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Abstract

We introduce a variational inference framework
for training the Gaussian process latent variable
model and thus performing Bayesian nonlinear
dimensionality reduction. This method allows
us to variationally integrate out the input vari-
ables of the Gaussian process and compute a
lower bound on the exact marginal likelihood of
the nonlinear latent variable model. The maxi-
mization of the variational lower bound provides
a Bayesian training procedure that is robust to
overfitting and can automatically select the di-
mensionality of the nonlinear latent space. We
demonstrate our method on real world datasets.
The focus in this paper is on dimensionality re-
duction problems, but the methodology is more
general. For example, our algorithm is imme-
diately applicable for training Gaussian process
models in the presence of missing or uncertain
inputs.

Introduction

Neil D. Lawrence
School of Computer Science
University of Manchester

Lawrence (2004, 2005). GP-LVM can be considered as a
multiple-output GP regression model where only the out-
put data are given. The inputs are unobserved and are
treated as latent variables, however instead of integratin
out the latent variables, they are optimized. This trick
makes the model tractable and some theoretical ground-
ing for the approach is given by the fact that the model
can be seen as a nonlinear extension of the linear prob-
abilistic PCA (PPCA). In PPCA (and in factor analysis
(FA)) Bayesian extensions of the model are straightforward
(Bishop, 1999b; Ghahramani and Beal, 2000) using varia-
tional algorithms based on mean field approximations. An
analogous variational method for the GP-LVM is a much
more challenging problem which had not been addressed
until this paper. The main difficulty is that to apply vari-
ational Bayes to GP-LVM we need to approximately inte-
grate out the latent/input variables that appear nonligear
in the inverse kernel matrix of the GP model. Standard
mean field variational methodologies do not lead to an an-
alytically tractable algorithm.

We introduce a framework that allows us to variationally
integrate out the latent variables in the GP-LVM and com-
pute a closed-form Jensen’s lower bound on the true log
marginal likelihood of the data. The key ingredient that
makes the variational Bayes approach tractable is the ap-

Gaussian processes (GPs) (see e.g. Rasmussen golitation of variational inference in aexpanded probabil-
Williams, 2006) are stochastic processes over real-valuedly modelwhere the GP prior is augmented to include aux-
functions. GPs offer a Bayesian nonparametric frameworkliary inducing variables. Inducing variables were intro-
for inference of highly nonlinear latent functions from ob- duced originally for computational speed ups in GP regres-
served data. They have become very popular in machineion models (Csatand Opper, 2002; Seeger et al., 2003;
learning for solving problems such as nonlinear regressiorCsab, 2002; Snelson and Ghahramani, 2006; [{@aero

and classification. Candela and Rasmussen, 2005; Titsias, 2009). Our ap-
roach builds on, and significantly extends the variational
parse GP method of Titsias (2009) so that a closed-form
ariational lower bound of the GP-LVM marginal likeli-

The standard application of GP models is to supervise@
learning tasks where both output and input data are ag;

sumed to be given at training time. The application thood is computed. This solves a key problem with the

GPs to unsupervised leaming tasks is more involved. Ongp | /- yariational inference in the GP-LVM allows for
approach to unsupervised learning with GPs is the GausB

) ; Bayesian training of the model that is robust to overfitting.
sian process latent variable model (GP-LVM) proposed byFurthermore by using the automatic relevance determina-

Appearing in Proceedings of the3!" International Conference tion (ARD) squared exponential kernel, the algorithm al-

on Artificial Intelligence and Statistics (AISTATS) 2010, Chia La- |0WS us to automatically infer the dimensionality of the
guna Resort, Sardinia, Italy. Volume 9 of JIMLR: W&CP 9. Copy-nonlinear latent space without introducing explicit regul
right 2010 by the authors. izers to enforce this constraint (Geiger et al., 2009).
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Although, in this paper, we focus on application of the vari- The hyperparameters of the model are the kernel param-
ational approach to the GP-LVM, the methodology we havesters6 = (a]%,al, ...,aq) and the inverse variance pa-
developed can be more widely applied to a variety of otherameter. For the sake of clarity, these parameters are
GP models. In particular, our algorithm is immediately ap-omitted from the conditioning of the distributibn Cur-
plicable for training GPs with missing or uncertain inputs rently, the primary methodology for training the GP-LVM
(Girard et al., 2002). Other possible applications will be model is to find the MAP estimate &f (Lawrence, 2005)
discussed as future work. whilst jointly maximizing with respect to the hyperparam-
eters. Here, we develop a variational Bayesian approach to
marginalization of the latent variableX], allowing us to
optimize the resulting lower bound on the marginal likeli-
hood with respect to the hyperparameters. The lower bound
can also be used for model comparison and automatic se-
lection of the latent dimensionality.

In the remainder of the paper we first review the GP-LVM
and then we introduce our variational approximation. We
finish by demonstrating the ability of the new model to au-
tomatically determine dimensionality and resist overfgti
on real world datasets.

2 Gaussian process latent variable model 3 Variational inference
Let Y € RN*P pe the observed data wher€ is the
number of observations and the dimensionality of each
data vector. These data are associated with latent vasiable

X € RN*Q where, for the purpose of doing dimension- p(Y) = /p(Y|X)p(X)dX' ©)
ality reduction,@ < D. The GP-LVM (Lawrence, 2005) hi L | i
defines a forward (or generative) mapping from the Iatent"'owe_ver_’ this qu_antlty Is intractable aé appears noniin-
space to observation space that is governed by Gaussi&ﬁmy inside the inverse of the covariance maiily v +

-1 . o
processes. If the GPs are taken to be independent acroés I]\(' Instead, we seek to apply an approximate varia
the features then the likelihood function is written as tional inference procedure where we introduce a variationa

distribution ¢(X') to approximate the true posterior distri-

We wish to compute the marginal likelihood of the data:

D butionp(X|Y") over the latent variables. We take the varia-
p(Y1X) = [ [ p(yalX), () tional distribution to have a factorized Gaussian form over
=1 the latent variables,
wherey, represents thé" column ofY" and N
P(yalX) = Nyal0. Knn + 67 In).  (2) a(X) = [[ N Gealpta: Sn), @)

n=1
Here, Ky isthe N x N covariance matrix defined by the
covariance (or kernel) functiok(x, x’). For the purpose of
doing automatic model selection of the dimensionality
latent space, this kernel can be chosen to follow the AR
(see Rasmussen and Williams, 2006) squared exponentie]\?

where the variational parameters 4ye,, S, }2_, and, for
ofsimplicity, S, is taken to be a diagonal covariance ma-
Ijrixz. Using this variational distribution we can express a
nsen’s lower bound on thez p(Y") that takes the form:

form:
L@ Fq) = / q(X)log p(YL)(()zZ;(X) dX
k(x,x") = 0% exp < ag(ry — 2! )2> . ®
f 2 q; are T :/q(X)logp(Y|X)dX—/q(X)log zg;dx
Equation (1) can be viewed as the likelihood function of a _ ﬁ(q) — KL(qllp), 8)

multiple-output GP regression model where the vectors of

different outputs are drawn independently from the samevhere the second term is the negative KL divergence be-

Gaussian process prior which is evaluated at the infiuts tween the variational posterior distributigri.X) and the

SinceX is a latent variable, we can assign it a prior densityprior distributionp(X) over the latent variables. This term

given by the standard normal density. More precisely, thés computed analytically since both distributions are Gaus

prior for X is: sians. Therefore, the difficult part when estimating the
above bound is the first term:

N
p(X) = H N(XMO,IQ), (4)
n=1

d=1

F(q) = Z/q(X)logp(yle)dX =Y Fulg), (9
d=1

where eachx,, is then™ row of X. The joint probability

model for the GP-LVM model is A precise notation is to write p(Y,X|3,8) =
p(Y|X, 3,0)p(X).
p(Y, X) = p(Y|X)p(X). (5) This can be extended to non-diagonal within our framework.
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where we have used (1). Thus, the computatiorFNfo) is the conditional GP prior withey = KNMKA}IMud.
breaks down to separate computations of eBgly), cor-  Further,p(ug|Z) = N (u4|0, Kps1) is the marginal GP
responding to the™ output. Notice that the computation of prior over the inducing variables. The likelihopdy | X)
Fy(q) involves an analytically intractable integration. This can be equivalently computed from the above augmented
arises becauseg p(y,|X) containsX in an highly non-  model by marginalizing outf;, us) and crucially this is
linear manner inside the inverse of the covariance matrixfrue for any value of the inducing inputs. This means
Knn + 8~ 'Iy. Our main contribution is a mathematical that, unlikeX, the inducing inputsZ arenot random vari-
tool that allows us to compute a closed-form lower boundables. Neither are they model hyperparameters, they are
for F;(¢q). As we will see, the key idea is to apply vari- variational parameters This interpretation of the induc-
ational sparse GP regression in an augmented probabilitng inputs is key in developing our approximation, it arises
model. from the variational approach of Titsias (2009). Taking
advantage of this observation we now simplify our nota-
3.1 Lower bound by applying variational sparse GP tion by droppingZ from our expressions. We can now
regression apply variational inference to approximate the true poste-
~ rior, p(fa, ualys, X) = p(falua, ya, X)p(ualya, X), with
The computation irf;(¢) involves an expectation over the a sparse variational distribution that takes the form
intractable termog p(yq|X). To deal with this, we first
compute a Jensen’s lower boundlog p(y4|X) by intro- q(fa, ug) = p(falug, X)é(ua), 12)
ducing the GP latent function values together with auxliar

inducing variables as those used in sparse GP models. wherep(fa|uq, X) is the conditional GP prior that appears

in the joint model in (11), while)(u,) is a variational dis-
Sparse approximations have already been applied to spe@dbution over the inducing variables;. Thus we obtain a
up the GP-LVM Lawrence (2007). The first step of our lower bound:

approximation is equivalent to applying the new varia-

tional approximation of Titsias (2009) to the standard GP- p(ua)N (yalew, 67" In)
LVM. The likelihood functionp(y4|X) is just the Gaussian log p(yalX) = /¢(ud) log o(uq) dug
marginal likelihood of a GP regression model. We make Jé] .

this explicit by introducing the GP latent function values = o T(Evy — Evm Ky Kun), (13)
f; € R associated with the vector of (noise corrupted)

outputsy (the d" column ofY). The “complete” likeli-  Whereay = KyaKj/,uq. In the variational sparse GP

hood associated with the marginal likelihop@ 4| X) is: method (Titsias, 2009), thg(u,) distribution is computed
in an optimal way. Such an optimal choice of this distribu-

Py, falX) = p(yalfa)p(fal X)), (10) " tion depends on the latent variabl&sand is not useful in
wherep(yalfs) = N(yalfs, 37 1In) and p(fs| X) is the  our case. In order to obtain the bound for the GP-LVM we
zero-mean GP prior with covariance mati&y . Note  need to take a mean field approach and force independence
that the above joint model still contain$ inside the in-  of the distributionp(u,) from the random variabl&'.
verse of Ky making expectations under distributions
over X difficult to compute. We finesse this intractability
by introducing auxiliary inducing variables and applying
the variational sparse GP formulation of Titsias (2009).

So far we have computed a lower boundleg p(y.|X)
which is the intractable term ify;(¢). Using eq. (13) and
the definition ofF;(¢) from (9) we have

We follow the approach of Lawrence (2007): for each vec- ~ p(ug)N (yalag, 67" In)
: . >
tor of latent function value§; we introduce a separate set Fala) 2 q(X)[ ¢(ua)log P(ug) dud
of M inducing variablesi; € R evaluated at a set of in- 8 i o
ducing input locations given by € R *<. For simplic- = S TH(ENN) + STy Ky Kvar) | dX,

ity, we assume that aik,s, associated with different out-

puts, are evaluated at the same inducing locations, howevdfhere we used standard properties of the trace of a matrix.
this could be relaxed. The, variables are just function Since (under our factorization assumptiefij1y) does not

points drawn from the GP prior. Using these inducing vari-depend on the random variahle, we can swap the inte-
ables we augment the joint probability model in eq. (10); 9rations overX anduy and perform firstly the integration

with respect taX':
p(ya, fa,ua| X, Z) = p(yalfa)p(falus, X, Z)p(ua|2), _
(11)  Fy(q) >
where we used the fact that the joint GP prior over function p(ug)
valuesf,; andu, evaluated at input¥ andZ factorizes as /qb(ud) [(log/\/(ydad,ﬁ_lfzv)>q(x) + log o(ua) duy
p(fa, ua| X, Z2) = p(falua, X, Z)p(uq|Z) where 3 ¢

B -1
p(fd\ud,X, Z) = ./\/(fd|ad,KNN — KNMK];;]MKMN) - §Tr (<KNN>¢1(X)> + §Tr (K]\/I]W<K1VINKNM>¢1(X)) )
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where (-),(x) denotes expectation under the distribu-3.2 Computation of the ¥ statistics

tion ¢(X). Now, we can analytically maximize the

above lower bound with respect to the distributbﬁud)_ To obtain an eXpliCit evaluation of the variational lower
The optimal setting of this distribution ig(u,) o«  bound we need to compute the statisti¢s, V1, ¥2). We
(log N (yaloa, B~ n)) gx)p(ug) and the lower bound can rewrite the) statistic aspy = ZnN:1 ¢ where

that automatically incorporates such an optimal setting is

obtained easily by reversing Jensen’s inequality, vy = /k(xn, X )N (%X |[pn; Sn)dx,.  (15)

¥, isanN x M matrix such that

; ; (01 )m = / (% 2 )N (S, S ). (16)
2T ((K +E5Tr (K (K KN .
2 (< NN>Q(X)) 2 ( wa (K NM>q(X)) Wy is an M x M matrix which is written as¥y =

The rh.s. in this equation is a lower bound in which the>__; ¥4 where® is such that

variational distributiong(u,) has been eliminated opti-

mally. This quantity now can be computed in closed- (Y2)mm = /k(xnaZm)k(zm'axn)N(XnWmSn)dxn-

form since it boils down to computing the statistics 17)

Yo = Tr((Knn)gx)), Y1 = (Knm)gx) @and ¥, = The above computations involve convolutions of the co-
(KnnEKnar)gx).  These statistics for certain covari- variance function with a Gaussian density. For some stan-
ance functions, such as the ARD squared exponential frordard kernels such the ARD squared exponential (SE) co-
(3), are computable analytically as discussed in sectiowariance and the linear covariance function these stzgisti
3.2. Notice also thaflog N (yalea, 57 In))q(x) IS just  are obtained analytically. In particular for the ARD SE ker-
a quadratic function ofi; that depends on the statistigs nel, vy = No'?,

and V5. Therefore, the integration involved in the above

equation is a standard Gaussian integral. The closed-form Q

Fala) 2 og tosstrosst™ 000t

_19¢Bng—2mg)?
2

a e aqSnqgtl
of the lower bound orF;(q) is: () =07 || ———
erbound orfula) s s
N 1
Fulg) > tog | IR —yyiwya| - and
(2m) = |8V + K2 0aGma=mr)®  aq(ing—20)°
Bo | B 1 (U2 4 H € ! 2@qngtt
- - mm! — O ,
- T3l (KararP2) (14) 2 J e (204Snq +1)3

whereW = BIy — 32U (BYy + Kprar)~ WY, We can
now compute the closed-from variational lower of the GP-\ye need to compute the variational lower bound for the
LVM according to equation (8). More precisely, by sSum- App SE kernel. For the linear covariance function the in-

ming both sides of (14) over th® outputs we obtain on o445 are also tractable. Suppose the kernel functien fol
the L.h.s. the ternf’(q) (see equation (9)) and on the r.h.s. |5us the ARD linear form:

a lower bound orF'(¢). By substituting the latter quantity , .
(in place ofF(q)) in (8) we obtain the final GP-LVM lower h(x,x7) = x" Ax, (18)
bound. This bound has an elegant form since it resembleshere A is a positive definite diagonal covariance matrix.
closely the corresponding sparse GP-LVM marginal likeli- Learning the diagonal elements dfwill allow to perform
hood (whereX is optimized, not integrated out) obtained automatic model selection of the dimensionality of the lin-
by applying the variational method of Titsias (2009). Theear latent space in a similar manner to ARD SE covari-
difference is that now (wher& is variationally integrated ance function. Thus, the framework provides an alternative
out) we obtain an extra regularization term, i.e. the termmethod to perform Bayesian probabilistic PCA (Bishop,
KL(¢||p) in (8), and also the kernel quantities(Kyy),  1999a; Minka, 2001). For this linear kernel the statisties a
Ky andK y Ky that containX are replaced by vari- -~ such thatyf = Tr [A(pnpnl + S0)], (V1) nm = pl Az,
ational averages, which are thestatistics defined above. and(¥%),.,,v = z1, A(p,pul + S,,) Az,

wherez, = szq) This gives us all the components

The bound can be jointly maximized over the variational Finally, it is worth noticing that thel statistics are com-
parameters{,, S, }Y_,, Z) and the model hyperparam- puted in a decomposable way which is useful when a new
eters(3, ) by applying gradient-based optimization tech- data vector is inserted into the model. In particular, the
niques. The approach is similar to the MAP optimization of statisticsyy and ¥y are written as sums of independent
the objective function employed in Lawrence (2005) with terms where each term is associated with a data point and
the main difference that now we have an additional set okimilarly each column of the matri¥, is associated with
variational parameters governing the approximate pasteri only one data point. These properties can help to speed up
variances in the latent space. computations during test time as discussed in section 4.
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3.3 Summary of the variational method previous density is written as
To summarize the above variational method allows to com- p(y.]Y) = Jp(y«, VX, x)p(X, x.)dX dx, .
pute a Jensen’s lower bound on the GP-LVM marginal like- [ p(Y[X)p(X)dX

lihood and the key to obtaining this bound was to intro-
duce auxiliary variables into the model similar to those
used in sparse GP regression. Although, we explaine

the method using a sequence of steps, we could also Sta}ower bound. The numerator is another marginal likelihood
by writing the joint probability density over all variables that is obtained by augmenting the training datawith

(Y, X, {f1,uqs}%_,) and then introduce the full variational . ) .
distribution to approximate the model at once. This full _the test poiny.. and integrating out boti” and the newly

variational distribution that gives rise to the lower bound inserted latent variable,. .TO approximate the density
obtained earlier is given by p(y«|Y), we construct a ratio of lower bounds as follows.

[ p(Y|X)p(X)dX is approximated by the lower bound
b eF'(a(X)) whereF (¢(X)) is the variational lower bound on
D the log marginal likelihood as computed in section 3. The
q({fa, uatg—y, X) = (Hp(fdlud’X)¢(ud)> 4(X). maxir‘r?izatiogn of this lower bound s?oeciﬁes the variational
=t distribution ¢(X) over the latent variables in the training
data. Then, this distribution remains fixed during test time
[ p(y, Y| X, x)p(X, x.)dX dx, is approximated by the
lower bounde? («(X:x-)) " To compute this, we need to op-
timize with respect to the parametéys., S.) of the Gaus-
tribution is factorized over the latent variables is a cense > variational d'.St.nbUtIOW(X*)' Such optimization s
subject to local minima. However, sensible initializagon

quence of the mean field assumption betwags and X" of i, can be employed based on the mean of the variational
It does not need to be imposed in advance. To see this Fox ploy

notice thaty(X') appears only in th@ statistics which as _distributio_n_s associated with the nearest neigh_bou_ryz*o_f
explained earlier are computed in a decomposable (acro i the training data’. Furthermore, such optimization Is
data points/latent variables) way. ast because we can perfo.rm several precomputations in
advance. In particular, notice that because the computa-
tion of the U statistics decomposes across data, updating
4 Prediction and computation of Fhesle statisltics to account fo:]thg inslertiop of th'e t.e?ii;pgi
e s involves only averages over the single-point variatio
probabilities in test data tribution ¢(x..). Finally, the approximation of(y.|Y) is
given by
In this section, we discuss how we can use the proposed
model, from now on referred to as Bayesian GP-LVM, q(y.|Y) = ef'aXx))=Fa(X)), (20)
in order to make predictions in unseen data. Firstly, we ] o
explain how we can approximately compute the proba—We now discuss the secpnd predlgtlorg] prob[em where a
bility density p(y.|Y") of some observed test data vector partially observed test point. = (y.,y. ) is given and
y. € RP, which is allowed to have missing values. The W€ Wish to reconstruct the missing pat’. This in-
computation of this probability can allow us to use the VOIVeS two steps. Firstly, we optimize the parameters of
model as a density estimator which, for instance, can repreln€ variational distribution(x..) by maximizing the varia-
sent the class conditional distribution in a generativeedas tional lower bound Onf.p(.y*O,Y|X, X )p(X, %, )dX dx.
classification system. We will exploit such a use in sectiony keeping all the optimized quantities fixed apart from
5. Secondly we discuss how we can predict the functiorfl(X+); exactly as explained earlier. To predict ”9‘&’_""6
valuesy. given that we have an estimate of the variationall@ke the standard GP prediction approach by taking also
distributiong(x. ) for the latent variable associated with the INto @ccount the fact that the input. is uncertain since it
observatiory,. This can be useful when we wish to predict has the distribution(x..). Therefore, the problem takes
the missing values of some partially observed test outpuih,e form of GP prediction with .uncertam mputs S|m.|lar to
v, = (y2,yY) € RP wherey© are observed compo- Glrard gt al. (2002). More precisely, to p_red)cg we first
nents in the vectog, andyV are the missing values that Predictits latent function valuef§” according to
we would like to predict. This second prediction task can <

(19)

Note that this is a ratio of two marginal likelihoods. In the
enominator we have the marginal likelihood of the GP-
YM for which we have already computed a variational

This distribution is a mean field approximation with respect
to ugs andX. However, it is not a mean field with respect
to f;s since oncei;s andX are marginalized out, thefiys
become coupled. In addition, the fact that f{&X) dis-

also be used to remove the noise of a fully observed outputy(fV) = /

H /p(fgﬂudvx*)éb(ud)dud) q(x.)dx.

First we discuss how to approximate the dengity..|Y"). dev

By introducing the latent variable¥ (corresponding to the — /q(fglx*)q(x*)dx*7 (21)
training outputsY’) and new test latent variables,, the
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whereq(fY |x.) is a factorized Gaussian distribution where this data. For comparison, Figure 1(c) shows the visualiza-
each factor takes the form of the projected process pretion provided by the standard sparse GP-LVM that runs by
dictive distribution (Csdt and Opper, 2002; Seeger et al., assuming only latent dimensions. Both models u#ein-
2003; Rasmussen and Williams, 2006). The marginalizaducing variables, while the latent variabl&soptimized in
tion of x,. couples all dimensions &f and produces a non- the standard GP-LVM are initialized based on PCA. Note
Gaussian fully dependent multivariate density. For sqiare that if we were to run the standard GP-LVM with latent
exponential kernels all moments of the densit§”) are  dimensions, the model would overfit the data, it would not
analytically tractable. In practice, we will typically née reduce the dimensionality in the manner achieved by the

only the mean and covarianceff. The mean is Bayesian GP-LVM. In these two dimensions, the nearest
neighbour error for the different classes (phases of oil Ylow
E(fY) = ATy}, in the case of Bayesian GP-LVM is 3 errors frafn0 data

o . points. The number of the nearest neighbour errors made
Here, A = B(Kan + f¥2)" U1 Y™ whereY™ is the  \hen applying the standard GP-LVM was.
matrix containing the columns df corresponding to the
missing values of ... Also, the vectory; € R is defined
by 7 = (Kar.)g(x.) WhereKyy, = k(Z,x.). Similarly, ~ >-2 FreyFacesData
Here, we consider a dataset of faces (Roweis et al., 2002)
Cov(fY) = AT (\p; — ¢T(¢T)T) A taken from a video sequence that consist$a#fs images
w7 1 17 s of size28 x 20. In this dataset, we would like to exploit the

05T =T ([Kighy — (Ko +F%2) 7] ¥5) 1, ability of the model to reconstruct partially observed test

wherey = (k(x., %.))gc.) ANAT5 = (Knr Konr) o data. Therefore, we train the model using a random selec-

Notice that thel statistics (the term@y;, 4%, U3)) involv- tion _of 1000 |magesdand tr::en r\?/e cons@er thehrema!nmg
ing the test latent variablte, appear naturally in these ex- 965 images as test data. Furthermore, in each test image

pressions. Using the above expressions, the predicted medff 3SSUMe thf’ﬂ only half of the image pixels are observ_ed.
of yU is equal toE(fV) and the predicted covariance is The missing p|>.<els were ghosen randomly fpr each test im-
equal to Covtl) + 51 age..After training or1000 images, each pgrn_ally observed
test image was processed separately (this involves the op-
_ timization of the corresponding variational distributias
S5 Experiments discussed in section 4) and the missing pixels were pre-
dicted. Figure 2 shows a few examples of reconstructed
To demonstrate the Bayesian GP-LVM we now considettest images. Each column in this figure corresponds to a
some standard machine learning data sets. Our aim is t@st image, where the top plot shows the true test image,
highlight several characteristics of the algorithm: the im the middle one the partially observed image and the bottom
proved quality of visualizations achieved by the model,image shows the reconstructed image. We also measure
the utility of being able to access a lower bound on thethe mean absolute reconstruction error over all test images
marginal likelihood of the data, and the ability of the model and missing pixels and compare this error with the standard
to automatically determine the dimensionality of the data. sparse GP-LVM. This standard GP-LVM was applied using
several settings of the latent dimensionalify:= 2,5, 10
5.1 Oil flow data and 30. The Bayesian GP-LVM was trained once using
30 latent dimensions. The latent variabl&sin the stan-
In the first experiment we illustrate the method in the multi- dard GP-LVM and the means of the variational distribu-
phase oil flow data (Bishop and James, 1993) that consist®on in Bayesian GP-LVM were initialized through PCA.
of 1000, 12 dimensional observations belonging to three The error for Bayesian GP-LVM wag4003. For the stan-
known classes corresponding to different phases of oil flowdard GP-LVM the error wa$0.5748, 9.7284, 19.6949 and
Figure 1 shows the results for these data obtained by apt9.6961 for 2,5, 10 and30 latent dimensions respectively.
plying the Bayesian GP-LVM with 0 latent dimensions Notice that the standard GP-LVM has poor performance
using the ARD SE kernel. The means of the variationalfor large value of latent dimension and achieves the best
distribution were initialized based on PCA, while the vari- error when we consider latent dimensions. Nevertheless,
ances in the variational distribution are initialized taune this was still worse than the error from the Bayesian GP-
tral values around).5. As shown in Figure 1(a), the al- LVM. Finally, Figure 3 shows the values of the inverse
gorithm switches off automatically out of 10 latent di-  lengthscales obtained by the maximization of the varia-
mensions by making their inverse lengthscales zero. Figtional lower bound. Although, in this case, the algorithm
ure 1(b) shows the visualization obtained by keeping onlydoes not shrink some of the dimensions completely to zero,
the dominant latent directions (having the largest inversat does force many of them to obtain small values. Note that
lengthscale) which are the dimensiah&nd3. Thisis a  one of the dimensions (the first from the left) seems to be
remarkably high quality two dimensional visualization of the most important in explaining the data.
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Figure 1: Panel (a) shows the inverse lengthscales foungplyiag the Bayesian GP-LVM with ARD SE kernel on the
oil flow data. Panel (b) shows the visualization achieveddmsping the most dominant latent dimensions (2 and 3) which
have the largest inverse lengthscale value. Dimension Bited on they-axis and 3 and on the-axis. Plot (c) shows the
visualization found by standard sparse GP-LVM.
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Figure 2: Examples of reconstruction of partially obsertest images in Frey faces by applying the Bayesian GP-LVM.
Each column corresponds to a test image. In every columrtpthpanel shows the true test image, the middle panel the
partially observed image (where missing pixels are showslack) and the bottom image is the reconstructed image.

is divided into7291 training examples an2D07 test exam-
ples. We runl0 Bayesian GP-LVMs, one for each digit,
on the USPS data base. We us@datent dimensions and
50 inducing variables for each model. This allowed us to
build a probabilistic generative model for each digit sa tha
we can compute Bayesian class conditional densities in the
test data having the forp(y ..|Y, digit). These class condi-
tional densities are approximated through the ratio of lowe
bounds in eq. (20) as described in section 4. The whole ap-
proach allows us to classify new digits by determining the
0 E CHRC T class labels for test data based on the highest class con-

. ) . ditional density value and using a uniform prior over class
Figure 3: This plot.shows the va'Iues of the inverse lengthgpels. The test error made by the Bayesian GP-LVM in the
scales found by using the Bayesian GP-LVM with ARD SE gl set 02007 test points wa®5 incorrectly classified
kernel in Frey faces. digits i.e. 4.73% error.

6 Discussion

53 Digits Data We have introduced an approximation to the marginal like-
In the final experiment we use the Bayesian GP-LVM tolihood of the fully marginalized Gaussian process latent
build a generative classifier for handwritten digit recagni variable model. Our approximation is in the form of a vari-
tion. We consider the well known USPS digits dataset. Thisational lower bound. With the fully marginalized model we
dataset consists df6 x 16 images for alll0 digits and it ~ can automatically determine the latent dimensionality of a
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given data set. We demonstrated the utility of this rigorous IEEE Computer Society Conference on Computer Vision and
lower bound on a range of disparate real world data sets. ~ Pattern RecognitionMiami, FL, 2009.

o h . diatelv b lied to training G Z. Ghahramani and M. J. Beal. Variational inference for Bayesian
urapproach can immediately be applied to training Laus- iy res of factor analysers. In S. A. Solla, T. K. Leen, and K.-

sian processes with uncertain inputs where these inputs R Miiller, editors Advances in Neural Information Processing
have Gaussian prior densities. We also envisage several Systemsvolume 12, pages 831-864, Cambridge, MA, 2000.
other extensions that become computationally feasible us- MIT Press.

ing the same set of methodologies we espouse. Dynank. Girard, C. E. Rasmussen, J. @uohero Candela, and
ical models based on the GP-LVM have been proposed. R. MUFraY-“Smtiithr-] t(sf?rl:jﬁiialf; F;f[(éce;ﬁep;(ijo;ismvéit:elrliggefg?g;;g-t
It would be straightforward to include a latent space prior %ugt.sln%)igttcearlic% ol (20%2)’ pa%es £0_ £,

with a temporal component. This could be a Kalman filter, _ S

a general Gaussian process (Lawrence and Moore, 2004}\5. D. Lawrence. Gaussian process models for visualisation of

t ve G - W. tal. 2006 high dimensional data. In S. Thrun, L. Saul, and B.&kbpf,
or an auto regressive Gaussian process (Wang etal., )'editors,Advances in Neural Information Processing Systems

By using our approach to propagating the Gaussian noise yvolume 16, pages 329-336, Cambridge, MA, 2004. MIT Press.
through the dynamlc_s a_nd the latent space a varlatlona}l]_ D. Lawrence. Learning for larger datasets with the Gaussian
|0Wer bound on the I|kel|h00d Of these models Could be process latent variable model. In M. Meila and X. Shen, ed-
derived. The importance of such nonlinear models is clear itors, Proceedings of the Eleventh International Workshop on
from the success of unscented Kalman filters and the re- Artificial Intelligence and Statisticpages 243-250, San Juan,
lated ensemble Kalman filter. Puerto Rico, 21-24 March 2007. Omnipress.

S . . N. D. Lawrence. Probabilistic non-linear principal component
The optimization procedure has a similar computational analysis with Gaussian process latent variable modelstnal
cost to that of previously proposed sparse GP-LVMs. We of Machine Learning Research:1783-1816, 11 2005.

believe there is scope to improve the speed of the optimizaN. D. Lawrence and A. J. Moore. Hierarchical Gaussian pro-
tion procedure by better exploiting the correlation présen cess latent variable models. In Z. Ghahramani, edReo-

in the parameters. A potential strategy would be to use the ceedings of the International Conference in Machine Learning
control points idea used to speed up MCMC in GPs (Tit- Volume 24, pages 481-488. Omnipress, 2007.

sias et al., 2009) in order to encode the variational postel. P. Minka. Automatic choice of dimensionality for PCA. In

rior, effectively decoupling these correlations and spegd |- K- Leen, T. G. Dietterich, and V. Tresp, editorsdvances
y ping eg in Neural Information Processing Systemslume 13, pages

convergence of the optimizer. 598-604, Cambridge, MA, 2001. MIT Press.
J. Quionero Candela and C. E. Rasmussen. A unifying view of
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