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Abstract— This paper addresses the problem of large scale
terrain modeling for a mobile robot. Building a model of
large scale terrain data that can adequately handle uncertainty
and incompleteness in a statistically sound way is a very
challenging problem. This work proposes the use of Gaussian
Processes as models of large scale terrain. The proposed
model naturally provides a multi-resolution representation of
space, incorporates and handles uncertainties aptly and copes
with incompleteness of sensory information. Gaussian Process
Regression techniques are applied to estimate and interpolate
(to fill gaps in unknown areas) elevation information across
the field. The estimates obtained are the best linear unbiased
estimates for the data under consideration. A single Non-
Stationary (Neural Network) Gaussian Process is shown to
be powerful enough to model large and complex terrain,
handling issues relating to discontinuous data effectively. A
local approximation methodology based on KD-Trees is also
proposed in order to ensure local smoothness and yet preserve
the characteristic features of rich and complex terrain data. The
use of the local approximation technique based on KD-Trees
further addresses concerns relating to the scalability of the
proposed approach for large data sets. Experiments performed
on sparse GPS based survey data as well as dense laser scanner
data taken at different mine-sites are reported in support of
these claims.

I. INTRODUCTION

Large scale terrain mapping is a difficult problem with
wide-ranging applications, from space exploration to mining
and more. For autonomous robots to function in such high-
value applications, an efficient, flexible and high-fidelity
representation of space is critical. The key challenges posed
by this problem are that of dealing with the problems
of uncertainty, incompleteness and handling unstructured
(potentially highly) terrain. Uncertainty and incompleteness
are virtually ubiquitous in robotics as sensor capabilities are
limited. The problem is magnified in a field robotics scenario
due to sheer scale of the application (for instance, a mining
or space exploration scenario).

State-of-the-art representations generally map surfaces by
computing triangulations. This process, however, does not
have a statistically sound way of incorporating and managing
uncertainty. The assumption of statistically independent data
is a further limitation of many works that have used these
approaches. While there are several interpolation techniques
known, the independence assumption can lead to simplistic
(simple averaging like) techniques that result in an inaccu-
rate modeling of the terrain. Further, the limited perceptual
capabilities of sensors renders most sensory data incomplete.
These problems are addressed in this paper by putting

forward a Gaussian Process based representation of large
scale terrain. The method incorporates sensor uncertainty and
uses it for learning the terrain model. Estimation of data at
unknown locations is treated as a regression problem in 3D
space and takes into account the correlated nature of the
spatial data. This technique is also used to overcome sensor
limitations and occlusions by filling the gaps in sensor data
with the best linear unbiased estimates. The representation
is a continuous domain, compact and non-parametric model
of the terrain and hence can readily be used to create terrain
maps at any required resolution.

The contribution of this paper is a novel approach towards
representing large scale terrain using Gaussian Processes.
Specifically, this paper shows that a single non-stationary
kernel (neural-network) Gaussian Process is successfully
able to model large scale terrain data taking into account the
local smoothness as well as preserving much of the spatial
features in the terrain. A further contribution to this effect is a
local approximation methodology based on KD-Trees that in-
corporates the benefits of both stationary and non-stationary
kernels in the elevation estimation process. The use of the
KD-Tree based local approximation technique also enables
this work to take into account scalability considerations
for handling large scale, complex terrain. The paper also
compares the performance of stationary and non-stationary
kernels. The end-result is a multi-resolution representation
of space that incorporates and manages uncertainty in a
statistically sound way, handling spatially correlated data in
an appropriate manner. Experiments conducted on real sensor
data obtained from GPS and Laser scanner based surveys
in real application scenarios (mining) clearly suggest the
viability of the proposed technique.

II. RELATED WORK

State-of-the-art representations used in applications such
as mining, space exploration and other field robotics sce-
narios as well as in geospatial engineering are typically
limited to elevation maps, triangulated irregular networks
(TIN’s), contour models and their variants or combinations
([1] and [2]). Each of them have their own strengths and
preferred application domains. The former two are more
popular in robotics. The latter one represents the terrain as a
succession of “isolines” of specific elevation (from minimum
to maximum). They are particularly suited for modeling
hydrological phenomena and otherwise offer no particular
computational advantages for the context of this paper.
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Grid based methods represent space in terms of elevation
data corresponding to each cell of a regularly spaced grid
structure. The outcome is a 2.5D representation of space. The
main advantage of this representation is simplicity. The main
limitations include the inability to handle abrupt changes,
the dependence on grid size and the issue of scalability in
large environments. In robotics, grid based methods have
been exemplified by numerous works such as [3], [4], [5]
and more recently [6]. Both [3] and [4] use laser range
finders to construct elevation maps. The latter also proposes
a “certainty assisted spatial filter” that uses “certainty” infor-
mation as well as spatial information (elevation map), to filter
out erroneous terrain pixels. The authors of [5] developed
stereo-vision based elevation maps. They recognize that the
main problem is uncertainty incorporation and management.
They proposed a heuristic data fusion algorithm that was
based on the Dempster Shafer theory. Triebel et al in [6]
propose an extension to standard elevation maps in order
to handle multiple surfaces and overhanging objects. The
main weakness observed in most prior work in grid based
representations is the lack of a statistically direct way of
incorporating and managing uncertainty.

Triangulated Irregular Networks (TIN) usually sample a
set of surface specific points that capture all important
aspects of the surface to be modeled - bumps/peaks, troughs,
breaks etc. The representation typically takes the form of an
irregular network of such points with each point linked to
its immediate neighbors. This set of points is represented
as a triangulated surface. TIN’s are able to more easily
capture sudden elevation changes and are also more flexible
and efficient than grid maps in relatively flat areas. In
robotics, TIN’s have been used in works such as [7] and
[8]. [7] presents an approach to performing online 3D multi-
resolution reconstruction of unknown and unstructured envi-
ronments to yield a stochastic representation of space. [8] is
a recent work in the space exploration domain, that presents
a LIDAR based approach to terrain modeling using TIN’s.
The work further decimates co-planar triangles into a single
triangle to provide a more compact representation. TIN’s may
be efficient from a survey perspective as few points are hand-
picked. However [6] points out that for dense sensor data,
while they are accurate and can easily be textured, they have
a huge memory requirement which grows linearly with the
number of scans. The assumption of statistical independence
may render the method ineffective at handling incomplete
data as the elemental facet of the TIN (planar triangle) may
approximate a complicated surface beyond acceptable limits.
This however depends on the choice of the sensor and the
data density obtained.

There are several different kinds of interpolation strategies
for grid data structures. The choice of the interpolation
method can have severe consequences on the accuracy of
the model obtained. Kidner ([9]) reviewed and compared
numerous interpolation methods for grid based methods. He
recommended the use of higher order polynomial interpola-
tion (at least Bicubic) methods as a requirement for grid data
interpolation. Ye and Borenstein in [4] used median filtering

to fill in the missing data in an elevation map. The Locus
algorithm [10] was used in [3]. The interpolation method
attempted to find an elevation estimate by computing the
intersection of the terrain with the vertical line at the point in
the grid - this was done in image space rather than Cartesian
space.

Gaussian Processes [11] (GP’s) are powerful non-
parametric learning techniques that can handle all problems
mentioned above. They produce a scalable multi-resolution
model of the large scale terrain under consideration. This
is due to the fact that they yield a continuous domain
representation of the terrain data and hence can be sampled
to meet any desired resolution easily. They incorporate and
handle uncertainty in a statistically sound way and represent
spatially correlated data in an appropriate manner. They
model and use the spatial correlation of the given data points
to estimate the elevation values for other unknown points of
interest. In an estimation sense, GP’s provide the best linear
unbiased estimate [12] based on the underlying stochastic
model of the spatial correlation between the data points.
They basically perform an interpolation methodology called
Kriging [13] which is a standard interpolation technique used
in the mining industry. Hence, GP’s handle both uncertainty
and incompleteness effectively.

In the recent past, Gaussian Processes have been applied
in the context of terrain modeling - [14], [15] and [16]. All
three works are based on using a non-stationary equivalent
of a stationary squared exponential covariance function [17]
and incorporate kernel adaptation techniques in order to
adequately handle both smooth surfaces as well as inherent
(and characteristic) surface discontinuities. Whereas [14]
initializes the kernel matrices evaluated at each point with
parameters learnt for the corresponding stationary kernel and
then iteratively adapts them to account for local structure and
smoothness, [15] and [16] introduce the idea of a “hyper-
GP” (using a stationary kernel) to predict the most probable
length scale parameters to suit the local structure. These are
used to make predictions on a non-stationary GP model of
the terrain. [16] proposes to model space as an ensemble of
GP’s in order to reduce computational complexity.

While the context of this work is similar, the approaches
differ. This work proposes the use of non-stationary kernels
(neural network) to model large scale dis-continuous spatial
data. It compares performances of stationary (squared ex-
ponential) and non-stationary (neural network) kernels for
large scale data. It shows that using suitable non-stationary
kernel can directly result in modeling local structure and
smoothness, and hence suggests further research in this direc-
tion. It also proposes a local approximation methodology to
emulate the locally adaptive effect of the techniques proposed
in [14], [15] and [15]. This approximation technique is based
on an efficient hierarchical representation (KD-Trees) of the
data. Thus, the scalability issues relating to the application
of this approach to large scale data sets are simultaneously
addressed. The contribution of this work is thus the propo-
sition of a novel way of representing large scale terrain
using Gaussian Processes. Large scale field experiments are
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used to support this claim. Such a representation naturally
provides a multi-resolution model of the terrain, incorporates
and handles uncertainty effectively and appropriately handles
spatially dependent data.

III. APPROACH

A. Problem Definition

The terrain modeling problem can be understood as fol-
lows - given a sensor that provides terrain data as a set of
points (x, y, z) in 3D space, the objectives of this work are
to:

1) develop a multi-resolution representation that incorpo-
rates the sensor uncertainty in an appropriate manner.

2) be able to best handle the limitations of the sensor (eg.
incomplete sensor information due to occlusions).

Terrain data can be obtained using numerous sensors in-
cluding 3D laser scanners and GPS. 3D laser scanners
provide dense and accurate data whereas a GPS based survey
typically comprises of a relatively sparse set of well chosen
points of interest. The experiments reported in this work
use data sets obtained from both these sensors. The steps
involved in creating the representation sought are depicted
in Figure 1. The process of applying the GP representation
to create elevation/surface maps at any arbitrary resolution
is outlined in Figure 2.

Fig. 1. The training / modeling process: A sensor such as a laser scanner is
used to provide 3D terrain data. A sample of the given terrain data is used
to learn a GP representation of the terrain. Different sampling methods can
be used. Training data is stored in a KD-Tree for later use in the application
stage. Learning the GP model of the terrain amounts to performing a
maximum marginal likelihood estimation of the hyperparameters of the
model. The outcomes of this process are the KD-Tree representation of
the training data and the GP model of the terrain.

Typically, for dense and large data sets, not all of the
data is required for learning the GP model. Such an ap-
proach would not scale due to computational complexity of
the process. Thus, a sampling step may be included. This
sampling may be of uniform nature, random and could also
use heuristic approaches such as preferential sampling from
areas of high gradient. The subset of the data that is to be
used for training is stored in a KD-Tree [18] for later use
in the inference process. The KD-Tree provides for rapid
data access in the inference process and addresses scalability
issues related to applying the proposed method in the context
of large data sets.

Fig. 2. The testing / application process: Given a desired region of interest
where elevation needs to be estimated, applying the GP model learnt in the
modeling stage amounts to sampling the continuous representation at the
desired resolution, in the area of interest. A local approximation technique
based on the KD-Tree representation obtained from the modeling stage
ensures a good tradeoff between smoothness and feature preservation in
the terrain. It also addresses scalability issues related to the method being
applied for large scale data. The outcome of this process is an elevation /
surface map.

B. Model Description

This work proposes the use of Gaussian Processes for
modeling and representing terrain data. The steps below
are directly based on [11]. Gaussian processes provide a
powerful learning framework for learning models of spatially
correlated and uncertain data. Gaussian Process Regression
provides a robust means of estimation and interpolation of
elevation information and can handle incomplete sensor data
effectively. GP’s are non-parametric approaches in that they
do not specify an explicit functional model between the input
and output. They may be thought of as a Gaussian Probability
Distribution in function space and are characterized by a
mean function m(x) and the covariance function k(x,x′)
where

m(x) = E[f(x)], (1)

k(x,x′) = E[(f(x) − m(x))(f(x′) − m(x′))] (2)

such that the GP is written as

f(x) ∼ GP(m(x), k(x,x′)). (3)

The mean and covariance functions together specify a
distribution over functions. In the context of the problem
at hand, each x ≡ (x, y) and f(x) ≡ z of the given data.

The covariance function models the relationship between
the random variables which, here, correspond to the given
data. Although not necessary, the mean function m(x) may
be assumed to be zero by scaling the data appropriately such
that it has an empirical mean of zero. There are numerous
covariance functions (kernel) that can be used to model the
spatial variation between the data points. The most popular
kernel is the squared-exponential kernel given as

k(x,x′) = σ2
f exp

(
−1

2
(x− x′)TΣ(x− x′)

)
, (4)

where k(x,x′) is the covariance function or kernel; Σ =[
lx 0
0 ly

]−2

is the length-scale matrix, a measure of how

1049



quickly the modeled function changes in the directions x and
y; σ2

f is the signal variance. The set of parameters lx , ly , σf
are referred to as the hyperparameters and specify what sort
of values the parameters of the model might take.

Another kernel used in this work is the neural network
kernel. It is specified by

k(x,x′) =

σ2
f arcsin

(
β+ 2xT Σx′√

(1 + β+ 2xT Σx)(1 + β+ 2x′T Σx′)

)
,

(5)

where β is a bias factor and lx , ly , σf , β are the hyperpa-
rameters used.

The main difference between these two kernels is that the
squared-exponential kernel, being a function of |x − x′| is
stationary (invariant to translation) whereas the neural net-
work function is not so. In practice, the squared exponential
function has a smoothing or averaging effect on the data. The
neural network covariance function proves to be much more
effective than the squared exponential covariance function
in handling dis-continuous (rapidly changing) data, as the
experiments in this paper will show. This is the main reason
why it proves to be very effective in modeling complex
terrain data.

C. Learning the hyperparameters

Training the GP for a given data set is tantamount to
optimizing the hyperparameters of the underlying kernel.
For the squared-exponential kernel, this amounts to finding
the optimal set of values for θ = {lx , ly , σf , σn}
and for the neural network kernel, the optimal values for
θ = {lx , ly , σf , β , σn}, where σ2

n is the noise variance
in the data being modeled. This is performed by formulating
the problem in a Maximum Marginal Likelihood Estimation
framework and subsequently solving a non-convex optimiza-
tion problem.

Defining X = {xi}ni=1 = (xi, yi)ni=1 and z =
{f(xi)}ni=1 = {zi}ni=1 as the sets of training inputs and
outputs respectively with n instances, the log marginal like-
lihood of the training outputs (z) given the set of locations
(X) and the set of hyperparameters θ is given by

log(z|X, θ) = −1
2
zTK−1

z z − 1
2

log |Kz|−
n

2
log(2π), (6)

where Kz = K(X,X) + σ2
nI is the covariance matrix for

all noisy targets z and K(X,X) is covariance matrix for the
noise-free targets (using equation 4 or 5). The log marginal
likelihood has three terms - the first describes the data fit,
the second term penalizes model complexity and the last
term is simply a normalization coefficient. Thus, training the
model will involve searching for the set of hyperparameters
that enables the best data fit while avoiding overly complex
models. Occam’s razor [19] is thus in-built in the system
and prevention of over-fitting is guaranteed by the very
formulation of the learning mechanism. Using this maximum
marginal likelihood formulation, training the GP model on a
given set of data amounts to finding the optimal set of hyper-
parameters that maximize the log marginal likelihood. This

can be performed using standard off-the-shelf optimization
approaches. In this work, a combination of stochastic search
(simulated annealing) and gradient descent (Quasi-Newton
optimization with BFGS Hessian update [20]) was found to
produce the best results. Using a gradient based optimization
approach leads to advantages in that convergence is achieved
much faster.

D. Applying the GP model

Applying the GP model amounts to using the learned GP
model to estimate the elevation information across a region
of interest, characterized by a grid of points at a desired
resolution. The 2.5D elevation map can then be used as is or
as a surface map for various applications. This is achieved by
performing Gaussian Process Regression at the set of query
points, given the training data set and the GP kernel with the
learnt hyperparameters.

For additive independent identically distributed Gaussian
noise with variance σ2

n, the prior on the noisy observations
becomes

cov(z) = K(X,X) + σ2
n I. (7)

The joint distribution of any finite number of random
variables of a GP is Gaussian. Thus, the joint distribution
of the training outputs f and test outputs f∗ given this prior
can be specified by»

z
f∗

–
∼ N

„
0 ,

»
K(X,X) + σ2

nI K(X,X∗)
K(X∗, X) K(X∗, X∗)

–«
. (8)

For n training points and n∗ test points, K(X,X∗) denotes
the n×n∗ matrix of covariances evaluated at all pairs of train-
ing and test points and similarly for K(X,X), K(X∗, X∗)
and K(X∗, X). The function values (f∗) corresponding to
the test locations (X∗) given the training inputs X , training
outputs z and covariance function (kernel) is given by

f̄∗ = K(X∗, X)[K(X,X) + σ2
nI]−1z (9)

and their uncertainty is given by

cov(f∗) = K(X∗, X∗)−K(X∗, X)[K(X,X)+σ2
nI]

−1K(X,X∗)
(10)

Denoting K(X,X) by K and K(X,X∗) by K∗; for a
single test point x∗, k(x∗) = k∗ the above equations can
then be rewritten as:

f̄∗ = kT∗ (K + σ2
nI)−1z (11)

and variance

V [f∗] = k(x∗, x∗) − kT∗ (K + σ2
nI)−1k∗ . (12)

Equations 11 and 12 provide the basis for the elevation
estimation process. The GP estimates obtained are a best
linear unbiased estimate for the respective query points.
Uncertainty is handled by incorporating the sensor noise
model in the training data. The representation produced is
multi-resolution in that a terrain model can be generated at
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any desired resolution using the GP regression equations pre-
sented above. Thus, the terrain modeling approach proposed
is a probabilistic, multi-resolution one that aptly handles
spatially correlated information.

E. Fast Local Approximation using KD-Trees

As mentioned earlier, the squared exponential kernel has
a smoothing effect on the data whereas the neural-network
kernel is much more effective in modeling dis-continuous
terrain data. In order to achieve a good trade-off between
obtaining smooth terrain models and yet preserve the char-
acteristic features in the terrain, a KD-Tree based local
approximation methodology is proposed in this work. During
the inference process, the KD-Tree that initially stored the
training data is queried to provide a predefined number of
spatially closest training data, to the point for which the
elevation must be estimated. The GP regression process then
uses only these training exemplars to estimate the elevation
at the point of interest. The number of nearest neighbor
exemplars used controls the tradeoff between smoothness and
feature preservation and also the time taken for the inference
process. Note that the GP model itself is learnt from the set
of all training data but is applied locally using the KD-Tree
approximation. Particularly, in the case of the neural network
kernel, this amounts to adding the benefits of a stationary
kernel to the highly adaptive power of a non-stationary
kernel. This process provides two advantages - it tends to
achieve the locally adaptive GP effect as exemplified by the
works [14], [15] and [16] and it simultaneously addresses
the scalability issue that arises when applying this approach
to large scale data sets.

IV. EXPERIMENTS

Experiments were performed on two data sets obtained
using different sensory modalities. The first data set com-
prised of a scan from a RIEGL LMSZ420 laser scanner at
the Mt. Tom Price mine in Western Australia. The data set
comprised of about 1.85 million points in 3D space. The
data set is depicted in Figure 3 and is referred to as the
“Tom Price” data set in the rest of this paper. The second
data set comprises of GPS based survey data (4612 points)
from a large Kimberlite (diamond) mine. The second data
set is a very hard data set in that it contains very sparse
information (the average spread of the data is about 31m in
x and y directions) spread over a very large geographical
area (≈ 2.2 x 2.3 sq km). The data set, depicted in figure 4,
is referred to as the “Kimberlite Mine” data set in the rest
of this paper.

Fig. 3. Laser Scanner data set taken at Mt. Tom Price mine in Western
Australia using a RIEGL LMSZ420. The data set consists of over 1.85
million data points. The data set spanned about 135 x 72 sqm.

Fig. 4. GPS based survey data set from the Kimberlite (diamond) mine.
The data set comprised of over 4600 points spanning about 2.2 x 2.3 sqkm.
The data set is very sparse with the average spread being about 31m in x
and y directions.

The focus of the experiments performed on these data sets
was to understand the terrain modeling capabilities of Gaus-
sian Processes. Specifically, the performance of stationary
(squared-exponential) and non-stationary (neural network)
kernel were compared. The Mean Squared Error (MSE)
criterion was used in conjunction with visual inspection of
the final output elevation/surface map to arrive at conclusions
regarding the results obtained.

The results of testing various kernels on the two data sets
are summarized in Tables I and II. Three different kernels
were tested - stationary (squared exponential kernel denoted
as SQEXP), non-stationary (neural network kernel denoted
as NN2) and clamped neural network (denoted as NN2C),
a variation wherein the noise parameter was bound to the
known sensor uncertainty for the data set. The difference
between the latter method and the first two is that whereas
the first two methods incorporate the sensor uncertainty, the
optimizer is allowed to use this parameter as an additional
degree of freedom. In the latter most case however, the
known uncertainty is incorporated and this parameter is
fixed. The optimizer has 1 degree of freedom less than in
previous cases. The table shows that Non-Stationary Kernel
(Neural Network) outperforms Stationary Kernel (Squared
Exponential) for both data sets. The clamped model performs
comparably to the non-clamped one in the Tom Price data
set and better, in the Kimberlite Mine data set. This is due
to the fact that clamping the noise to the true sensor noise
does not allow the optimizer to assign a more pessimistic
value and thereby affect the output. The Neural Network GP
is able to produce good terrain models even with one degree
of freedom less (no noise hyperparameter as its fixed). The
final output for the Tom Price data set is depicted in Figures
5 and 6; the corresponding confidence estimate is depicted in
Figure 7. The output surface and confidence estimates for the
Kimberlite Mine data set are respectively depicted in Figures
8 and 9 respectively.

TABLE I
KERNEL PERFORMANCE: TOM PRICE DATASET (1806944 POINTS OVER

135 X 72 SQ M, 3000 TRAINING DATA, 90198 TEST POINTS FOR MSE)

Kernel Mean Squared Error (MSE)
Squared Exponential (SQEXP) 0.085 sq m

Neural Network (NN2) 0.051 sq m
Constrained Neural Network (NN2C) 0.065 sq m

Numerous experiments were also performed to better
understand the modeling process and the factors influencing
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Fig. 5. Outcome of applying a single neural network based GP to the Tom Price data set. The gray (darker) points constitute the given data set. The
red points are the output points - the elevation data as estimated by the GP over the test grid. The figure clearly demonstrates the ability of the GP to (1)
reliably estimate the elevation data in known areas and (2) provide a good interpolated estimate in areas which have gaps

Fig. 6. The surface generated using the output elevation map obtained by applying a single neural network GP to the Tom Price data set. Refer Figure 5.

Fig. 8. Final Output Surface of the Kimberlite Mine data set obtained using a single Neural Network kernel based GP. The figure clearly demonstrates
the ability of the GP to (1) reliably estimate the elevation data in known areas and (2) produce models that take into account the local structure so as to
preserve the characteristics of the terrain being modeled.

it. These included issues like optimization strategy, sampling
strategy, size of training data set and number of nearest
neighbors for the fast local approximation step in the infer-
ence process. Details of these experiments are not provided

here due to paucity of space - they are, however, available
in an extended version of this paper which will be available
online.
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TABLE II
KERNEL PERFORMANCE: KIMBERLITE MINE DATASET (4612 POINTS

SPREAD OVER 2.17 X 2.28 SQ KM)

Kernel Number of Mean Squared
training data Error (MSE)

Squared Exponential 1000 13.014 sq m over
(SQEXP) 3612 points

Neural Network 1000 8.870 sq m over
(NN2) 3612 points

Squared Exponential 4612 1.616 sq m over
(SQEXP) all 4612 points

Neural Network 4612 1.191 sq m over
(NN2) all 4612 points

Constrained Neural 4612 0.880 sq m over
Network (NN2C) all 4612 points

Fig. 7. Final Uncertainty Estimates of output data. Refer Figure 5. The
areas in black are low uncertainty areas while the white areas have the
highest uncertainty. The uncertainty is clearly more only in those areas
where there was no observed / training data available - typically in the
outer fringe areas and in gaps.

V. CONCLUSION

This work proposed the use of Gaussian Processes for
modeling large scale and complex terrain. Specifically, it
showed that a single neural network based Gaussian Process
was powerful enough to be able to successfully model
complex terrain data, taking into account the local structure
and preserving much of the spatial features in the terrain.
This work also proposed a fast local approximation technique
based on KD-Trees that was able to simultaneously address
the issues of balancing the tradeoff between smoothness
and feature preservation as well as the issue of scalability
when this approach is applied to large scale data sets. This
work also compared stationary and non-stationary kernel and
studied various detailed aspects of the modeling process.
Experiments conducted on multiple real sensor data sets
taken in a mining scenario clearly validated the claims
made. The data sets included dense laser scanner data and
sparse, feature rich GPS based survey data. The model
obtained naturally provided a multi-resolution representation
of large scale terrain, effectively handled both uncertainty
and incompleteness in a statistically sound way and finally
provided a powerful basis to handle correlated spatial data
in an appropriate manner.
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Fig. 9. Final Uncertainty Estimates of output data. Refer Figure 8. The
areas in black are low uncertainty areas while the white areas have the
highest uncertainty. The uncertainty is clearly more only in those areas
where there was no observed / training data available - typically in the
outer fringe areas and in gaps.
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