Quick Review of Quadcopter Dynamics

Rigid Body Dynamics in Body-fixed frame (assuming origin at center of mass)

•
$$\vec{f}^b = m \, \dot{v} + m \omega^b \times v^b + m g \vec{e}^b$$
 $\vec{e}^b = \text{unit vector parallel to gravity} = -R_{WB}^T \, \vec{z}_W$
• $\vec{\tau}^b = I_{cm}^b \dot{\omega}^b + \omega^b \times I_{cm}^b \omega^b$

Where the force and torque on the quadrotor are given by:

There the force and torque on the quadrotor are given by:
$$\begin{pmatrix} f_z^b \\ \vec{\tau}^b \end{pmatrix} = \begin{pmatrix} c_T & c_T & c_T & c_T \\ 0 & dc_T & 0 & -dc_T \\ -dc_T & 0 & dc_T & 0 \\ -c_Q & c_Q & -c_Q & c_Q \end{pmatrix} \begin{pmatrix} \Omega_1^2 \\ \Omega_2^2 \\ \Omega_3^2 \\ \Omega_4^2 \end{pmatrix}$$

$$\bullet \begin{pmatrix} f_z^b \\ \vec{\tau}^b \end{pmatrix} = \vec{C} \vec{\Omega}^2$$
Body-fixed World (inertial) frame frame

Rigid Body Dynamics in Inertial frame (with frame center at CM) using hybrid velocites

$$\bullet \quad \begin{pmatrix} \vec{f} \\ \vec{\tau} \end{pmatrix} = \begin{pmatrix} mI_{3\times3} & 0 \\ 0 & I_{cm}^{s} \end{pmatrix} \begin{pmatrix} \ddot{p} \\ \dot{\omega}^{s} \end{pmatrix} + \begin{pmatrix} 0 \\ \omega^{s} \times I_{cm}^{s} \omega^{s} \end{pmatrix} + mg \begin{pmatrix} \vec{e}_{z}^{s} \\ 0 \end{pmatrix}$$

For quadrotor,

•
$$\vec{f} = R_{WB} \vec{f}^b = R_{WB} \left(\sum_i c_T \Omega_i^2 \right) \vec{z}^b$$
;

$$\vec{\tau} = R_{WB} \vec{\tau}^b = R_{WB} \begin{pmatrix} d c_T (\Omega_2^2 - \Omega_4^2) \\ d c_T (\Omega_3^2 - \Omega_1^2) \\ c_Q (\Omega_2^2 - \Omega_1^2 + \Omega_4^2 - \Omega_3^2) \end{pmatrix}$$

Rigid Body Dynamics (center of mass at position \vec{c}) in hybrid velocities

$$\bullet \quad \begin{pmatrix} \vec{f} \\ \vec{\tau} \end{pmatrix} = \begin{pmatrix} mI_{3\times3} & -m\hat{c} \\ +m\hat{c} & I_{cm}^s - m\hat{c}\hat{c} \end{pmatrix} \begin{pmatrix} \ddot{p} \\ \dot{\omega}^s \end{pmatrix} + \begin{pmatrix} m\omega^s \times \omega^s \times \vec{c} \\ \widehat{\omega}^s (I_{cm}^s - m\hat{c}\hat{c})\omega^s \end{pmatrix} + mg \begin{pmatrix} \vec{e}_z^s \\ \vec{c} \times \vec{e}_z^s \end{pmatrix}$$

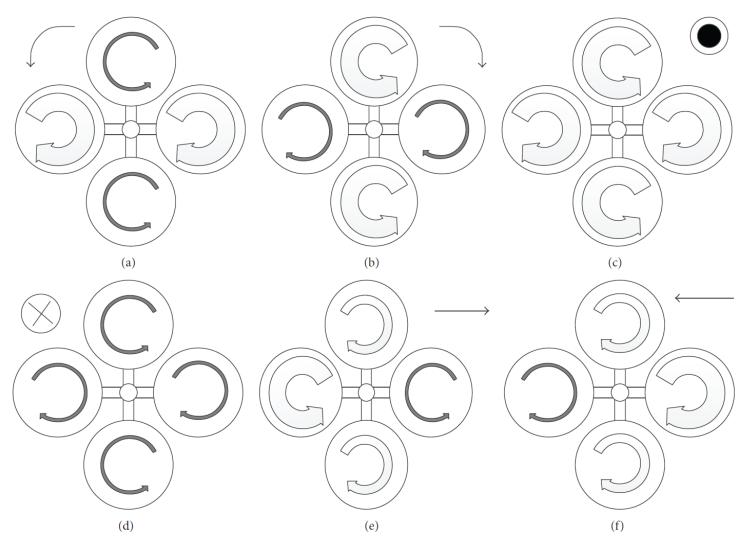


FIGURE 2: Quadrotor dynamics: (a) and (b) difference in torque to manipulate the yaw angle (Ψ); (c) and (d) hovering motion and vertical propulsion due to balanced torques; (e) and (f) difference in thrust to manipulate the pitch angle (θ) and the roll angle (ϕ).

Basics of Quadrotor Control

Control can be roughly decoupled in to attitude control and position control

Attitude Control: let $u^{\tau} = \begin{bmatrix} \tau_x & \tau_y & \tau_z \end{bmatrix}^T$ denote the vector of torques about the 3 principle axes

- Propose a PD control: $u^{\tau} = -K_r \vec{e}_r K_{\omega} \vec{e}_{\omega}$
 - $\vec{e}_{\omega} = \omega \omega^d$
 - $\vec{e}_r = \frac{1}{2} \left[\left(R_{WB}^d \right)^T R_{WB} R_{WB}^T R_{WB}^d \right]^{\vee}$
 - If we use *roll, pitch, yaw* angles (x-y-z Euler angles) ϕ , θ , ψ
 - Linearize non-linear error measurement about hover: $\begin{vmatrix} 0 & -\Delta\psi & \Delta\theta \\ \Delta\psi & 0 & -\Delta\phi \end{vmatrix} = \begin{vmatrix} \Delta\phi \\ \Delta\theta \\ \Delta\psi \end{vmatrix}$

•
$$u^{\tau} = -K_r \begin{bmatrix} \Delta \phi \\ \Delta \theta \\ \Delta \psi \end{bmatrix} - K_{\omega} \begin{bmatrix} \omega_x - \omega_x^d \\ \omega_y - \omega_y^d \\ \omega_z - \omega_z^d \end{bmatrix}$$

Position Control: let
$$u^f$$
 denote the total thrust along the body-fixed z-axis
$$u^f = m \ \vec{z}^b \cdot \left(g \ \vec{z}^s + p^d + K_v \ \vec{e}_v + K_p \ \vec{e}_p \right), \text{ where } \vec{e}_v = (\dot{p} - \dot{p}^d) \text{ and } \vec{e}_p = (p - p^d)$$

$$\vec{\Omega}^2 = C^{\{-1\}} \binom{u^f}{u^\tau}$$