
Data-Driven Differential Dynamic Programming Using Gaussian
Processes

Yunpeng Pan and Evangelos A. Theodorou

Abstract— We present a Bayesian nonparametric trajectory
optimization framework for systems with unknown dynamics
using Gaussian Processes (GPs), called Gaussian Process Differ-
ential Dynamic Programming (GPDDP). Rooted in the Dynamic
Programming principle and second-order local approximations
of the value function, GPDDP learns time-varying optimal con-
trol policies from sampled data. Based on this framework, we
propose two algorithms for implementations. We demonstrate
the effectiveness and efficiency of the proposed framework using
three numerical examples.

I. INTRODUCTION

Differential dynamic programming (DDP) is a powerful
trajectory optimization approach. Originally introduced in
[1], DDP generates both open and closed-loop optimal con-
trol policies along with an optimal state trajectory. Compared
with global optimal control approaches, the local optimal
DDP shows superior applicability to high-dimensional prob-
lems. Over the last decade, variations of DDP have been
proposed in both control and machine learning communities
[2], [3], [4], [5], [6], [7]. A recent study demonstrated the
applicability of DDP to high-dimensional robotic systems
[8].

DDP is derived based on linear approximations of the non-
linear dynamics along state and control trajectories, therefore
it relies on accurate and explicit dynamics models. However,
modeling a dynamical system is generally a challenging task
and model uncertainty is one of the principal limitations
of model-based trajectory optimization methods. Various
approaches have been developed to address these issues. In
[9], a minimax criterion of DDP was employed to correct
modeling errors and attenuate unknown disturbances. In [10],
a complex robotic system was parameterized and learned
from expert-demonstrated trajectories. Despite the broad
applicability of DDP based on either parametrically learned
or a-priori known dynamics, in general the interdependencies
between various elements (e.g., electromechanical, pneu-
matic, hydraulic) of autonomous systems are far from being
easily represented by deterministic models. To overcome this
limitation, probabilistic models, such as Gaussian processes
(GPs), have increasingly drawn more attention in control and
machine learning communities.

GPs are Bayesian nonparametric models such that the
model uncertainty can be quantified explicitly. GPs are
defined as distributions over functions and GP regression

The authors are with the Autonomous Control and Decision Systems Lab-
oratory, at the Daniel Guggenheim School of Aerospace Engineering, Geor-
gia Institute of Technology, 270 Ferst Drive Atlanta GA 30332-0150, USA
ypan37@gatech.edu etheodorou3@mail.gatech.edu

operates in the function spaces. Different from typical para-
metric models, GPs do not assume prior structure of the
model and take into account measurement noises inherently.

The GP approach has been widely used for model learn-
ing over the last decade since the systematic introduction
in [11]. Recent developments in GPs have demonstrated
promising applicability in nonlinear filtering, optimal control
and reinforcement learning [12], [13], [14], [15], [16], [17].
In this paper, we use GP regression to learn unknown
dynamics model, and incorporate GP inference into the
DDP framework. The main characteristics of GPDDP can
be summarized as follows: 1) GPDDP learns Bayesian
nonparametric models from sampled data and iteratively
optimizes a trajectory. The probabilistic representation of the
dynamics have shown impressive data/sample efficiency in
reinforcement learning [17]. 2) GPDDP performs lineariza-
tion by computing Jacobian matrices analytically, avoids the
computational burden of finite differences. 3) GPDDP can
be applied in both online and offline settings for different
types of applications.

The rest of this paper is organized as follows: Section II
provides the basic problem formulation. In Section III, we
introduce the GP representation of the dynamics. Section IV
derives the explicit form of optimal control policy. In Section
V, we propose two algorithms and discuss implementation
details. Numerical results are provided and discussed in
Section VI. Finally Section VII concludes this paper.

II. PROBLEM FORMULATION

We consider a general unknown nonlinear system de-
scribed by the following stochastic differential equation

dx = f(x,u)dt+ Cdω, x(t0) = x0, (1)

with state x ∈ Rn, control u ∈ Rm, and standard Brownian
motion noise ω ∈ Rp such that dω ∼ N (0,Σω). We consider
the optimal control problem with cost:

Jπ(x, t) = E
[
h
(
x(tf)

)
+

∫ tf

t0

L
(
x(t), π(x, t), t

)
dt

]
, (2)

where h(x(tf)) is the terminal cost, L(x(t), π(x, t), t) is the
instantaneous cost rate which is a function of state x and
control policy π(x(t), t). The cost Jπ(x, t) is defined as the
expectation accumulated over the time horizon (t0, . . . , tf)
starting from the initial state x(t0) to final state x(tf). For the
rest of our analysis, we denote xk = x(tk) in discrete-time
where k = 0, 1, ...N is the time step, we use this subscript
rule for other variables as well.

2015 American Control Conference
Palmer House Hilton
July 1-3, 2015. Chicago, IL, USA

978-1-4799-8684-2/$31.00 ©2015 AACC 4467

III. DYNAMICS MODEL LEARNING USING GAUSSIAN
PROCESS REGRESSION

The continuous functional mapping from state-control
pair x̃ = (x,u) ∈ Rn+m to state transition dx can be
viewed as an inference with the goal of inferring state
transition dx given (x,u). We view this inference as a
nonlinear regression problem. In this section, we introduce
the Gaussian processes (GP) approach to learning dynamical
model (1). A GP is defined as a collection of random
variables, any finite number subset of which have a joint
Gaussian distribution. Given a sequence of state-control
pair X̃ = {(x0,u0), . . . (xN ,uN)}, and the corresponding
state transition dX = {dx0, . . . ,dxN}, a GP is completely
defined by a mean function and a covariance function. The
joint distribution of the observed state transitions and the
transition corresponding to a given test state-control pair
x̃∗ = (x∗,u∗) can be written as

p

(
dX
dx∗

)
∼ N

(
0,

[
K(X̃, X̃) + σnI K(X̃, x̃∗)

K(x̃∗, X̃) K(x̃∗, x̃∗)

])
.

The covariance of this multivariate Gaussian distribution is
defined via a kernel matrix K(xi,xj). In particular, the
Gaussian kernel

K(xi,xj) = σ2
s exp(−1

2
(xi − xj)

TW(xi − xj)). (3)

σs, σn,W are called the hyper-parameters of the GP. The
kernel function can be interpreted as a similarity measure of
random variables. More specifically, if the training pairs X̃i

and X̃j are close to each other in the kernel space, their cor-
responding state transition dxi and dxj are highly correlated.
The posterior distribution, which is also a Gaussian distribu-
tion, can be obtained by constraining the joint distribution
to contain the output dx∗ that is close to the observations.
Assuming independent outputs (no correlation between each
output dimension) and given test input x̃k = [xk,uk] at
time k, the one-step prediction of the dynamics based on
GP can be evaluated as p(dxk|x̃k) ∼ N (dµk,dΣk), where
the terms dµk and dΣk are the predictive mean and variance
of the state transition. They are specified as

dµk = E[dxk] = K(x̃k, X̃)(K(X̃, X̃) + σnI)−1dX,

dΣk = Var[dxk] = K(x̃k, x̃k)−K(x̃k, X̃)(K(X̃, X̃)

+ σnI)−1K(X̃, x̃k). (4)

A toy example of GP regression is shown in Fig. 1.
The state distribution at t = 1 is p(x1) ∼ N (µ1,Σ1)

where the state mean and variance are: µ1 = x0+dµ0,Σ1 =
dΣ0. When propagating the GP-based dynamics over a
trajectory of time horizon N , the input state xk becomes
uncertain with a Gaussian distribution. Here we employ the
moment matching approach introduced in [18], [19], [17] to
approximate the predictive distribution. Thus the distribution
over state transition can be computed as [17]

p(dxk) =

∫ ∫ ∫
p(f(xk,uk)|xk,uk)p(xk,uk)dfdxkduk.

−3 −2 −1 0 1 2 3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

f(
x)

Fig. 1: Simple one-dimensional GP regression, where f(x) =
sin x. Red stars are noisy samples drawn from f(x); the black
line is the function f(x); green dash line is the GP predictive
mean, and gray lines represent GP predictive variance.

Generally, the above integration cannot be computed an-
alytically and the nonlinear mapping of input Gaussian
distributions lead to non-Gaussian predictive distributions.
Based on the moment matching approximation, the state
distribution at k + 1 is a Gaussian [17]

µk+1 = µk + dµk, (5)
Σk+1 = Σk + dΣk + Cov[xk,dxk] + Cov[dxk,xk].

The kernel or hyper-parameter Θ = (σn, σs,W) can be
learned by maximizing the log-likelihood of the training
outputs given the inputs

Θ∗ = argmax
Θ

{
log

(
p
(

dX|X̃,Θ
))}

, (6)

where

log

(
p
(

dX|X̃,Θ
))

= −1

2
dXT

(
K(X̃, X̃) + σ2

nI
)−1

dX− 1

2
log
∣∣∣K(X̃, X̃) + σ2

nI
∣∣∣− N

2
log 2π.

(7)

The optimization problem can be solved using numerical
methods such as conjugate gradient [11].

IV. GAUSSIAN PROCESS DIFFERENTIAL DYNAMIC
PROGRAMMING

A. Linearization of the GP-based dynamics

As discussed in the last section, the states of the dynamical
systems can be approximated by the predictive mean of the
GP regression µk in (5). Given a nominal trajectory (x̄k, ūk)
of states and controls, we linearize the dynamics around
(x̄k, ūk). Here we define the state and control deviations
δxk = µk − x̄k, δuk = uk − ūk and compute the first-order
expansion of the dynamics specified as

dδxk = fµk
δxkdt+ fuk

δukdt, (8)

4468

where fµk
= ∇µfk and fuk

= ∇ufk are the gradients that
can be computed as

∇µfk =
∂E(dxk)

∂µk
, ∇ufk =

∂E(dxk)

∂uk
. (9)

Since E(dxk) can be represented explicitly in µk and uk
, all partial derivatives can be computed analytically. The
linearized dynamics (8) is rewritten in discrete-time form as
follows,

δxk+1 = (In×n + fµk
dt)︸ ︷︷ ︸

Ak

δxt + (fuk
dt)︸ ︷︷ ︸

Bk

δut,
(10)

After specifying the forms of the state transition and control
transition matrices Ak and Bk, next we discuss how to
compute the value function and optimal control policy.

B. Value function approximation

The Bellman equation for the cost-to-go function is de-
fined as

V (xk, t) = min
uk

E
[
L(xk,uk)dt+ V (xk+1, k + 1)

∣∣∣∣xt].
(11)

As in the classical DDP, we expand the cost-to-go function
up to the second order around a given nominal trajectory
(x̄,ū). First we expand the running cost:

L(xk,uk)dt = L
(

x̄k + δxk, ūk + δuk

)
dt

= qk + qT
k δxk + rT

k δuk

+
1

2
δxT

kQkδxk +
1

2
δuT

kRkδuk

+
1

2
δuT

kNkδxk +
1

2
δxTMkδuk,

where the terms qk,qk, rk,Qk,Rk,Nk and Mk are defined
as follows

qk ≡ L(xk,uk)dt,

qk ≡ Lx(xk,uk)dt,

rk ≡ Lu(xk,uk)dt

Qk ≡ Lxx(xk,uk)dt,

Rk ≡ Luu(xk,uk)dt,

Nk ≡ Lxu(xk,uk)dt,

Mk ≡ Lxu(xk,uk)dt.

(12)

Subscripts of L(·) indicate derivatives, which can be com-
puted analytically. We will use this subscript rule for V (·) as
well. The detailed formulations are not given due to space
limit. In addition the term V (xk+1, k + 1) is also expanded

V (xk+1, k + 1) = V (x̄k+1 + δxk+1, k + 1)

= V (x̄k+1, k + 1) + V T
xk+1

δxk+1 +
1

2
δxT

k+1Vxxk+1
δxk+1.

(13)

By taking the expectation we have:

E
[
V (x̄k+1 + δxk+1, k + 1)

]
= V (x̄k+1, k + 1)

+ V T
xk+1

Akδxk + V T
xk+1

Bkδuk

+
1

2
δuT

kBT
k Vxxk+1

Bkδuk +
1

2
δxT

kAT
k Vxxk+1

Akδxk

+
1

2
δuT

kBT
k Vxxk+1

Akδxk +
1

2
δxT

kAT
k Vxxk+1

Bkδuk.

where the terms Vxk+1
, Vxxk+1

are defined as

Vxk+1
= ∇xV (x, k + 1)

∣∣∣∣
x=x̄k+1

Vxxk+1
= ∇xxV (x, k + 1)

∣∣∣∣
x=x̄k+1

.

C. Computing the local optimal control

To find the optimal control, we compute the local varia-
tions in control δu∗ that maximize the value function

δu∗
k = arg max

δu
(L(xk,uk)dt+ V (xk+1, k + 1)

=lk + Lkδxk,
(14)

where
lk = −H−1

k gk, Lk = −H−1
k Gk. (15)

The terms g,G,H are specified as

gk =rk + BT
k Vxk+1

, Hk = Rk + BT
k Vxxk+1

Bk,

Gk =
1

2
Nk +

1

2
Mk + BT

k Vxxk+1
Ak.

(16)

To guarantee convergence we would like to ensure positive
definiteness of Hk, we will discuss how to achieve that in
the next section. The local optimal control u∗ is computed
as

u∗
k = ūk + αδu∗

k, (17)

where α is a weighting factor. By plugging the optimal
control back into the value function, splitting terms into zero,
first and second order in δx we have:

V (x + δx, t) = Vk + V T
xk
δx +

1

2
δxTVxxk

δx, (18)

where Vk, Vxk
, Vxxk

can be computed backward in time

Vk = Vk+1 + qk + gT
k lk +

1

2
lTkHklk,

Vxk
= qk + LT

k gk + LTkHklk + GT
k lk + AT

k Vxk+1
,

Vxxk
= Qk + LTkHk + LTk

(
Nk + BT

k Vxxk+1
Ak

)
+

(
Mk + AT

k Vxxk+1
BT
k

)
Lk + AT

k Vxxk+1
Ak.

(19)

Therefore, the second order approximation of the value
function will be propagated backward in time iteratively. The
optimal control sequence will be applied to generate a local
optimal state trajectory forward in time. Next, we will discuss
two algorithms based on the GPDDP framework.

4469

V. SUMMARY OF ALGORITHMS

In this section, we present two algorithms based on the
GPDDP framework. The proposed algorithms are summa-
rized in Algorithm 1(online version) and Algorithm 2
(off-line version) and are designed for different purposes.
The online algorithm requires interaction with the physical
system at every iteration. In particular an control policy is
obtained at every iteration, and it is applied to the physical
system to generate a trajectory to update the GP model.
Therefore the online version is suitable for applications
in reinforcement learning. In the off-line version, the GP
model of the system dynamics is learned based on state and
control trajectories collected initially. Then the GPDDP is
applied to find the optimal control without interaction with
the physical system. The offline algorithm collects training
data as initialization and applies the optimal control policy
to the real physical system after convergence. Therefore,
the offline version of GPDDP is suitable for tasks such as
autonomous flight trajectory optimization where repetitive
forward sampling from the dynamics is unrealistic. Both
algorithms contain the following tasks:

Dynamics model learning: Given a nominal trajectory in
states and controls, the nonlinear dynamics can be approxi-
mated locally by the linearized GP model as introduced in
Section IV-A. The approximated model is Bayesian nonpara-
metric and takes into account uncertainties/stochaticities of
the training data. In this paper, we use trajectory sampling
to generate the training data that consist of pairs, e.g.,
({xk,uk}, {xk+1−xk}). For the case of generating multiple
trajectories based on the same nominal trajectory, we use
small variations of ū .

Back-propagation: Compute the local optimal control law
δu∗

k as in (14) and cost to go function V (x + δx, tk) as in
(18) in a backward pass through time. The details about this
computation have been shown in Section IV-C. In order to
improve numerical stability we would like to ensure positive
definiteness of the Hessian matrix Hk. In both algorithm we
employ the Levenberg-Marquardt related trick (also used in
[2]). When Hk has negative eigenvalues, first we compute
the eigenvalue decomposition, i.e., [V,D] =eig(Hk) and
replace all negative elements of D with 0. Then a small
positive value λ is added to D. The modified matrix is
obtained as H̃k = VDVT. Its inverse is computed as
H̃−1
k = VD−1VT.
Forward propagation: Apply the local optimal control

obtained from back-propagation to the dynamics (either the
stochastic dynamics or the GP approximation). This step will
give us a locally optimal trajectory, which will be used as
the new nominal trajectory to linearize the dynamics in the
next iteration. In both algorithm we implement line search
by adding a parameter ε > 0 such that δu∗

k = εlk + Lkδxk.
Initially ε = 1, when the trajectory generated by the learned
policy has a higher cost than the current one, the policy
would be rejected and decrease ε. Whenever the policy is
accepted we reset ε = 1. This method has also been used in
[2] to encourage convergence.

Given: Nominal trajectory
Goal : Optimized trajectory

1 for i = 1 to Imax do
2 Generate trajectories by sampling from the

dynamics (1) and forward propagation ;
3 Obtain training pairs, e.g.,

({xk,uk}, {xk+1 − xk});
4 Linearize the GP dynamics around (x̄, ū)

according to Section IV-A;
5 Backpropagate to get the local optimal control

δu∗ and value function V (x + δx, t) according
to (14) (18);

6 Forward propagate (1) by applying the optimal
control u∗

k = ūk + αδu∗
k, obtain a new

trajectory (x∗,u∗);
7 if Converge then Break the for loop;
8 Set x̄ = x∗ and ū = u∗;
9 end

10 Apply the optimal control u∗ to (1), obtain the
optimized trajectory.

Algorithm 1: On-line GPDDP

Given: Nominal trajectory
Goal : Optimized trajectory

1 Generate trajectories by sampling from the
dynamics (1) and forward propagation;

2 Obtain training pairs, e.g., ({xk,uk}, {xk+1 − xk});
3 for i = 1 to Imax do
4 linearize the GP dynamics around (x̄, ū)

according to Section IV-A;
5 Backpropagate to obtain the local optimal

control δu∗ and value function V (x + δx, tk)
according to (14) (18);

6 Forward propagate the GP dynamics by
applying the optimal control u∗

k = ūk + αδu∗
k,

obtain a new trajectory (x∗,u∗);
7 if Converge then Break the for loop;
8 Set x̄ = x∗ and ū = u∗;
9 end

10 Apply the optimal control u∗ to (1), obtain the
optimized trajectory.

Algorithm 2: Off-line GPDDP

A. Computational complexity

For DDP, the heaviest computational burden comes from
linearization of the given dynamics up to the second order.
Generally the analytic forms of partial derivatives involved
in linearization are not available, which are usually approx-
imated using finite differences. For GPDDP, we compute
all Jacobian matrices analytically. For systems with high
dimensional state spaces, this linearization scheme is much
more efficient than finite differences, see Fig. 4 for example.
For GPDDP, the major part of computational effort is devoted
to GP inferences. In particular, the complexity of computing
one-step moment matching is O(N2n2(n + m)) and the

4470

inverse of kernel matrix K(X̃, X̃)−1 is O(N3) where N is
the number of the training data. The computational efficiency
can be improved in various ways. For the online case, instead
of generating new training data at each iteration, we may use
sparse GP [20] to add/remove data to reduce computational
burden. For the offline case, local GP model [13] may be
employed to compute local kernel matrices with smaller size,
and approximate the predictive mean of GP by the weighted
mean of each local model.

VI. NUMERICAL EXAMPLES

In this section, we provide three numerical examples to
evaluate the proposed GPDDP framework.

A. Inverted pendulum

The dynamics of inverted pendulum can be described as
follow:

f(x,u) =

 x2

1
I

(
mgl sin(x1)− bx2 + u

)  , (20)

and g = [0.5; 1]. Where x1 is the position and x2 is the
velocity. The task is to bring the pendulum from initial
position [π2 0] to the inverted position with zero velocity
[0 0]. Both online and offline GP-DDP algorithms were
applied to the system. The results are shown in Fig. 2.
Both algorithms are able to complete the task and the finally
optimized trajectories are similar. It should be noticed that
the offline algorithm requires more iterations to converge
than the online one, since the online scheme features more
accurate approximation of the dynamics by sampling from
(20) at every iteration. By doing so, the online algorithm
also cost more computational effort at every iteration than
the offline scheme.

B. Six-link robotic arm

The six-link arm model consist of six links of equal length
and mass, connected in an open chain with resolute joints.
The system has 6 degrees of freedom, and 12 state dimen-
sions (angle and angular velocity for each joint). The goal for
the first 3 joints is to move to π

4 and the rest 3 joints to −π4 .
The desired velocities for all 6 joints are zeros. We apply
the online GPDDP on this task and sample 1 trajectory from
the true dynamics at each iteration. For comparison purpose,
we also apply the standard DDP to this system with a given
dynamics model. We perform all linearizations in DDP using
finite differences. The optimized state trajectories are shown
in Fig. 3 and a comparison is made in Fig. 4. It can be
seen that GPDDP (with learned dynamics) generates similar
trajectories as DDP does (with known dynamics). As we
mentioned in section V-A, GPDDP linearize the learned GP
model by computing Jacobian matrices analytically, which is
significantly more efficient than finite-differences applied in
DDP. GPDDP requires slightly more iterations to converge
than DDP to obtain the optimized trajectory since the learned
model is updated during optimization.

C. Helicopter hovering
The task of autonomous helicopter hovering is challenging

because the helicopter systems are generally dynamically
unstable. DDP has been used for autonomous helicopter tasks
such as hovering and achieved state-of-the-art performances
[10]. As most DDP applications, an accurate dynamical
model of the helicopter system is essential. [10] assumes a
parametrization of the helicopter dynamics and used flight
data to estimate those parameters. The proposed GPDDP
does not assume any parametrization of the dynamics and
relies only on data. We applied the proposed GPDDP
framework to the helicopter hovering task. The goal is
to stabilize the helicopter from initial disturbances. Since
sampling from the physical system online is not realistic,
most GP-based reinforcement learning approaches (e.g.,[16])
are not directly applicable in this case, we use the offline
scheme for this task. As in [10], the states can be described
by positions (x,y, z), velocities (vx,vy,vz) and angular
velocities (wx,wy,wz). Control inputs are aileron, elevator,
rudder, and collective pitch control, which are denoted by
u1, u2, u3 and u4 respectively. The desired steady-states
are all zeros. In our simulation, we generate trajectories from
the parametric model (with stochastic terms) learned in [10]
. Results are shown in Fig. 5. Notice that u1,u2 and u3

control the orientation of helicopter, u4 adjust the thrust of
the main motor. Positive u4 force the main motor to blow air
downward relative to the helicopter, and negative u4 blow
air upward relative to the helicopter. GPDDP successfully
accomplish this task with 10 sampled trajectories.

0 20 40 60 80 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x
2

(a)

0 20 40 60 80 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x
2

(b)

Fig. 2: Optimized state trajectories for the inverted pendulum
task. In all plots, the X-axis is the time steps. (a) Online
GPDDP. (b) Offline GPDDP.

VII. CONCLUSIONS

In this paper, we propose a data-driven differential
dynamic programming framework based on GPs, called
GPDDP. The proposed framework is probabilistic model-
based approach that is applicable to a general class of
systems with unknown dynamics. Because of GP’s Bayesian
nonparametric nature, GPDDP takes into account model
uncertainty and relies only on sampled data without any
assumed structure of the system. Building on this frame-
work, we also presented online and offline algorithms for
implementations in different scenarios. The framework was
evaluated in three numerical examples.

4471

0 10 20 30 40 50
−3

−2

−1

0

1

2

3

Time steps

(a)

0 10 20 30 40 50
−1.5

−1

−0.5

0

0.5

1

1.5

Time steps

(b)

Fig. 3: Optimized state trajectories for six-link arm task. (a)
DDP. (b) GPDDP.

DDP GPDDP
0

5

10

15

20

25

30

DDP GPDDP
0

5

10

15

20

25

30

Fig. 4: Comparison of DDP and GPDDP for the six-link
arm task. Left figure: time consumed at each iteration for
linearization (sec). Right: number of iterations to obtain the
optimized trajectory.

0 50 100 150 200 250 300
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
y
z
v

x
v

y
v

z
w

x
w

y
w

z

(a)

0 100 200 300
−0.05

0

0.05

0.1

0.15

u
1

u
2

u
3

u
4

(b)

Fig. 5: Simulation results for the helicopter hovering task.
In all plots, the X-axis is the time steps. (a) optimized state
trajectories. (b) optimal controls.

In general, the family of Bayesian nonparametric trajectory
optimization methods combines the attractive characteristics
of probabilistic model learning and model-based trajectory
optimization. The applicability of the proposed framework
to physical robotic and aerospace systems is ongoing work.
Future research includes the use of the predictive variances
for risk sensitive controls and the improvement of the com-
putational efficiency by using sparse GP, local regression,
etc.

REFERENCES

[1] D. Jacobson and D. Mayne. Differential dynamic programming. 1970.
[2] E. Todorov and W. Li. A generalized iterative lqg method for locally-

optimal feedback control of constrained nonlinear stochastic systems.
In American Control Conference (ACC), pages 300–306, 2005.

[3] Y. Tassa, T. Erez, and W. D. Smart. Receding horizon differential
dynamic programming. In Advances in Neural Information Processing
Systems (NIPS), 2007.

[4] E. Theodorou, Y. Tassa, and E. Todorov. Stochastic differential
dynamic programming. In American Control Conference (ACC), pages
1125–1132. IEEE, 2010.

[5] D. Mitrovic, S. Klanke, and S. Vijayakumar. Adaptive optimal
feedback control with learned internal dynamics models. In From
Motor Learning to Interaction Learning in Robots, pages 65–84.
Springer, 2010.

[6] J. Van Den Berg, S. Patil, and R. Alterovitz. Motion planning under
uncertainty using iterative local optimization in belief space. The
International Journal of Robotics Research, 31(11):1263–1278, 2012.

[7] S. Levine and V. Koltun. Variational policy search via trajectory
optimization. In Advances in Neural Information Processing Systems
(NIPS), pages 207–215. 2013.

[8] Y. Tassa, N. Mansard, and E. Todorov. Control-limited differential
dynamic programming. In International Conference on Robotics and
Automation (ICRA), 2014.

[9] J. Morimoto, G. Zeglin, and C. G Atkeson. Minimax differential
dynamic programming: Application to a biped walking robot. In
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), volume 2, pages 1927–1932. IEEE, 2003.

[10] P. Abbeel, A. Coates, M. Quigley, and A. Y Ng. An application
of reinforcement learning to aerobatic helicopter flight. Advances in
neural information processing systems (NIPS), 19:1, 2007.

[11] C.K.I Williams and C.E. Rasmussen. Gaussian processes for machine
learning. MIT Press, 2006.

[12] J. Ko and D. Fox. Gp-bayesfilters: Bayesian filtering using gaussian
process prediction and observation models. Autonomous Robots,
27(1):75–90, 2009.

[13] D. Nguyen-Tuong, M. Seeger, and J. Peters. Model learning with local
gaussian process regression. Advanced Robotics, 23(15):2015–2034,
2009.

[14] M. P. Deisenroth, C. E. Rasmussen, and J. Peters. Gaussian process
dynamic programming. Neurocomputing, 72(7):1508–1524, 2009.

[15] M. P. Deisenroth and C. E. Rasmussen. Pilco: A model-based and
data-efficient approach to policy search. In ICML, pages 465–472,
2011.

[16] Y. Pan and E. Theodorou. Probabilistic differential dynamic program-
ming. In Advances in Neural Information Processing Systems (NIPS),
pages 1907–1915, 2014.

[17] M. Deisenroth, D. Fox, and C. Rasmussen. Gaussian processes for
data-efficient learning in robotics and control. IEEE Trans. Pattern
Anal. Mach. Intell. (PAMI), 37(2):408–423, 2015.

[18] J. Quinonero Candela, A. Girard, J. Larsen, and C. E. Rasmussen.
Propagation of uncertainty in bayesian kernel models-application to
multiple-step ahead forecasting. In IEEE International Conference on
Acoustics, Speech, and Signal Processing, 2003.

[19] A. Girard, C.E. Rasmussen, J. Quinonero-Candela, and R. Murray-
Smith. Gaussian process priors with uncertain inputs - application to
multiple-step ahead time series forecasting. In Advances in Neural
Information Processing Systems (NIPS), 2003.

[20] L. Csató and M. Opper. Sparse on-line gaussian processes. Neural
Computation, 14(3):641–668, 2002.

4472

