Conceptual levels of design

P 8 & Caltech (A ROS Community: ROS Distributions, Repositories
a R r \
L Al L)
\ = & & Carnegie Mellon
Node4)<— . Node5 (B) Computation Graph: Peer-to-Peer Network of
j\ ROS nodes (processes).
Node 1 . I Node 2:
Laser Scanning Map Building
-) =
)| & -
Node 3: — Coozane)
Planning v = fj’
> Node7 e i machines

Node 6

(C) File-system level: ROS Tools for managing source code,
build instructions, and message definitions.

10

Plumbing

Device Drivers
Inter-Node Communication
Process Management

Another View of ROS

Tools

Visualization
Simulation
Debugging
User Interface

Robot Capabilities &
Functions

* Robot Control

» Motion Planning
» Mapping

» Localization

» Perception

» Manipulation

Community
EcoSystem

Package Organization
Repositories
Tutorials
Documentation
FAQ/Forum
Workshops/Training

Many ROS Tools

Developer Tools: Debugging Tools:
 Building ROS nodes: catkin_make » Rostopic: display info about active topics
* Running ROS nodes: rosrun, roslaunch (publishers, subscribers, data rates and content)
 Viewing network topology: rqt_graph * rostopic echo [topic name] (prints topic data)

« rostopic list (prints list of active topics)
« Rqgt_plot: plots topic data

rqt_plot /turtlel/pose/x,/turtlel/pose/y 4 graph datafrom 2 topicsin 1 plot

« Data logging:

* Rosbag record [topics] —o < output_file>
» Data playback:

* Rosbag play <input_file> --clock

Many ROS Tools

Visualization Tools: RVIZ Simulation Tools:

 Sensor and robot state data » Gazebo: started as grad student project at USC
 Coordinate frames Can model and simulate motions/dynamics of
* Maps, built or in process different robots
 Visual 3D debugging markers Can simulate sensory views

. Can build different environments
Can run simulation from ROS code for testing

“$+0 ROB %2 RE BN @

A first look at move base

move_base Is a package that implements an action in ROS.

« An action can be preempted
« An action can provide periodic feedback on its execution

move_base is a node that moves a robot (the “base”) to a goal

It links a global and local planner with sensory data and maps that are being built, so
that the navigation stack can guide the robot to a goal, and have recovery strategies

"move_base_simple/goal"))
geometry_msgs/PoseStamped N aVlgatIOH Stack Setu D
move_base _—
J Y nav_msgs/GetMap map_server

global_planner -—— global_costmap

amcl —
sensor transforms i internal / T sensor topics Sensor sources
tf/tfMessage nav_msgs/Path recovery_behaviors :gg:g:‘m:g:;lﬁgiﬁggzg
Y \
odometry source | odom > local_planner '=<—— local_costmap

nav_msgs/Odometry

"cmd_vel"|geometry_msgs/Twist

Y provided node
optional provided node
platform specific node

base controller

Goals for Next Week

Download ROS distribution.
» Choose how you want to manage Ubuntu on your machine:

 Dual boot

 Virtual machine: (one option is the free virtual box: https://itsfoss.com/install-linux-
in-virtualbox/)

« Try the Windows installation?

 Install ROS (melodic is best, but kinetic might be okay)

GO through the first 2-3 steps of the Core ROS Tutorial at the beginner’s level.
* You may prefer to start the first few steps of “A Guided Journey to the Use of ROS”

https://itsfoss.com/install-linux-in-virtualbox/

Three Major Map Models

Grid-Based: Feature-Based: Topological:
Collection of discretized Collection of landmark Collection of nodes and
obstacle/free-space pixels locations and correlated their interconnections
uncertainty
* +
+ +
+ + + ¥
E.lfes, Moravec, Smith/Self/Cheeseman, Kuipers/Byun,
Thrun, Bur gardj‘Fox, Durrant—Whyte, Leonard, Chong/Kleeman,
Simmons, Koenig, Nebot, Christensen, etc. Dudek, Choset,

Konolige, etc. Howard, Mataric, etc.

Gmapping
Occupancy Grid: “map” is a grid of “cells”: {x/';}
« x;; = 0ifcell (i) isempty; x;; = 1 if cell (i,j) is occupied

« P (x;; 1) {xg}}k+1|x{:k, {x{f]-‘}k,yl:kﬂ) (estimate cell occupancy probability)

Max Range| 7
+ F /
+ / / [
¥ Sensor / Sensor /
. + + Beam// Beam//
. / /
+ + + —C{SROI dohot
(a) (h)
Gmapping:

« Uses a Rao-Blackwellized particle filter for estimator

+ Actually computes p (xLr, (e} xEao X8 Viesr

Control & Planning for MDPs POMDPS

Autonomy (a self-governing system):

— Make Decisions and Plans, in the presence of uncertainty
* Process and measurement noise
* Incomplete models
* Incomplete information
» Adversarial conditions
— With little or no human guidance

Some key issues
— Wheream 1? = SLAM
— Action selection
« Control in Markov Decision Processes (MDPs) and POMPDs
— Planning
— Supervisory Control

Feedback Control/Action Selection

Given xpy1 = f (e, w) + My
— State Feedback (assumes that all states are “observable”):

o U = g(xX1, X, e, Xgy Upy eery Up—1)
— Output Feedback: y,, = h(x;) + w_k
* Uy = Q(yli vy Yk Ut ""uk—l)

Feedback Aims:
— Given a goal, maximize probability of attaining goal
— If possible, optimize other criteria while achieving goal
« Minimize energy use, or time to goal)
— Avoid problems

» Avoid obstacles, stay away from difficult to traverse or dangerous
areas

Markov Decision Processes (MDPSs)

Motivation: a model for many (but not all) dynamical systems
that are part of a decision problem

Definition: A Mark Decision Process (MDP) consists of

— Addiscrete set of states, S = {x1,x,, ..., Xy}

— A set of possible actions to take in each state: U = {u;, ..., uy}
« Set of actions can be state dependent: U; = U(x;)

Markov Decision Processes (MDPSs)

Definition (continued). A Mark Decision Process (MDP) consists of
— Atransition function, T, that describes the system “dynamics”

 Deterministic: T:SxXU - S
» Stochastic: T: S X U = Prob(S).

— l.e., a probability distribution over the next states, condition and the
current state and action: p(x'|x, u)

Deterministic: 1 Stochastic: Probability pro- 1
[:
portional to length of arrow

« The Markov Assumption holds:
- p(xk+1|x0» X1y weer Xy Uy =20 uk) = p(xk+1 |xk: uk)

— the prediction of state x;.., only depends upon xy, u;, and not
prior states and controls

— Future system states only depend upon the current state (and
control), and not on the prior history - memoryless

Markov Decision Processes (MDPSs)

Definition (continued). A Mark Decision Process (MDP) consists of
— Areward function r(x,u) - R

* Reward can incorporate goal information

() = +100 if uleads to the goal
' —1 otherwise

« Reward can incorporate costs:
r(x,u)= amount of energy to execute action u

r(x,u) = penalty to be in state x (e.g., traversibility analysis)

Policy

Definition: A Control Policy, or Policy, prescribes an action or
control

- uy = n(xy) for a fully observable system (MDP)
- uy = n(y.x Ur.x—1) for partially observable system (more later)
— Policy m can be deterministic or stochastic
« Deterministic: u = m(x)
« Stochastic: m(u|x) = Prob[u; = u|s; = x]
We want to find a policy that
— Realizes the goal as best as possible

— Considers constraints
— Considers the costs of its actions

Approach: Find m(x) that maximizes a cumulative reward

Cumulative Reward

T-1] T-1
Ry =E z ybor(x,) Rt =E Z yir(e, u)lu = m(x)
i=0 i=0

T is the horizon
- T =1: "Greedy”
- T is finite: “Finite-Horizon Problem”
— T = oo: “Infinite-Horizon Problem” (often used when T large)

y is a discount factor: y € [0,1] or discount rate.
— Areward n steps away is discounted by y"
— Models mortality or impatience: you may die soon
— Models the preference for shorter solutions
— Needed for infinite horizon cumulative reward to be finite

"max.

1 2 —
|R00| < Tmax 7Y Tmax T Y Tmax T " = 11—y

Tmax = Max [r(x, u)
XU

Dynamic Programming

Let’s first consider a class of problems where the system
dynamics are not important

— the transitions between states are the only costs that matter.
— Said differently, the decision made at each state incurs a cost

— Such problem can be modeled by a graph, G=(V,E) with
weighted edges. l.e., weight w; ; is associated to edge, e; ;

6’1/‘/2 V4’ le

€23 e e \<23 W3/ Wy 5
Y \ /34(\ 64,5 Wy s \

1

Ny U/ — Vs
€1,3 e\ W13 Vs /3(5

Vs 3,5

— These problems reduce down to a shortest path problem

Dynamic programming (DP) is a general optimization technigue to
solve these sequential decision problems..

It is based on the "principle of optimality"

lllustration of DP by shortest path
problem

m Problem : We plan to construct a highway from city A to city K.
Different construction alternatives and their costs are given in the
following graph. Determine the highway route with the minimum

total cost.

BELLMAN's principle of optimality

Basic lIdea:

— 1f node C belongs to an optimal path from node A to node B, then
the sub-path from A to C and from C to B are also optimal

— Any sub-path of an optimal path is optimal

O

optimal optimal

v

Corollary :

SP(x,y) =min {SP(x,z) + I(z,y) |z : predecessor of y}

Application to Autonomous Planning

Approximate Cellular Decomposition:
 Divide environment (or c-space) into “cells”
« Simple shape
 Easy to move between points in same cell.
« easy to move to adjacent cells
« Adjacency is easy to define
* Cellsare disjoint: ¢; N¢; =@, W=2;¢

Cells are labeled as
* Empty
« Occupied

In known environment:
« Use geometric model to
divide into cells & occupancy

In unknown environment;
 Use occupancy grid SLAM

(e.g., “gmapping”)

Application to Autonomous Planning

Adjacency Graph
» Node: empty/free cells
» Edges: transitions
between adjacent free

cells

Application to Autonomous Planning

Py g 1| Adjacency Graph
tii+++rriij * Node: empty/free cells
-1 = Edges: transitions
s - tiij ttti 1] between adjacent free
JERIRINaRARsREEmnaninan] Lesmsmmsams cells
SBERERIPIPINNNRERENENY | PUININDRRED
Ramimsmeminasaninmani = -
PR e
R puis
JUNINENUFEFIREDY

Shortest Path problem

Minimize (Wil,h + -+ Wip;jp) such that Xstart € Ci,,j1' Xfinal € Cip,jp

Finding the Optimal Policy

Recursive Derivation: Step 1

- T =1 (greedy solution): m;(x) = argmaxr(x, u)
u

— The value (or cost-to-go) function describes the “value” of the
cumulative reward when the optimal actions is taken:

Vi(x) = maxr(x,u) (= maxE[r(x,u)], E dropped below)
u u

Recursive Derivation: Step 2
- T=2: m,(x) = argmax|r(x,u) + y X, V1(2)T(z|u,x)]

— Value function at T = 2

V,(x) = max r(x,u) + yz Vi(2)T(z|u, x)

Finding the Optimal Policy

Recursive Derivation: Step T

- mr(x) = argmax|r(x,u) +y 2, Vr-1(2)T(z|u, x)]

- Vr(x) = m3X[r(x, w) +y X, Vro1(@T(z|u, x)]
Infinite Horizon:
- Vo(x) = m5X[r(x, u) +v 2z Vo (2)T(z|u, x)]

— The “Bellman Equation”

— The optimal value function is the “fixed point” of this equation.
This is the basis of “value iteration”

— The optimal policy (at any time)
m*(x) = arg max[r(x,u) + vy X, Vo (2)T (z|u, x)]=
u

Application to Autonomous Planning

Py g 1| Adjacency Graph
tii+++rriij * Node: empty/free cells
-1 = Edges: transitions
s - tiij ttti 1] between adjacent free
JERIRINaRARsREEmnaninan] Lesmsmmsams cells
SBERERIPIPINNNRERENENY | PUININDRRED
Ramimsmeminasaninmani = -
PR e
R puis
JUNINENUFEFIREDY

Shortest Path problem

Minimize (Wil,h + -+ Wip;jp) such that Xstart € Ci,,j1' Xfinal € Cip,jp

Graph Search: the A* algorithm

General Graph Search Goal: search the (adjacency) graph for a
feasible path connecting the start to the goal node(s).

Optimal Search: find the feasible path with the guaranteed lowest
cost of traversal (the sum of the edge weights along the path)

General Graph Search data structures:
 All states or nodes are labeled unvisited, visited, dead
« Q: apriority queue
 T: a spanning tree or search tree

General Graph Search Algorithm:
 Init: mark x;,;¢ visited, all other states visited
Insert x;,;; INto Q
Insert x;,;; INt0 T

25

Graph Search: basic algorithm structure

* While Q not empty:
« x; = getFirst(Q)
¢ Ifx] = xgoal,
* Add pointer from x; to x; in T

* Return Success
* Forallu; € U(x;) % get successor nodes

* xj = f(y;)

* If x; not visited,
* mark x; as visited
* Add pointers from x; to x; In T
* Insert x; into Q

 Else resolve duplicate links (if appropriate)
 Return Failure

26

Graph Search: A* algorithm

A* uses additional functions to improve its operation and outcome
* g(x): cost-to-arrive.
 The total edge cost from the start node to the current node x
along an optimal path
* h(x): heuristic cost-to-go.
* An estimate of the cost between current node x and x,4;
* k(x,x") = distance from node x to node x'
* f(x) = g(x) + h(x): the estimated cost to the goal through x

Summary of A*:
« getFirst(Q) removes node x; from Q with lowest f(xy)
* For each successor node of x; (denoted by x") removed from Q,
check to see if going through x;, is a lower cost way to reach x'

27

Graph Search: A* algorithm

Replace the successor node processing loop with the following

« For each successor node of x;, (denoted by x")
Grest(x') = g(x) + k(x,x"); f(x') = g(x') + h(x")
« If x’ visited,
o If grost (') < g(x") % found a better path
« Remove existing back-pointer from x" in T
« Add back-pointer from x" to x; in T

e Addx'toQ
« Else discard x" (or put x’ on the CLOSED list)
« Else % x' has not been visited

* 9(x) = Grese(x')
« Add back-pointer from x" to x; in T
e Addx'toQ

28

L L1 BRI

ol L1 R R BNV T

CLTTTT T

ROS Goals for Next Week

GO through the steps 5, 6, 7, 8 of the Core ROS Tutorial at the beginner’s level.
* You may prefer to the analogous steps in “A Guided Journey to the Use of ROS”

Download, install, move base

Read about and Install Rviz

Heads-up: need to have visualization of your vehicle in Rviz by the following week.

