD has acquired popularity as a method for
systems with nonlinear dynamics, due to a strong connection between DMD and Koopman
operator theory [29, 32, 41, 7, 33]. Finally, DMD can be modified to take advantage of sparse,
or limited, measurements of the complex system [6, 53, 22]. Sparse measurements have re-
cently been leveraged in a variety of complex systems—some for control [4, 42, 30, 12]. Such a
scenario arises in many physical, biological, and engineering systems due to limited numbers
of sensors. Such advantages, in combination with the control architecture advocated here,
warrant serious consideration of the DMDc as an equation-free control strategy in complex
systems.

As a motivating example, DMDc can be applied to the field of computational epidemiology
focusing on the eradication of diseases. The advent of new monitoring tools and a substantial
focus on the quantitative assessment of resource allocation are beginning to generate large
sets of data describing the spread of infectious disease. A substantial literature exists focused
on mathematically modeling the spread of infectious disease and the effect of external control
(e.g., vaccinations for Polio and bed nets for Malaria) [1]. A common challenge in computa-
tional epidemiology is deciding how to model the spread of disease leading to an enormous
number of phenomenological models [28]. Equation-free techniques such as DMD and DMDc
provide a complementary modeling tool for analyzing the spatial-temporal spread of infec-
tious disease. Focusing on only the historical data containing state information (i.e., number
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144 J. L. PROCTOR, S. L. BRUNTON, AND J. N. KUTZ

of infections in a spatial location in a given time) and whether control interventions have been
applied (i.e., number of vaccinations in a spatial location in a given time), DMDc discovers
the dynamical properties of the complex systems.

The outline of the paper is as follows: Section 2 describes the background on the method
DMD. Section 3 describes the new method dynamic mode decomposition with control (DMDc).
Section 4 presents a number of numerical examples including an artificial application based
on an epidemiological problem. Section 5 discusses a number of similarities to and differences
from system identification methods.

2. Background: Dynamic mode decomposition. Dynamic mode decomposition (DMD)
is a powerful data-driven method for analyzing complex systems. Using measurement data
from numerical simulations or laboratory experiments, DMD attempts to extract important
dynamic characteristics such as unstable growth modes, resonance, and spectral properties.
This section provides the mathematical background of DMD [46, 45, 41, 43, 52].

2.1. Dynamical systems and data. At a fundamental level, DMD analyzes the relation-
ship between pairs of measurements from a dynamical system. The measurements, xk and
xk+1, where k indicates the temporal iteration from a discrete dynamical system, are assumed
to be approximately related by a linear operator:

xk+1 ≈ Axk,(2.1)

where x ∈ R
n and A ∈ R

n×n. This approximation is assumed to hold for all pairs of measure-
ments. The subsequent description and discussion of DMD will be centered around finding
a best-fit solution of the operator A for all pairs of measurements. It is important to note
that the relationship in (2.1) does not need to hold exactly. Previous work has theoretically
justified using this approximating operator on data generated by nonlinear dynamical systems
[52]. Also, DMD has been primarily applied to data collected from high-dimensional nonlinear
systems [16, 44, 47, 3, 53, 51].

The process under observation is often continuous (whether from a numerical model or
experiment), and measurements x(t) can be collected at regular time intervals Δt denoted
by xk = x(kΔt). Each measurement in time xk will be referred to as snapshots within this
manuscript [48, 49, 50]. Note that previous applications of DMD to numerical simulations of
fluid dynamic problems often assume full-state access [41]. The more general case is described
here where measurements of a system, whether historical, numerical, or experimental, are
utilized to construct the data matrix. A control theoretic perspective would frame (2.1)
with a measurement function. A linear measurement function x = Cx̃ would suggest there
is an underlying system involving the variable x̃. In section 5, we demonstrate how this
measurement function can take different forms. For example in DMD, the matrix C acts
to reduce the dimension of the system, whereas for the Eigensystem Realization Algorithm
(ERA) the matrix acts to increase the dimension of the system. A comparison of DMD to
system identification methods with this perspective is included in section 5. We denote the
sequence of snapshots collected by the following description:

X =

⎡
⎣ | | |

x1 x2 . . . xm−1

| | |

⎤
⎦ ,
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DYNAMIC MODE DECOMPOSITION WITH CONTROL 145

X′ =

⎡
⎣ | | |

x2 x3 . . . xm

| | |

⎤
⎦ ,(2.2)

where m is the total number of snapshots and X′ is the time-shifted snapshot matrix of
X, i.e., X′ = AX. For DMD, data is often collected at regular time intervals Δt. The
number of snapshots required for DMD varies with the application, but is intimately related
to the linearity properties of the Koopman operator. The solution will converge by decreasing
the recording interval Δt → 0, thus indicating the number of snapshots required (for an
illuminating numerical example see [43]). New directions for DMD have focused on novel
paradigms for collecting data in time [52] and across the state of the system [6]. Each utilizes
the concepts of sparsity and compressed sensing techniques [5].

The relationship between pairs of measurement in (2.1) and the combined data snapshots
(2.2) can be described more compactly in the following matrix form:

X′ ≈ AX.(2.3)

Solving for an approximation of the process matrix A for the measurement matrix pair X and
X′ is the primary objective of DMD.

2.2. Dynamic mode decomposition. The following section describes how to find the
dynamic modes and eigenvalues of the underlying system A described in (2.3). The DMD
of the measurement matrix pair X and X′ is the eigendecomposition of the matrix A. The
operator A is defined by the following:

A = X′X†,(2.4)

where † is the Moore–Penrose pseudoinverse [52]. A least-squares solution A to the underde-
termined problem X′ = AX can be found by minimizing the Frobenius norm of ‖X′−AX‖F .
When the problem is overdetermined, A can be solved as a minimum-norm solution [52]. As
mentioned earlier, the relationship does not need to hold exactly. A computationally efficient
and accurate method for finding the pseudoinverse is via the SVD. The SVD of X results in
the well-known decomposition

X = UΣV∗ =
[
Ũ Ũrem

] [
Σ̃ 0
0 Σrem

] [
Ṽ∗

Ṽ∗
rem

]
(2.5)

≈ ŨΣ̃Ṽ∗,(2.6)

where U ∈ R
n×n, Σ ∈ R

n×m−1, Ṽ∗ ∈ R
m−1×m−1, Ũ ∈ R

n×r, Σ̃ ∈ R
r×r, Ṽ∗ ∈ R

r×m−1,

rem indicates the remaining m − 1 − r singular values, and ∗ denotes the complex conjugate
transpose. Equation (2.6) demonstrates how to reduce the dimension of the data matrix X
by appropriately choosing a truncation value r of the singular values, thus eliminating the
remainder (rem) terms and allowing for the psuedoinverse to be accomplished since Σ̃ is
square. Choosing the appropriate truncation value r has a rich scientific history; notably, the
Eckart–Young theorem provides a rigorous and popular method for choosing r [11, 34, 15]. In
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146 J. L. PROCTOR, S. L. BRUNTON, AND J. N. KUTZ

addition, there are recent theoretical developments attempting to identify the correct r when
X may have additive noise [10, 14].

Using the SVD of the snapshot matrix X in (2.6), the following approximation of the
matrix A can be computed:

A ≈ Ā = X′ṼΣ̃−1Ũ∗,(2.7)

where Ā is an approximation of the operator A from (2.6). A dynamic model of the process
can be constructed given by the following:

xk+1 = Āxk,(2.8)

where x and Ā have the same dimension as the matrices described earlier in (2.1). An
eigenvalue analysis of the matrix Ā would produce the dynamic modes and eigenvalues of the
system. The computation, though, can be prohibitively expensive if n � 1.

If r � n, a more compact and computationally efficient model can be found by projecting
xk onto a linear subspace of dimension r. This basis transformation takes the form Px = x̃.
As previously shown by DMD, a convenient transformation has already been computed via
the SVD of X, given by P = Ũ∗. The reduced-order model can be derived as follows:

x̃k+1 = Ũ∗ĀŨx̃k(2.9)

= Ũ∗X′ṼΣ̃−1x̃k(2.10)

= Ãx̃k.(2.11)

The reduced-order model is given by the following:

Ã = Ũ∗X′ṼΣ̃−1.(2.12)

The eigendecomposition of Ã defined by ÃW = WΛ yields eigenvalues and eigenvectors
that can be investigated for fundamental properties of the underlying system such as growth
modes and resonance frequencies. In addition, the computation is efficient since Ã ∈ R

r×r

and r � n.
Remark. Computing the eigendecomposition of Ã versus Ā can be a computationally

crucial step for efficiency. For example, the domain discretization of a fluids or epidemiological
problem can have an arbitrarily large set of dimensions n. The direct solution of the n × n
eigenvalue problem might not be feasible; thus solving the r×r is substantially more attractive.
The observation is reminiscent of the method of snapshots by Sirovich [48, 49, 50].

For DMD, the eigenvalues of Ã and Ā are equivalent [43], and the eigenvectors are related
via a linear transformation. The eigenvectors of Ā are called dynamic modes [43, 52]. Note
that there is a difference between computing the dynamic modes with the Exact DMD method
from Tu et al. [52] and Schmid [43]. Here we describe the Exact DMD method giving the
following relationship between the eigenvectors of Ã and the dynamic modes φ of Ā:

φ = X′ṼΣ̃−1w.(2.13)

If λ 	= 0, then this is the DMD mode for λ. If the eigenvalue is 0, then the dynamic mode
is computed using φ = Ũw. The Exact DMD algorithm has a number of advantages over the
original procedure; for a detailed discussion, see [52].
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DYNAMIC MODE DECOMPOSITION WITH CONTROL 147

3. Dynamic mode decomposition with control. This section presents the mathemati-
cal description of dynamic mode decomposition with control (DMDc). Understanding the
dynamic characteristics of complex systems that have both internal dynamics and applied ex-
ternal control is fundamental to controller design and sensor placement. The DMDc method
helps discover the underlying dynamics without the confounding effect of external control. In
addition, the method also quantifies the effect of control inputs on the measurements of the
system. Figure 1 illustrates the data collection, the algorithm, and applications of DMDc.

The underlying dynamical system and measured data matrices are redefined to include
systems with control inputs in section 3.1. The subsequent section, section 3.2, describes how
to solve for the dynamic modes if the effect of the inputs on the system is already well known
or well estimated. The last section, section 3.3, shows how to solve for both the dynamic
modes and the input matrix.

3.1. Dynamical system with control. The new method modifies the basic assumption
of DMD. Now, a trio of measurements are assumed to be connected. The goal of DMDc
is to analyze the relationship between a future system measurement xk+1 with the current
measurement xk and the current control uk. For each trio of measurement data, a pair of
linear operators provides the following relationship:

xk+1 ≈ Axk +Buk,(3.1)

where xj ∈ R
n, uj ∈ R

l, A ∈ R
n×n, and B ∈ R

n×l. The operators A and B are best-
fit solutions for all trios of data. Similar to DMD, the relationship in (3.1) does not need
to hold exactly. Data matrices can be constructed with temporal snapshots of the system
measurements and control input over time. The measurement snapshot matrices, X and X′,
are collected in the same manner as in (2.2). We denote a new sequence of control input
snapshots collected by the following description:

Υ =

⎡
⎣ | | |

u1 u2 . . . um−1

| | |

⎤
⎦ .(3.2)

Equation (3.1) can be rewritten in matrix form to include the new data matrices:

X′ ≈ AX+BΥ.(3.3)

Utilizing the three data matrices, DMDc is focused on finding best-fit approximations to the
mappings A and B. As noted in section 2.1, a natural extension to (3.1) would be to consider
a measurement equation. Here, a linear measurement equation x = Cx̃+Du suggests there is
an underlying system with x̃. This perspective is discussed in more detail in section 5, where
we elaborate on how the measurement equation fits into the definition of DMD and system
identification methods such as ERA. In the following two sections, we describe how to find
the dynamic modes of A given the inclusion of control snapshots. The first section outlines
the analysis and algorithm if the matrix B is known or well estimated. If unknown, the second
section describes how to discover both A and B from the observation matrices.
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Figure 1. The illustration outlines the three major components of applying DMDc. The top panel describes
the collection of data from numerical, laboratory, or historical data and the curation of the data into matrices
for the methods. Note that the figure in the historical plot is the data representing prevaccination Measles cases
in the UK normalized similarly to that found in [27]. The middle panel outlines the procedure for DMD and
DMDc for comparison. The bottom panel illustrates two practical applications of DMDc.
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DYNAMIC MODE DECOMPOSITION WITH CONTROL 149

3.2. The map B is known. This section describes how to find the dynamic modes and
eigenvalues of the underlying system A when the matrix B is known. The assumption that B
is known or well estimated is an idealistic view of most complex systems, but it helps provide
one of the major motivations for this work. Finding the underlying dynamics A in a complex
system where control has been applied is essential for designing controllers and placement of
sensors. If external control has been applied to the system, standard DMD would produce
incorrect dynamic information. The more general case where B is unknown will be described
in the following section.

Equation (3.3) can be rearranged by pairing the time-shifted measurement snapshot matrix
with the control snapshot matrix and the known matrix B:

X′ −BΥ ≈ AX.(3.4)

The mapping A can be solved for similarly to (2.4). Again, the truncated SVD of X gives
the matrix factorization ŨΣ̃Ṽ∗. Thus, the approximation of A is given by the following
description:

A ≈ Ā = (X′ −BΥ)ṼΣ̃−1Ũ∗.(3.5)

Note that if the control snapshots are uj = 0 ∀ j ∈ [1,m−1], then the derivation is equivalent
to DMD. A dynamic model of both the computed process and the given input matrix can be
constructed described by the following:

xk+1 = Āxk +Buk,(3.6)

where x, Ā, and B are the same dimensions of the matrices described earlier in (2.1). If r � n,
though, a more compact and computationally efficient model can be found using the same basis
transformation Px = x̃ as described earlier for DMD. Again, a convenient transformation has
already been computed via the SVD of X, given by P = Ũ∗. The reduced-order model can
be derived as follows:

x̃k+1 = Ũ∗ĀŨx̃k + Ũ∗Buk(3.7)

= Ũ∗(X′ −BΥ)ṼΣ̃−1x̃k + Ũ∗Buk(3.8)

= Ãx̃k + B̃uk.(3.9)

The reduced-order approximation of A is given by the following:

Ã = Ũ∗(X′ −BΥ)ṼΣ̃−1.(3.10)

The eigendecomposition of Ã defined by ÃW = WΛ yields eigenvectors that can be used to
find the dynamic modes. Similar to Exact DMD, the dynamic modes can be found with the
following description:

φ = (X′ −BΥ)ṼΣ̃−1w.(3.11)

If λ 	= 0, then this is the DMD mode for λ. If the eigenvalue is 0, then the dynamic mode is
computed using φ = Ũw.
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150 J. L. PROCTOR, S. L. BRUNTON, AND J. N. KUTZ

3.3. The map B is unknown. The assumption that B is known indicates a significant
amount of knowledge about how control inputs affect the system. This section relaxes that
assumption and notably demonstrates that approximations of the matrices A and B can
both be found from system measurements and control snapshots. To the experimentalist or
analyst, this is by far more interesting since only the snapshots of the control and output
measurements are required to find the properties of the underlying process A and how that
process is affected by input control given by the operator B.

The approximate relationship between the data matrices X, Υ, and X′ in (3.3) can be
rewritten in the following form:

X′ ≈ GΩ,(3.12)

where G = [A B] and Ω = [XΥ ]. Thus, similar to the definition of DMD, DMDc of the
measurement trio X, Υ, and X′ is the eigendecomposition of the operator A defined by the
following:

G = X′Ω†,(3.13)

[A B] = X′
[

X
Υ

]†
,(3.14)

where Ω contains both the measurement and control snapshot information. Here, we again
seek a best-fit solution of the operatorG which now contains the process dynamicsA and input
matrix B. Further, a least-squares solution G to the underdetermined problem X′ = GΩ can
be found by minimizing the Frobenius norm of ‖X′ −GΩ‖F . Note that, similar to DMD, the
equality does not need to hold exactly. To solve, we again utilize an SVD, now performed on
the augmented data matrix giving Ω = UΣV∗ ≈ ŨΣ̃Ṽ∗. The truncation value of the SVD
for Ω will be defined as p. Note that the truncation value of Ω should be larger than that of
X. The following computation provides an approximation of G:

G ≈ Ḡ = X′ṼΣ̃−1Ũ∗,(3.15)

where G ∈ R
n×(n+l). We can now find approximations of the matrices A and B by breaking

the linear operator Ũ into two separate components given by the following:

[A, B] ≈ [Ā, B̄](3.16)

≈ [X′ṼΣ̃−1Ũ∗
1, X′ṼΣ̃−1Ũ∗

2],(3.17)

where Ũ1 ∈ R
n×p, Ũ2 ∈ R

l×p, and Ũ∗ = [Ũ∗
1 Ũ∗

2]. Similar to (3.17), a dynamic model using
the matrices Ā and B̄, but for a large dimensional system where n � 1, this is computationally
prohibitive. Here, we again seek a reduced-order model of rank r � n where a transformation
is required such that x = Px̃ and x̃ ∈ R

r.
Unlike DMD, the truncated left singular vectors Ũ cannot be used to define the subspace

on which the state evolves. For (3.17), the truncated left singular vectors of Ω define the input
space. To find a linear transformation P for the measurement x, we utilize a reduced-order
subspace of the output subspace. This fundamental observation allows for DMDc to discover
a reduced-order representation of the dynamics A and input matrix B.
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DYNAMIC MODE DECOMPOSITION WITH CONTROL 151

To find the reduced-order subspace of the output space, a second SVD is required. The
data matrix of the output space X′ can be approximated by the familiar SVD ÛΣ̂V̂∗, where
the truncation value is r and Û ∈ R

n×r, Σ̂ ∈ R
r×r, and V̂∗ ∈ R

r×m−1. Note that the two
SVDs will likely have different truncation values of the input and output matrices p and r
and p > r. Using the transformation x = Ûx̃, the following reduced-order approximations of
A and B can be computed:

Ã = Û∗ĀÛ = Û∗X′ṼΣ̃−1Ũ∗
1Û,(3.18)

B̃ = Û∗B̄ = Û∗X′ṼΣ̃−1Ũ∗
2,(3.19)

where Ã ∈ R
r×r and B̃ ∈ R

r×l. We can then form the reduced-order equation as (3.9) given
by the following:

x̃k+1 = Ãx̃k + B̃uk.(3.20)

Similar to DMD, the dynamic modes of A can be found by first solving the eigenvalue de-
composition ÃW = WΛ. The transformation from eigenvectors to dynamic modes of A is
slightly modified and is given by the following:

φ = X′ṼΣ̃−1Ũ∗
1Ûw,(3.21)

where the relationship between φ and w is similar to Exact DMD. Note that the second SVD
on the state is utilized to fulfill the requirement of exactness for constructing the dynamic
modes as in [52].

3.4. The algorithm. This section outlines the algorithm.
1. Collect and construct the snapshot matrices. Collect the system measurement and

control snapshots, and form the matrices X, X′, and Υ as described in (2.2) and
(3.2). Stack the data matrices X and Υ to construct the matrix Ω.

2. Compute the SVD of the input space Ω. Compute the SVD of Ω as described in (2.6),
thereby obtaining the decomposition Ω ≈ ŨΣ̃Ṽ∗ with truncation value p.

3. Compute the SVD of the output space X′. Compute the SVD of X′ as described in
(2.6), thereby obtaining the decomposition X′ ≈ ÛΣ̂V̂∗ with truncation value r.

4. Compute the approximation of the operators G = [A B]. Compute the following:

Ã = Û∗X′ṼΣ̃−1Ũ∗
1Û,(3.22)

B̃ = Û∗X′ṼΣ̃−1Ũ∗
2.(3.23)

5. Perform the eigenvalue decomposition of Ã. Perform the eigenvalue decomposition
given by the following:

ÃW = WΛ.(3.24)

6. Compute the dynamic modes of the operator A.

Φ = X′ṼΣ̃−1Ũ∗
1ÛW.(3.25)
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152 J. L. PROCTOR, S. L. BRUNTON, AND J. N. KUTZ

4. Applications. This section describes a number of numerical examples for the appli-
cation of this method. The examples increase in complexity as the section progresses. The
emphasis for each of these examples is the benefit of including control snapshot information
to the analysis.

4.1. Example 1: Unstable linear system with proportional controller. DMDc can help
discover the underlying dynamics of a system through measurements of both the state and
external inputs. Here, we demonstrate the idea on a simple two-dimensional unstable linear
system with a stabilizing controller. Despite the simplicity of the mathematical problem, the
example is illustrative for the general concept of DMDc. Consider the following dynamical
system:

[
x1
x2

]
k+1

=

[
1.5 0
0 0.1

] [
x1
x2

]
k

+

[
1
0

]
uk,(4.1)

where uk = K[x1]k and K = −1. The proportional controller clearly stabilizes the system
by moving the unstable eigenvalue within the unit circle. If we have access to the input data
and the B matrix as described in section 3.3, we can collect state and control snapshots to
perform the DMDc computation. For an initial condition [4 7]T , the following are the data
matrices constructed from computing the first five temporal snapshots of (4.1):

X =

[
4 2 1 0.5
7 0.7 0.07 0.007

]
,(4.2)

X′ =
[

2 1 0.5 0.25
0.7 0.07 0.007 0.0007

]
,(4.3)

Υ =
[ −4 −2 −1 −0.5

]
.(4.4)

Following the description in section 3.2, we compute the SVD of X. Here, we use the
MATLAB economy-sized SVD algorithm to give the following matrix factorization of X:

Ũ =

[ −0.5239 −0.8462
−0.8462 0.5329

]
,(4.5)

Σ̃ =

[
8.2495 0

0 1.6402

]
,(4.6)

Ṽ =

⎡
⎢⎢⎣

−0.9764 0.2105
−0.2010 −0.8044
−0.0718 −0.4932
−0.0330 −0.2557

⎤
⎥⎥⎦ .(4.7)

Now, we can compute (3.5) using the data matrices in (4.4), the SVD matrices in (4.7), and
the matrix B in (4.1), giving the following approximation to A:

Ā =

[
1.5 0
0 0.1

]
,(4.8)
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DYNAMIC MODE DECOMPOSITION WITH CONTROL 153

where we recover the unstable linear dynamics from data of the state and control snapshots.
This example demonstrates the utility of DMDc with recovering unstable dynamics from a
system that would otherwise appear to be stable.

Note that this example assumes that the matrix B is known. This can be prohibitively
restrictive when investigating systems with state-dependent feedback. With a control signal
that is dependent on the state, it is impossible to reconstruct B using the method described in
section 3.3. The matrix B can be recovered, though, if a small random disturbance is added
to the controller uk = K[x1]k + δk, where each δ is drawn from a Gaussian distribution with
zero mean. This breaks the symmetry of the state-dependent feedback, allowing both A and
B to be investigated independently. Further, this provides the numericist or experimentalist
a procedure for investigating high-dimensional systems with state feedback.

4.2. Example 2: Large-scale, stable linear systems. In this section, we investigate stable
linear systems where the number of measurements is significantly greater than the dimension-
ality of the underlying system. The previous example demonstrated the utility of the method
on a low-dimensional unstable model. Here, the method is applied to large-scale dynamical
systems that have an underlying low-dimensional attractor.

To construct these large-scale systems, a low-dimensional stable model is generated and
subsequently embedded into a higher-dimensional subspace. There are three steps for gen-
erating the model and data matrices to compare the output of DMDc and the generated
model:

1. Generate a low-dimensional stable state-space model, A and B. Generate discrete
random state-space systems using the MATLAB command Discrete Random State
Space Method. These stable-discrete state-space models can be used as numerical
experiments for DMDc. Here, we have chosen a five-dimensional model, two input
variables, and 100 measurement variables. The output is a state-space model Ã, B̃,
and C.

2. Generate random input data Υ. Using the MATLAB randn command, generate a
matrix of random inputs, Υ ∈ R

2×m−1.
3. Use the model and input vector to generate the data matrices X and X′. Using the

model and the input matrix, generate output data for the snapshot matrix.
Using the data matrices X, X′, and Υ, the DMDc computation can be performed to find

an approximation of Ã and B̃. To compare the generated model and the model produced by
DMDc, we assign C̃ = Û. The assignment allows for the comparison of state-space models.

The singular values of the frequency response, a multi-input multi-output (MIMO) gen-
eralization of a Bode plot, are used to compare the two models. The MATLAB command
sigma will generate the frequency response for both systems. Figure 2 illustrates one such
comparison arising from a single numerical realization from the ensemble. Note that there is
no distinction between the generated model (in red) and the model from DMDc (in blue) for
both control inputs (both lines).

4.3. Example 3: A sparse linear system in the Fourier domain. The final example
for DMDc is a large-scale dynamical system on a spatial grid. The system consists of
high-dimensional full-state measurements, although the dynamics are governed by a low-
dimensional dynamical system in the Fourier domain. The motivation for this example
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Figure 2. The singular values of the frequency response for a large-scale stable linear system. The blue line
is from the model from DMDc, and the red is from the real model. Note that an equivalent frequency response
cannot be constructed from DMD alone since it does not consider input-output systems.

comes from epidemiology and infectious disease spread, where the measurements can be high-
dimensional in both space and time. For example, consider the number of possible states
of a dynamical system to represent flu infections across the world over a decade, including
both spatial discretization and disease heterogeneity factors. In this example, the underlying
attractor could be quite low-dimensional. To complicate this picture, actuation in the form
of a spatial delivery of vaccinations is also occurring each year, which can directly affect the
dynamics of an infectious disease.

Here, we construct a sparse dynamical system in a two-dimensional Fourier domain as
an abstraction of the problem described above. Only five modes are allowed to be nonzero.
The dynamical system on these spatial modes is constructed in the following way: for each
mode, a temporal oscillation frequency is chosen randomly, and a small, stable damping rate
is similarly chosen. The boundary conditions are periodic, thus restricting the dynamics to
a torus. This system was previously constructed in [6] to demonstrate compressive DMD.
Here, though, the example is extended to allow for actuation in the spatial domain. The
spatial actuation is then Fourier transformed in order to compute the effect on the underlying
dynamical system. The spatial grid used is 128× 128.

Similar to the previous examples, the underlying dynamics of the system can be discovered
solely from state and control snapshots in the spatial domain using DMDc. The top left plot
of Figure 3 shows the evolution of one such unforced system in space. The right plot shows
the effect of actuation on the same system. The actuation is a localized negative control
input applied in the spatial domain, shown in the lower left plot. The eigenvalue plot shows
that DMDc discovers the underlying eigenvalues more accurately than DMD. In addition,
the zero-valued Fourier modes can be contaminated with Gaussian noise without a qualitative
change in the behavior of DMDc.

5. Connections to system identification methods. In comparing DMDc with the system
identification methods described in this section, we first discuss a number of important general
differences. First, DMD and DMDc are modal decomposition methods focused on discovering
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DYNAMIC MODE DECOMPOSITION WITH CONTROL 155

Figure 3. The top left panel illustrates one realization of Example 3 without actuation over time. The right
panel illustrates the same dynamical system but with actuation. The bottom left panel illustrates the actuation
applied in the spatial domain. The bottom middle panel shows a comparison between the actual eigenvalues and
the eigenvalues found from DMD and DMDc. On the right the first four dynamic modes of DMD and DMDc
are compared to the actual underlying spatial modes.

coherent spatial-temporal modes, dynamic modes, from high-dimensional data [43]. Second,
DMD has been connected to Koopman spectral analysis providing theoretical justification for
characterizing nonlinear systems [29, 41, 33]. The system identification methods are focused
on a slightly different task, namely, producing linear models for control from input-output data
[55, 26]. However, there are a number of algorithmic similarities between DMDc and system
identification methods if we assume access to full-state measurements, as we will discuss in
this section.

A substantial portion of this section is spent exploring the connection to two system
identification methods in particular: the Eigensystem Realization Algorithm (ERA) and Ob-
server Kalman Filter Identification (OKID). We discuss these particular methods in more
detail in this section due to the historical connection between data-driven methods like
ERA [24, 23] and modal decomposition methods such as Balanced Proper Orthogonal Decom-
position (BPOD) [40], which produce balanced input-output models [35]. ERA was recently
demonstrated to produce exactly the same balanced models as BPOD [31], but without the
need for information about the adjoint system. Further, strong connections have been estab-
lished between ERA and DMD [52]. ERA constructs an input-output model using impulse
response data, and OKID is typically used in conjunction when convenient impulse response
data is unavailable [25, 37, 36, 23]. In this section, we show the connections between DMDc
and ERA/OKID. Importantly, we also include a discussion on the connections of DMDc to
subspace identification methods such as N4SID, MOESP, and CVA [54, 55, 26, 38].

ERA and OKID were developed to derive a state-space model for control in aerospace
applications involving flexible structures [24, 25]. System identification methods such as
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Figure 4. An illustration depicting the different regimes, with respect to the rank of the system and the
number of measurements, of the modal decomposition methods and the system identification methods.

ERA/OKID were developed for input-output systems which typically have a higher
rank/dimensionality than the number of observables r > n [19, 24]. In contrast, modal
decomposition methods such as DMD, DMDc, Proper Orthogonal Decomposition (POD),
and BPOD are typically applied to complex systems where the number of measurements are
significantly larger than the rank of the underlying attractor n � r, e.g., fluid dynamics prob-
lems. Figure 4 illustrates the regime of applications where each of these methods is typically
applied. In addition, DMD and POD have been previously established as analysis methods
for nonlinear complex systems [29, 41, 33].

Previous work by Tu et al. [52] has established a number of connections between DMD
and ERA. The similarities and differences between DMDc and ERA listed in this section,
though, are more readily compared since both algorithms assume input-output systems. The
following list briefly explains how DMDc and ERA differ for the construction of a typical
input-output model:

• The data matrix construction: The data from the ERA procedure is fundamentally
impulse-response data, whereas DMDc can have arbitrary input histories. The input
histories are fundamental to the DMDc procedure. Despite this difference, DMDc’s
and ERA’s constructions of the measurement data matrices are similar. Both the
matrix X of DMDc and the Hankel matrix H of ERA assume snapshots at regular
intervals. The data matrix H is also vertically stacked with time shifted versions of
the snapshot. DMDc does not require shift-stacking the matrix since there is little risk
of column-rank deficiency due to the typically large number of observables. The two
data matrices are equivalent on the condition that H is not vertically stacked with
snapshots [52].

• The A matrix: It was previously shown that if the data matrices described in the first
bullet are the same, the matrices A produced by DMD and ERA are equivalent up
to a similarity transformation [52]. The A matrix constructed by DMDc is different
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DYNAMIC MODE DECOMPOSITION WITH CONTROL 157

from those produced by DMD and ERA since the input space and thus the subspace
Ũ∗

1 contains added information from the control snapshots.
• The B matrix: To compute the matrix B using ERA, only the first data snapshot

after the impulse is utilized, which translates to the discrete dynamical system rela-
tionship x1 = CBu0, where u0 is an impulse and C is the standard linear map for
the observable equation. Note that ERA also requires a projection of the single data
snapshot onto the left singular vectors of the data matrix H and the same similarity
transform Σ1/2 described for the matrix A. The ERA formulation can be contrasted
with DMDc through the illustration of the difference in the data matrix construction
for DMDc given by the following:

Ω =

⎡
⎢⎢⎣

| | | |
0 x1 x2 . . . xmc

| | | |
u0 0 0 . . . 0

⎤
⎥⎥⎦ .(5.1)

The computation to find the matrix B is quite different for DMDc. Arbitrary control
histories can be included in Ω to compute B, whereas ERA is primarily impulse
response focused. Further, finding the matrix B with ERA will not be as robust to
noise compared with using DMDc and a longer input history.

• The C matrix: For DMDc, ERA, and DMD, a linear transformation matrix maps
the model state to the measurements. Each of these methods utilizes the left singular
vectors of its data matrices for the mapping. There is an important distinction between
the role of the left singular vectors for DMDc and ERA. The mapping for DMDc
projects a high-dimensional set of observables onto a lower-dimensional subspace. In
ERA, the left singular vectors often lift the dimension of the observables; see Figure 4
for an illustration of the rank of the model versus the dimension of the observables.

The observer/Kalman filter identification method allows minimal realization algorithms
such as ERA to be generalized from impulse response data to data that is driven by rich
input signals [25, 37, 36, 23]. The calculation of the above matrices A, B, and C is typically
considered more robust when combining OKID with ERA. An often cited computational
challenge confronting ERA is the analysis of lightly damped systems. The magnitude of data
(number of snapshots) may be prohibitively large for lightly damped systems, and factoring
the Hankel matrix using the SVD is computationally prohibitive. A major similarity between
OKID and DMDc is the construction of the data matrix; OKID constructs an augmented data
matrix that also stacks the control with the measurements. Similar to DMD and ERA, in
the limit of only evaluating the first row of the augmented Hankel matrix, the data matrices
between DMDc and OKID are equivalent.

OKID has also been grouped into a larger set of system identification methods called
subspace identification methods [38]. There are a number of connections between DMDc and
other popular subspace identification methods such as N4SID, MOESP, and CVA [54, 55,
26, 38]. Algorithmically, these methods involve a regression, model reduction, and parameter
estimation step similar to DMDc, as described in [38]. In contrast to DMDc, a pre-estimation
step is often utilized that defines an estimated variable that helps define an input-output
model. The numerical procedure of N4SID, MOESP, and CVA is similar to DMDc in the
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158 J. L. PROCTOR, S. L. BRUNTON, AND J. N. KUTZ

construction of the regression problem between the input and output data, instead of forming
the Hankel matrix as in ERA/OKID [56]. There are, though, interesting differences similar
to those found for ERA/OKID, namely in the choice of the projection scaling (see the earlier
discussion concerning the similarity transformation required to compare ERA and DMD)
and in using the orthogonal complement of the control data matrix Υ for computing the
solution [38]. Recent work has combined elements of system identification methods with
POD to extract balanced input-output models from data snapshots for describing the flow
of a nonlinear system [18]. We believe adapting DMDc using current subspace identification
methods as a generalization of the method could be quite impactful.

6. Discussion. Complex, high-dimensional data has become ubiquitous in traditional sci-
entific and engineering applications as well as in modern data-rich fields such as internet
traffic, distribution systems, and transportation networks. Machine-learning and statistical
methods have been successfully applied to characterize many of these so-called big-data prob-
lems. Similarly, scientific and engineering fields, exemplified by control theoretic community,
have focused on the development of quantitative and automatic dimensionality reduction
methods to both characterize and control complex systems. In order to construct effective
controllers, the underlying system needs to be well understood. Accurately describing the
underlying system is a challenge when the system is complex, high-dimensional, and without
well-characterized governing equations.

Dynamic mode decomposition (DMD) is a data-driven, equation-free method that helps
meet a number of these modern-day challenges. The method has strong connection to nonlin-
ear operator theory and discovers spatial-temporal coherent modes from data. DMD, though,
does not produce accurate reduced-order models from complex systems with exogenous forc-
ing. Dynamic mode decomposition with control (DMDc) inherits the advantages of DMD
but also provides accurate input-output models for complex systems with actuation. The
method can be applied to data from a variety of sources including historical, experimental,
and black-box simulations. In addition, DMDc can be naturally extended to consider input-
output systems with internally evolving states and a measurement equation. This perspective
is more natural in the control theoretic community, in contrast to the DMD literature, which
has tended to focus on constructing a relationship between measurements and model reduc-
tion.

Methods such as DMDc will play an increasing role in the analysis of large-scale datasets
from complex systems. DMD already has a significant number of applications in the fluid
dynamics community [44, 47, 16, 3, 53, 51] and is expanding to a variety of other applications
like background subtraction in video processing [17]. We believe DMDc is poised to similarly
excel as a tool for a diverse set of engineering and applied science applications where control
of the complex system is important. Further, the DMDc method is well suited to couple with
innovative sparsity-promoting sampling and control strategies [8, 42, 4, 12]. This connection
has already been demonstrated for DMD both in time and space [6, 22, 53]. DMDc is therefore
positioned to have a dramatic effect on the analysis and control of large-scale complex systems.
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