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Abstract

Gradient matching is a promising tool for learning parameters and state dynamics
of ordinary differential equations. It is a grid free inference approach, which,
for fully observable systems is at times competitive with numerical integration.
However, for many real-world applications, only sparse observations are available
or even unobserved variables are included in the model description. In these cases
most gradient matching methods are difficult to apply or simply do not provide
satisfactory results. That is why, despite the high computational cost, numerical
integration is still the gold standard in many applications. Using an existing gradient
matching approach, we propose a scalable variational inference framework which
can infer states and parameters simultaneously, offers computational speedups,
improved accuracy and works well even under model misspecifications in a partially
observable system.

1 Introduction

Parameter estimation for ordinary differential equations (ODE’s) is challenging due to the high
computational cost of numerical integration. In recent years, gradient matching techniques established
themselves as successful tools [e.g. Babtie et al., 2014] to circumvent the high computational
cost of numerical integration for parameter and state estimation in ordinary differential equations.
Gradient matching is based on minimizing the difference between the interpolated slopes and the time
derivatives of the state variables in the ODE’s. First steps go back to spline based methods [Varah,
1982, Ramsay et al., 2007] where in an iterated two-step procedure coefficients and parameters are
estimated. Often cubic B-splines are used as basis functions while more advanced approaches [Niu
et al., 2016] use kernel functions derived from the ODE’s. An overview of recent approaches with a
focus on the application for systems biology is provided in Macdonald and Husmeier [2015]. It is
unfortunately not straightforward to extend spline based approaches to include unobserved variables
since they usually require full observability of the system. Moreover, these methods critically
depend on the estimation of smoothing parameters, which are difficult to estimate when only sparse
observations are available. As a solution for both problems, Gaussian process (GP) regression was
proposed in Calderhead et al. [2008] and further improved in Dondelinger et al. [2013]. While both
Bayesian approaches work very well for fully observable systems, they (opposite to splines) cannot
simultaneously infer parameters and unobserved states and perform poorly when only combinations
of variables are observed or the differential equations contain unobserved variables. Unfortunately
this is the case for most practical applications [e.g. Barenco et al., 2006].

Related work. Archambeau et al. [2008] proposed variational inference to approximate the true
process of the dynamical system by a time-varying linear system. Their approach was later signficantly
extended [Ruttor et al., 2013, Ruttor and Opper, 2010, Vrettas et al., 2015]. However, similiar to
[Lyons et al., 2012] they study parameter estimation in stochastic dynamical systems while our work
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focuses on deterministic systems. In addition, they use the Euler-Maruyama discretization, whereas
our approach is grid free. Wang and Barber [2014] propose an approach based on a belief network
but as discussed in the controversy of mechanistic modelling [Macdonald et al., 2015], this leads to
an intrinsic identifiability problem.

Our contributions. Our proposal is a scalable variational inference based framework which can infer
states and parameters simultaneously, offers significant runtime improvements, improved accuracy
and works well even in the case of partially observable systems. Since it is based on simplistic
mean-field approximations it offers the opportunity for significant future improvements. We illustrate
the potential of our work by analyzing a system of up to 1000 states in less than 400 seconds on a
standard Laptop2.

2 Deterministic Dynamical Systems

A deterministic dynamical system is represented by a set ofK ordinary differential equations (ODE’s)
with model parameters θ that describe the evolution of K states x(t) = [x1(t), x2(t), . . . , xK(t)]T

such that:

ẋ(t) =
dx(t)

dt
= f(x(t),θ). (1)

A sequence of observations, y(t), is usually contaminated by some measurement error which
we assume to be normally distributed with zero mean and variance for each of the K states, i.e.
E ∼ N (0,D), with Dik = σ2

kδik. Thus for N distinct time points the overall system may be
summarized as:

Y = X + E, (2)

where

X = [x(t1), . . . ,x(tN )] = [x1, . . . ,xK ]T , Y = [y(t1), . . . ,y(tN )] = [y1, . . . ,yK ]T ,

and xk = [xk(t1), . . . , xk(tN )]T is the k’th state sequence and yk = [yk(t1), . . . , yk(tN )]T are the
observations. Given the observations Y and the description of the dynamical system (1), the aim is to
estimate both state variables X and parameters θ. While numerical integration can be used for both
problems, its computational cost is prohibitive for large systems and motivates the grid free method
outlined in section 3.

3 GP based Gradient Matching

Gaussian process based gradient matching was originally motivated in Calderhead et al. [2008] and
further developed in Dondelinger et al. [2013]. Assuming a Gaussian process prior on state variables
such that:

p(X | φ) :=
∏
k

N (0,Cφk
) (3)

where Cφk
is a covariance matrix defined by a given kernel with hyper-parameters φk, the k-th

element of φ, we obtain a posterior distribution over state-variables (from (2)):

p(X | Y,φ,σ) =
∏
k

N (µk(yk),Σk) , (4)

where µk(yk) := σ−2k

(
σ−2k I + C−1φk

)−1
yk and Σ−1k := σ−2k I + C−1φk

.

Assuming that the covariance function Cφk
is differentiable and using the closure property under

differentiation of Gaussian processes, the conditional distribution over state derivatives is:

p(Ẋ | X,φ) =
∏
k

N (ẋk | mk,Ak), (5)

2All experiments were run on a 2.5 GHz Intel Core i7 Macbook.
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where the mean and covariance is given by:

mk := ′Cφk
C−1φk

xk, Ak := C′′φk
− ′Cφk

C−1φk
C′φk

, (6)

C′′φk
denotes the auto-covariance for each state-derivative with C′φk

and ′Cφk
denoting the cross-

covariances between the state and its derivative.

Assuming additive, normally distributed noise with state-specific error variance γk in (1), we have:

p(Ẋ | X,θ,γ) =
∏
k

N (ẋk | fk(X,θ), γkI) . (7)

A product of experts approach, combines the ODE informed distribution of state-derivatives (distribu-
tion (7)) with the smoothed distribution of state-derivatives (distribution (5)):

p(Ẋ | X,θ,φ,γ) ∝ p(Ẋ | X,φ)p(Ẋ | X,θ,γ) (8)

The motivation for the product of experts is that the multiplication implies that both the data fit
and the ODE response have to be satisfied at the same time in order to achieve a high value of
p(Ẋ | X,θ,φ,γ). This is contrary to a mixture model, i.e. a normalized addition, where a high
value for one expert e.g. overfitting the data while neglecting the ODE response or vice versa, is
acceptable.

The proposed methodology in Calderhead et al. [2008] is to analytically integrate out Ẋ:

p(θ|X,φ,γ) = Z−1θ (X) p(θ)

∫
p(Ẋ|X, φ)p(Ẋ|X,θ,γ)dẊ

= Z−1θ (X) p(θ)
∏
k

N (fk(X,θ)|mk,Λ
−1
k ), (9)

with Λ−1k := Ak + γkI and Z−1θ (X) as the normalization that depends on the states X. Calderhead
et al. [2008] infer the parameters θ by first sampling the states (i.e. X ∼ p(X | Y,φ,σ)) followed
by sampling the parameters given the states (i.e. θ,γ ∼ p(θ,γ | X,φ,σ)). In this setup, sampling
X is independent of θ, which implies that θ and γ have no influence on the inference of the state
variables. The desired feedback loop was closed by Dondelinger et al. [2013] through sampling from
the joint posterior of p(θ | X,φ,σ,γ,Y). Since sampling the states only provides their values at
discrete time points, Calderhead et al. [2008] and Dondelinger et al. [2013] require the existence of an
external ODE solver to obtain continuous trajectories of the state variables. For simplicity, we derived
the approach assuming full observability. However, the approach has the advantage (as opposed
to splines) that the assumption of full observability can be relaxed to include only observations for
combinations of states by replacing (2) with Y = AX + E, where A encodes the linear relationship
between observations and states. In addition, unobserved states can be naturally included in the
inference by simply using the prior on state variables (3) [Calderhead et al., 2008].

4 Variational Inference for Gradient Matching by Exploiting Local
Linearity in ODE’s

For subsequent sections we consider only models of the form (1) with reactions based on mass-action
kinetics which are given by:

fk(x(t),θ) =
∑
i=1

θki
∏

j∈Mki

xj (10)

with Mki ⊆ {1, . . . ,K} describing the state variables in each factor of the equation i.e. the
functions are linear in parameters and contain arbitrary large products of monomials of the states.
The motivation for the restriction to this functional class is twofold. First, this formulation includes
models which exhibit periodicity as well as high nonlinearity and especially physically realistic
reactions in systems biology [Schillings et al., 2015].
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Second, the true joint posterior over all unknowns is given by:

p(θ,X | Y,φ,γ,σ) = p(θ | X,φ,γ)p(X | Y,φ,σ)

= Z−1θ (X) p(θ)
∏
k

N
(
fk(X,θ) |mk,Λ

−1
k

)
N (xk | µk(Y),Σk) ,

where the normalization of the parameter posterior (9), Zθ(X), depends on the states X. The
dependence is nontrivial and induced by the nonlinear couplings of the states X, which make
the inference (e.g. by integration) challenging in the first place. Previous approaches ignore the
dependence of Zθ(X) on the states X by setting Zθ(X) equal to one [Dondelinger et al., 2013,
equation 20]. We determine Zθ(X) analytically by exploiting the local linearity of the ODE’s as
shown in section 4.1 (and section 7 in the supplementary material). More precisely, for mass action
kinetics 10, we can rewrite the ODE’s as a linear combination in an individual state or as a linear
combination in the ODE parameters3. We thus achieve superior performance over existing gradient
matching approaches, as shown in the experimental section 5.

4.1 Mean-field Variational Inference

To infer the parameters θ, we want to find the maximum a posteriori estimate (MAP):

θ? := argmax
θ

ln p(θ | Y,φ,γ,σ) = argmax
θ

ln

∫
p(θ | X,φ,γ)p(X | Y,φ,σ)︸ ︷︷ ︸

=p(θ,X|Y,φ,γ,σ)

dX (11)

However, the integral in (11) is intractable in most cases due to the strong couplings induced by
the nonlinear ODE’s f which appear in the term p(θ | X,φ,γ) (equation 9). We therefore use
mean-field variational inference to establish variational lower bounds that are analytically tractable
by decoupling state variables from the ODE parameters as well as decoupling the state variables
from each other. Before explaining the mechanism behind mean-field variational inference, we first
observe that, due to the model assumption (10), the true conditional distributions p(θ | X,Y,φ,γ,σ)
and p(xu | θ,X−u,Y,φ,γ,σ) are Gaussian distributed, where X−u denotes all states excluding
state xu (i.e. X−u := {x ∈ X | x 6= xu}). For didactical reasons, we write the true conditional
distributions in canonical form:

p(θ | X,Y,φ,γ,σ) = h(θ)× exp
(
ηθ(X,Y,φ,γ,σ)T t(θ)− aθ(ηθ(X,Y,φ,γ,σ)

)
p(xu | θ,X−u,Y,φ,γ,σ) = h(xu)× exp

(
ηu(θ,X−u,Y,φ,γ,σ)T t(xu)

− au(ηu(X−u,Y,φ,γ,σ)
)

(12)

where h(·) and a(·) are the base measure and log-normalizer and η(·) and t(·) are the natural
parameter and sufficient statistics.

The decoupling is induced by designing a variational distribution Q(θ,X) which is restricted to the
family of factorial distributions:

Q :=

{
Q : Q(θ,X) = q(θ | λ)

∏
u

q(xu | ψu)

}
, (13)

where λ and ψu are the variational parameters. The particular form of q(θ | λ) and q(xu | ψu) is
designed to be in the same exponential family as the true conditional distributions in equation (12):

q(θ | λ) := h(θ) exp
(
λT t(θ)− aθ(λ)

)
q(xu | ψu) := h(xu) exp

(
ψTu t(xu)− au(ψu)

)

3For mass-action kinetics as in (10), the ODE’s are nonlinear in all states but linear in a single state as well
as linear in all ODE parameters.
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To find the optimal factorial distribution we minimize the Kullback-Leibler divergence between the
variational and the true posterior distribution:

Q̂ : = argmin
Q(θ,X)∈Q

KL
[
Q(θ,X)

∣∣∣∣p(θ,X | Y,φ,γ,σ)
]

= argmin
Q(θ,X)∈Q

EQ logQ(θ,X)− EQ log p(θ,X | Y,φ,γ,σ)

= argmax
Q(θ,X)∈Q

LQ(λ,ψ) (14)

where Q̂ is the proxy distribution and LQ(λ,ψ) is the ELBO (Evidence Lower Bound) terms
that depends on the variational parameters λ and ψ. Maximizing ELBO w.r.t. θ is equivalent to
maximizing the following lower bound:

Lθ(λ) : = EQ log p(θ | X,Y,φ,γ,σ)− EQ log q(θ | λ)

= EQηTθ 5λ aθ(λ)− λT 5λ aθ(λ),

where we substitute the true conditionals given in equation (12) and 5λ is the gradient operator.
Similarly, maximizing ELBO w.r.t. latent state xu, we have:

Lx(ψu) : = EQ log p(xu | θ,X−u,Y,φ,γ,σ)− EQ log q(xu | ψu)

= EQηTu 5ψu
au(ψu)−ψTu 5ψu

au(ψu)

Given the assumptions we made about the true posterior and the variational distribution (i.e. that each
true conditional is in an exponential family and that the corresponding variational distribution is in
the same exponential family) we can optimize each coordinate in closed form.

To maximize ELBO we set the gradient w.r.t. the variational parameters to zero:

5λLθ(λ) = 52
λaθ(λ) (EQηθ − λ)

!
= 0

which is zero when:

λ̂ = EQηθ (15)

Similarly, the optimal variational parameters of the states are given by:

ψ̂u = EQηu (16)

Since the true conditionals are Gaussian distributed the expectations over the natural parameters are
given by:

EQηθ =

(
EQΩ−1θ rθ
− 1

2EQΩ−1θ

)
, EQηu =

(
EQΩ−1u ru
− 1

2EQΩ−1u

)
, (17)

where rθ and Ωθ are the mean and covariance of the true conditional distribution over ODE parame-
ters. Similarly, ru and Ωu are the mean and covariance of the true conditional distribution over states.
The variational parameters in equation (17) are derived analytically in the supplementary material 7.

The coordinate ascent approach (where each step is analytically tractable) for estimating states and
parameters is summarized in algorithm 1.

Algorithm 1 Mean-field coordinate ascent for GP Gradient Matching
1: Initialization of proxy moments ηu and ηθ.
2: repeat
3: Given the proxy over ODE parameters q(θ | λ̂), calculate the proxy over individual states
q(xu | ψ̂u) ∀ u ≤ n, by computing its moments ψ̂u = EQηu.

4: Given the proxy over individual states q(xu | ψ̂u), calculate the proxy over ODE parameters
q(θ | λ̂), by computing its moments λ̂ = EQηθ.

5: until convergence of maximum number of iterations is exceeded.

Assuming that the maximal number of states for each equation in (10) is constant (which is to the
best of our knowledge the case for any reasonable dynamical system), the computational complexity
of the algorithm is linear in the states O(N ·K) for each iteration. This result is experimentally
supported by figure 5 where we analyzed a system of up to 1000 states in less than 400 seconds.
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5 Experiments

In order to provide a fair comparison to existing approaches, we test our approach on two small to
medium sized ODE models, which have been extensively studied in the same parameter settings
before [e.g. Calderhead et al., 2008, Dondelinger et al., 2013, Wang and Barber, 2014]. Additionally,
we show the scalability of our approach on a large-scale partially observable system which has so far
been infeasible to analyze with existing gradient matching methods due to the number of unobserved
states.

5.1 Lotka-Volterra
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Figure 1: Lotka-Volterra: Given few noisy observations (red stars), simulated with a variance of
σ2 = 0.25, the leftmost plot shows the inferred state dynamics using our variational mean-field
method (mean-field GM, median runtime 4.7sec). Estimated mean and standard deviation for one
random data initialization using our approach are illustrated in the left-center plot. The implemented
spline method (splines, median runtime 48sec) was based on Niu et al. [2016] and the adaptive
gradient matching (AGM) is the approach proposed by Dondelinger et al. [2013]. Boxplots in the
leftmost, right-center and rightmost plot illustrate the variance in the state and parameter estimations
over 10 independent datasets.

The ODE’s f(X,θ) of the Lotka-Volterra system [Lotka, 1978] is given by:

ẋ1 : = θ1x1 − θ2x1x2
ẋ2 : = −θ3x2 + θ4x1x2
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Figure 2: Lotka-Volterra: Given only observa-
tions (red stars) until time t = 2 the state trajec-
tories are inferred including the unobserved time
points up to time t = 4. The typical patterns of
the Lotka-Volterra system for predator and prey
species are recovered. The shaded blue area shows
the uncertainty around for the inferred state trajec-
tories.

The above system is used to study predator-prey
interactions and exhibits periodicity and non-
linearity at the same time. We used the same
ODE parameters as in Dondelinger et al. [2013]
(i.e. θ1 = 2, θ2 = 1, θ3 = 4, θ4 = 1) to simu-
late the data over an interval [0, 2] with a sam-
pling interval of 0.1. Predator species (i.e. x1)
were initialized to 3 and prey species (i.e. x)
were initialized to 5. Mean-field variational in-
ference for gradient matching was performed on
a simulated dataset with additive Gaussian noise
with variance σ2 = 0.25. The radial basis func-
tion kernel was used to capture the covariance
between a state at different time points.

As shown in figure 1, our method performs sig-
nificantly better than all other methods at a frac-
tion of the computational cost. The poor per-
formance in accuracy of Niu et al. [2016] can
be explained by the significantly lower number
of samples and higher noise level, compared
to the simpler setting of their experiments. In
order to show the potential of our work we de-
cided to follow the more difficult and established
experimental settings used in [e.g. Calderhead
et al., 2008, Dondelinger et al., 2013, Wang and
Barber, 2014]. This illustrates the difficulty of
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spline based gradient matching methods when only few observations are available. We estimated
the smoothing parameter λ in the proposal of Niu et al. [2016] using leave-one-out cross-validation.
While their method can in principle achieve the same runtime (e.g. using 10-fold cv) as our method,
the performance for parameter estimation is significantly worse already when using leave-one-out
cross-validation, where the median parameter estimation over ten independent data initializations
is completely off for three out of four parameters (figure 1). Adaptive gradient matching (AGM)
[Dondelinger et al., 2013] would eventually converge to the true parameter values but at roughly 100
times the runtime achieves signifcantly worse results in accuracy than our approach (figure 1). In
figure 2 we additionally show that the mechanism of the Lotka-Volterra system is correctly inferred
even when including unobserved time intervals.

5.2 Protein Signalling Transduction Pathway

In the following we only compare with the current state of the art in GP based gradient matching
[Dondelinger et al., 2013] since spline methods are in general difficult or inapplicable for partial
observable systems. In addition, already in the case of a simpler system and more data points (e.g.
figure 1), splines were not competitive (in accuracy) with the approach of Dondelinger et al. [2013].
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200

400

State S

0  50 100
time
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0.5

1
State S

0  50 100
time

0

0.5

1
State S

Figure 3: For the noise level of σ2 = 0.1 the leftmost and left-center plot show the performance
of Dondelinger et al. [2013](AGM) for inferring the state trajectories of state S. The red curve in
all plots is the groundtruth, while the inferred trajectories of AGM are plotted in green (left and
left-center plot) and in blue (right and right center) for our approach. While in the scenario of the
leftmost and right-center plot observations are available (red stars) and both approaches work well,
the approach of Dondelinger et al. [2013](AGM) is significantly off in inferring the same state when
it is unobserved but all other parameters remain the same (left-center plot) while our approach infers
similar dynamics in both scenarios.

The chemical kinetics for the protein signalling transduction pathway is governed by a combination
of mass action kinetics and the Michaelis-Menten kinetics:

Ṡ = −k1 × S − k2 × S ×R+ k3 ×RS
˙dS = k1 × S

Ṙ = −k2 × S ×R+ k3 ×RS + V × Rpp

Km +Rpp

ṘS = k2 × S ×R− k3 ×RS − k4 ×RS

˙Rpp = k4 ×RS − V ×
Rpp

Km +Rpp

For a detailed descripton of the systems with its biological interpretations we refer to Vyshemirsky
and Girolami [2008]. While mass-action kinetics in the protein transduction pathway satisfy our
constraints on the functional form of the ODE’s 1, the Michaelis-Menten kinetics do not, since they
give rise to the ratio of states Rpp

Km+Rpp . We therefore define the following latent variables:

x1 := S, x2 := dS, x3 := R, x4 := RS, x5 :=
Rpp

Km +Rpp

θ1 := k1, θ2 := k2, θ3 := k3, θ4 := k4, θ5 := V

The transformation is motivated by the fact that in the new system, all states only appear as monomials,
as required in (10). Our variable transformation includes an inherent error (e.g. by replacing
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˙Rpp = k4 ×RS − V × Rpp
Km+Rpp with ẋ5 = θ4 × x4 − θ5 × x5) but despite such a misspecification,

our method estimates four out of five parameters correctly (4). Once more, we use the same
ODE parameters as in Dondelinger et al. [2013] i.e. k1 = 0.07, k2 = 0.6, k3 = 0.05, k4 =
0.3, V = 0.017. The data was sampled over an interval [0, 100] with time point samples at t =
[0, 1, 2, 4, 5, 7, 10, 15, 20, 30, 40, 50, 60, 80, 100]. Parameters were inferred in two experiments with
different standard Gaussian distributed noise with variances σ2 = 0.01 and σ2 = 0.1.

Even for a misspecified model, containing a systematic error, the ranking according to parameter
values is preserved as indicated in figure 4. While the approach of Dondelinger et al. [2013] converges
much slower (again factor 100 in runtime) to the true values of the parameters (for a fully observable
system), it is significantly off if state S is unobserved and is more senstitive to the introduction of
noise than our approach (figure 3). Our method infers similar dynamics for the fully and partially
observable system as shown in figure 3 and remains unchanged in its estimation accuracy after
the introduction of unobserved variables (even having its inherent bias) and performs well even in
comparison to numerical integration (figure 4). Plots for the additional state dynamics are shown in
the supplementary material 6.
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Figure 4: From the left to the right the plots represent three different inference settings of increasing
difficulty using the protein transduction pathway as an example. The left plot shows the results for a
fully observable system and a small noise level (σ2 = 0.01). Due to the violation of the functional
form assumption our approach has an inherent bias and Dondelinger et al. [2013](AGM) performs
better while Bayesian numerical integration (Bayes num. int.) serves as a gold standard and performs
best. The middle plot shows the same system with an increased noise level of σ2 = 0.1. Due to many
outliers we only show the median over ten independent runs and adjust the scale for the middle and
right plot. In the right plot state S was unobserved while the noise level was kept at σ2 = 0.1 (the
estimate for k3 of AGM is at 18 and out of the limits of the plot). Initializing numerical integration
with our result (Bayes num. int. mf.) achieves the best results and significantly lowers the estimation
error (right plot).

5.3 Scalability

To show the true scalability of our approach we apply it to the Lorenz 96 system, which consists of
equations of the form:

fk(x(t),θ) = (xk+1 − xk−2)xk−1 − xk + θ, (18)

where θ is a scalar forcing parameter, x−1 = xK−1, x0 = xK and xK+1 = x1 (with K being the
number of states in the deterministic system (1)). The Lorenz 96 system can be seen as a minimalistic
weather model [Lorenz and Emanuel, 1998] and is often used with an additional diffusion term as a
reference model for stochastic systems [e.g. Vrettas et al., 2015]. It offers a flexible framework for
increasing the number states in the inference problem and in our experiments we use between 125
to 1000 states. Due to the dimensionality the Lorenz 96 system has so far not been analyzed using
gradient matching methods and to additionally increase the difficulty of the inference problem we
randomly selected one third of the states to be unobserved. We simulated data setting θ = 8 with an
observation noise of σ2 = 1 using 32 equally space observations between zero to four seconds. Due
to its scaling properties, our approach is able to infer a system with 1000 states within less than 400
seconds (right plot in figure 5). We can visually conclude that unobserved states are approximately
correct inferred and the approximation error is independent of the dimensionality of the problem
(right plot in figure 5).

8



0 5 10 15 20
iteration number

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
RMSE for ODE Parameter

0 1 2 3 4
time

-4

-2

0

2

4

6

8
Unobserved State

3.5
2.5
2

1.4

RMSE reduction of 
ODE parameter

unobserved state

time 
125 250 375 500 625 750 875 1000

number of ODEs

500

600

700

800

900

1000

av
er

ag
e 

R
M

S
E

 o
f u

no
bs

. s
ta

te
s

0

100

200

300

400

500

ru
nt

im
e 

(s
ec

on
ds

)

Scaling of Mean-field 
Gradient Matching for Lorenz 96
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is plotted in red while the thin gray lines correspond to the inferred state trajectories in each iteration
of the algorithm (the first flat thin gray line being the initialisation). The blue line is the inferred
state trajectory of the unobserved state after convergence. The right plot shows the scaling of our
algorithm with the dimensionality in the states. The red curve is the runtime in seconds wheras the
blue curve is corresponding to the RSME (right plot).

Due to space limitations, we show additional experiments for various dynamical systems in the fields
of fluid dynamics, electrical engineering, system biology and neuroscience only in the supplementary
material in section 8.

6 Discussion

Numerical integration is a major bottleneck due to its computational cost for large scale estimation
of parameters and states e.g. in systems biology. However, it still serves as the gold standard for
practical applications. Techniques based on gradient matching offer a computationally appealing
and successful shortcut for parameter inference but are difficult to extend to include unobserved
variables in the model descripton or are unable to keep their performance level from fully observed
systems. However, most real world applications are only partially observed. Provided that state
variables appear as monomials in the ODE, we offer a simple, yet powerful inference framework
that is scalable, significantly outperforms existing approaches in runtime and accuracy and performs
well in the case of sparse observations even for partially observable systems. Many non-linear and
periodic ODE’s, e.g. the Lotka-Volterra system, already fulfill our assumptions. The empirically
shown robustness of our model to misspecification even in the case of additional partial observability
already indicates that a relaxation of the functional form assumption might be possible in future
research.
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