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Abstract

We develop a framework for dimension reduction, mode decomposition, and nonparametric forecasting
of data generated by ergodic dynamical systems. This framework is based on a representation of the
Koopman and Perron-Frobenius groups of unitary operators in a smooth orthonormal basis of the L2 space
of the dynamical system, acquired from time-ordered data through the diffusion maps algorithm. Using this
representation, we compute Koopman eigenfunctions through a regularized advection-diffusion operator, and
employ these eigenfunctions in dimension reduction maps with projectible dynamics and high smoothness
for the given observation modality. In systems with pure point spectra, we construct a decomposition
of the generator of the Koopman group into mutually commuting vector fields that transform naturally
under changes of observation modality, which we reconstruct in data space through a representation of
the pushforward map in the Koopman eigenfunction basis. We also establish a correspondence between
Koopman operators and Laplace-Beltrami operators constructed from data in Takens delay-coordinate space,
and use this correspondence to provide a rigorous interpretation of diffusion-mapped delay coordinates for
this class of systems. Moreover, we take advantage of a special property of the Koopman eigenfunction
basis, namely that the basis elements evolve as simple harmonic oscillators, to build nonparametric forecast
models for arbitrary probability densities and observables. In systems with more complex spectral behavior,
including mixing systems, we develop a method inspired from time change in dynamical systems to transform
the generator to a new operator with improved spectral properties, and use that operator for vector field
decomposition and nonparametric forecasting.

Keywords: Koopman operators, Perron-Frobenius operators, dynamic mode decomposition, ergodic
dynamical systems, time change, nonparametric forecasting, kernel methods, diffusion maps

1. Introduction

1.1. Background and motivation

In many branches of science and engineering, one is faced with the problems of dimension reduction
and forecasting of high-dimensional time series. When these time series are generated by ergodic dynamical
systems (or by ergodic components of non-ergodic systems), they posses an important special property,
namely that long-time averages are equivalent to expectation values with respect to the invariant measure of
the dynamics. This property enables sampling of the full phase space from long time series and sufficiently
high-dimensional observables, and data analysis algorithms can be employed to perform dimension reduction
and forecasting of these systems with no a priori knowledge of the equations of motion. This nonparametric
approach is useful in a variety of contexts, such as when the equations of motion are unknown or partially
known, when the system cannot be feasibly simulated, or when the solutions of the equations of motion are
complicated and a decomposition into simpler components (modes) is desired.
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The vast array of methods developed to address these goals can be broadly categorized as state-space
or operator-theoretic methods [1]. A popular state-space approach is to approximate a nonlinear dynamical
system by a collection of local linear models on the tangent planes of the attractor [2–4]; other approaches
construct global nonlinear models for the dynamical evolution map [5], or nonlinearly project the attractor
to lower-dimensional Euclidean spaces and construct reduced models operating in those spaces [6–8]. A
common element of these techniques is that the forward operators of the reduced models are defined in
state space; i.e., they map the state at a given time to another state in the future. On the other hand,
operator-theoretic techniques [1, 9–34, and others] shift attention away from the state-space perspective,
and focus instead on the action of dynamical systems on spaces of observables or measures.

Remarkably, the action of a nonlinear dynamical system on appropriately constructed linear spaces of
observables and measures can be characterized without approximation by groups (or semigroups) of linear
operators, known as Koopman [35] or Perron-Frobenius operators, respectively. In particular, Koopman
operators (also known as composition operators) act on observables by shifts along the dynamical flow, while
Perron-Frobenius operators (also known as Ruelle [36] or transfer operators) act on measures by pullbacks.
Typically, the spaces of observables and measures in question are infinite-dimensional, so one can think of a
tradeoff between a finite-dimensional nonlinear system and a group of linear operators acting on an infinite-
dimensional space. Nevertheless, the intrinsically linear structure of these spaces makes Koopman and
Perron-Frobenius operators amenable to treatment through the full machinery of linear operator theory and
the associated finite-dimensional approximation schemes (e.g., Galerkin methods). Data-driven operator-
theoretic techniques exploit this structure to perform tasks such as spectral analysis of complex systems
[9–11], identification of coherent sets (e.g., invariant, almost-invariant, periodic, and almost-periodic sets)
[23–32], identification of dynamic modes [12–20], computation of ergodic and harmonic quotients [1, 22],
modeling of metastable [33] and slow-fast systems [34], control [21], and other applications. In particular,
[1, 22] developed a method for analyzing ergodic and harmonic quotients based on the diffusion maps
algorithm [37]; in what follows, we will use diffusion maps to learn smooth orthonormal basis sets of functions
from the data, and employ these bases in various Galerkin and spectral methods for dimension reduction,
mode decomposition, and nonparametric forecasting based on Koopman and Perron-Frobenius operators.

For appropriately chosen spaces of observables and measures, the Koopman and Perron-Frobenius opera-
tors are dual pairs, and therefore provide theoretically equivalent information. For instance, in the setting of
an ergodic dynamical system, natural spaces of observables are L2 spaces of complex-valued scalar functions
associated with the system’s invariant probability measures, and natural spaces of measures are complex
measures with L2 densities. Yet, at an applied level, the fact that Koopman and Perron-Frobenius operators
act on fundamentally different entities appears to have led to the development of two fairly distinct families
of approximation techniques (though the dichotomy is not rigid, and there are references in the literature
utilizing results from both the Koopman and Perron-Frobenius perspectives; e.g, [19]).

Historically, data-driven techniques based on Perron-Frobenius operators [23–34] began with the work
of Dellnitz and Junge [23] in 1999. A common approach in these techniques is to approximate the spec-
trum of the Perron-Frobenius operator through a scheme known as Ulam’s method [38]. Essentially, this
involves partitioning the state space into a finite collection of disjoint subsets, and estimating the transi-
tion probabilities between these subsets by counting the corresponding transitions in a large ensemble of
simulations or experiments. The resulting transition probability matrix can be interpreted as a Galerkin
projection of a smoothed (compact) transfer operator for the system perturbed by a small amount of noise,
and the eigenvectors of that matrix at eigenvalues λ on or near the unit circle are used to identify coherent
sets. In subsequent work, Dellnitz, Froyland, et al. [24–28] studied certain classes of systems possessing
quasi-compact Perron-Frobenius operators, where it was rigorously established that Ulam’s method is able
to provide accurate approximations of isolated Perron-Frobenius eigenvalues and their corresponding eigen-
functions.

Data-driven techniques based on Koopman operators were first developed by Mezić and Banaszuk [9]
and Mezić [10] in 2004 and 2005, respectively. In particular, [10] established the Koopman mode expansion
for measure-preserving systems and L2 observables. In this setting, the Koopman and Perron-Frobenius
operators are unitary and adjoint to one another, and have a well-defined spectral expansion consisting
in general of both discrete (pure point) and continuous parts. In [9, 10], a method for estimating the
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point spectrum of Koopman operators was developed using generalized Laplace analysis. This approach
involves computing harmonic averages (Fourier transforms) of time series of observables for different initial
conditions, and identifying the frequencies leading to non-vanishing averages. For those frequencies, the
harmonic average corresponds to a projection of the observable onto an eigenspace of the Koopman operator,
allowing one to identify Koopman eigenvalues and their corresponding periodic eigenfunctions, as well as
spatial patterns called Koopman modes.

In later work, Rowley et al. [13] established that the Koopman mode expansion has close connections
with the dynamic mode decomposition (DMD) technique of Schmid and Sesterhenn [12] and Schmid [15] for
decomposing time-ordered spatiotemporal datasets into so-called dynamic modes. Similarly to the proper
orthogonal decomposition (POD) [39], DMD extracts modes by solving an eigenvalue problem for a matrix A
constructed from experimental snapshots, but instead of the covariance matrix used in POD, DMD employs
a time-shifted cross-correlation matrix capturing the linear dependence of the snapshots at the next time
step on the snapshots at the current time step. To address the computational cost associated with the high
dimensionality of typical spatiotemporal data, the DMD algorithm in [13] employs an Arnoldi-type iterative
method which does not require explicit formation of A. In particular, it was shown that the eigenvalues
and eigenvectors obtained via this algorithm approximate the eigenvalues and modes in the Koopman mode
expansion in [10]. Tu et al. [17] subsequently developed an alternative formulation of DMD based on matrix
pseudoinverses (or truncated pseudoinverses) that does not require the data to be in the form of a single
time series, and moreover returns estimates of the Koopman eigenfunctions (in addition to the eigenvalues
and Koopman modes).

The connections between the Koopman mode expansion and DMD were further studied by Williams
et al. [19], who developed an extended DMD (EDMD) framework. In EDMD, the eigenvalue problem for
the Koopman operator is projected to a finite-dimensional matrix eigenvalue problem associated with the
action of the Koopman operator on a general dictionary of observables. In particular, standard DMD can
be viewed as a particular instance of EDMD for the dictionary formed by the components of the state
vector, but the general approach advocated in EDMD is to employ richer dictionaries than those formed by
the state vector components in order to improve the accuracy of the computed eigenvalues and Koopman
modes. The dictionaries proposed in [19] include Hermite polynomials in ambient data space, radial basis
functions, and discontinuous spectral elements analogous to the bases used in Ulam approximations of
Perron-Frobenius operators. When these dictionaries are sufficiently rich, EDMD converges to a Galerkin
method for the Koopman eigenvalue problem, although issues related to non-compactness and potentially
continuous spectrum of the Koopman operator were not addressed in [19].

Irrespective of the method employed to compute them, the triplets of eigenvalues, eigenfunctions, and
Koopman modes produce a decomposition a complex spatiotemporal signal into simpler “building blocks”,
which are intrinsic to the dynamical system generating the data. In particular, the Koopman eigenvalues
and eigenfunctions are independent of observation modality, meaning that data acquired from different
sensors would yield the same results for the eigenvalues and eigenfunctions, so long as the data contain
sufficiently rich information. In contrast, the results of POD-type techniques and many nonlinear dimension
reduction techniques [40] depend on the observation modality. Of course, the efficacy of the Koopman and
Perron-Frobenius methods in real-world applications depends strongly on a number of factors, including the
properties of the underlying dynamical system, the discretization scheme, and the measurement and data
acquisition apparatus. To motivate our work, we end this section by summarizing some of the challenges
encountered in data-driven operator-theoretic techniques for dynamical systems.

First, at a fundamental level, for systems of high complexity the spectra of the Koopman and Perron-
Frobenius operators are not amenable to eigendecomposition and can be highly exotic. For instance, a
necessary and sufficient condition for a dynamical system to be weak-mixing (a weak form of chaos, which
implies ergodicity) is that the Koopman operators have no L2 eigenfunctions other than the constant func-
tion [41, 42]. While such cases with continuous spectra can be theoretically handled through the Koopman
mode expansion [10], in numerical implementations involving matrix algebra one always obtains eigenvec-
tors, whose properties become difficult to analyze. These observations suggests that numerical methods
for Koopman eigenfunctions must involve, either implicitly or explicitly, some form of regularization or an-
nealing. For instance, in dictionary or Galerkin discretizations regularization is implicitly provided through

3



projection on a finite-dimensional solution space. In fact, regularization is warranted even in simple cases
involving systems with pure point spectra and complete bases of Koopman eigenfunctions. For example, in
irrational flows on tori (arguably, among the simplest ergodic dynamical systems) and at dimension greater
than 1, the frequencies associated with the Koopman eigenvalues are dense on the real line, and this can
lead to poorly conditioned numerical schemes unless care is taken to filter out highly oscillatory solutions.

A second important issue concerns the choice of dictionary or basis employed for operator approximation.
This issue becomes especially pertinent in situations where the ambient space dimension is high, and/or
the data lies on an a priori unknown subset of ambient data space of small or zero measure. As a concrete
example, consider again an irrational flow on an m-torus embedded in Rn. In this case, computing Koopman
eigenfunctions in a smooth function basis for Rn (e.g., Hermite polynomials) can be problematic due to
computational cost (which increases exponentially with n independently of the intrinsic dimension m), but
more importantly due to the fact that the eigenfunctions are supported on a set of Lebesgue measure zero,
and therefore cannot be well represented in a smooth basis for functions on Rn. In such situations (which
are quite prevalent in real-world applications) it is preferable to work in a basis which is adapted to the
intrinsic geometry of the data.

A third issue, somewhat different in nature to the previous two, concerns the identification of spatial
modes. Since the Koopman and Perron-Frobenius eigenfunctions are intrinsic to the dynamical system
generating the data, one would like that the associated modes are also intrinsic; i.e., that they transform
naturally as vector-valued functions under changes of observation modality. However, in the standard
DMD and EDMD construction, the Koopman modes are given by global averages of the data weighted by
the corresponding Koopman eigenfunctions, and such averages do not transform naturally under general
nonlinear transformations of the data.

1.2. Contributions of this work
In this paper, we develop operator-theoretic techniques for dimension reduction and mode decomposition

of data generated by ergodic dynamical systems. Building on these methods, we also develop nonparametric
techniques for forecasting observables and probability measures. A key ingredient of our approach is a
data-driven orthonormal basis for the L2 space of the dynamical system constructed using the diffusion
maps algorithm [37] in conjunction with variable-bandwidth kernels [43]. The construction of this basis
follows the approach of Berry et al. [44] for approximating Kolmogorov and Fokker-Planck operators (the
stochastic analogs of the Koopman and Perron-Frobenius operators, respectively) of stochastic dynamical
systems on manifolds. Here, we employ this basis in a family of spectral and Galerkin methods for the
Koopman eigenvalue problem, reconstruction of vector fields (which can be thought of as a generalization of
the notion of Koopman modes), and nonparametric forecasting. Ergodicity enables the implementation of
these techniques from a single time series of measurements of the state vector without requiring (potentially
costly or infeasible) ensembles of experiments with different initial conditions. The techniques are also
applicable in the case of partial observations, so long as the observation map is such that one of the variants
of Takens’ delay embedding theorem applies [45–49]. We demonstrate our approach through analytical and
numerical applications to ergodic dynamical systems on the 2- and 3-torus, including systems with mixing
[50] and fixed points [51].

The data-driven basis from diffusion maps has several attractive properties that help address the chal-
lenges in operator-theoretic techniques outlined in Section 1.1:

1. The basis functions are naturally supported on the subset of ambient data space on which the system
evolves (e.g., a low-dimensional attractor), and their computation requires no a priori knowledge of
that subset. In particular, under suitable geometrical smoothness assumptions, the diffusion maps
basis converges in the limit of large data to a complete orthonormal basis of the L2 space of the
dynamical system. By orthogonality of the basis, passing from a Koopman to a Perron-Frobenius
operator and vice versa can be accomplished by a standard matrix transpose.

2. The cost for computing the basis functions scales linearly with the ambient space dimension d, and
after the basis has been computed, the cost of the Koopman and Perron-Frobenius approximation is
independent of d. This property is particularly important in high-dimensional applications such as
analysis of engineering and geophysical fluid flows (e.g., [52]).
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3. Associated with the diffusion eigenfunctions is a Dirichlet energy (given by the corresponding eigenval-
ues), which measures the roughness of the eigenfunctions in a Riemannian geometry that depends on
the kernel. Here, the kernel is constructed explicitly so that the Riemannian metric has compatible vol-
ume form with the invariant measure of the dynamics. As a result, our Galerkin approximation spaces
for the Koopman eigenvalue problem are spanned by orthonormal functions with minimal expected
roughness (with respect to the invariant measure).

4. Through an eigenvalue-dependent normalization, the diffusion eigenfunctions form a natural basis
for the H1 Sobolev space associated with the invariant measure. In this basis, isotropic diffusion
operators are represented by identity matrices, and therefore regularization can be carried out in a
computationally efficient and well-conditioned manner.

5. Through the use of kernels in Takens delay-coordinate space [53, 54], the basis functions from diffusion
maps can be made to converge to Koopman eigenfunctions in pure point spectrum systems, leading
to efficient and noise-robust Galerkin schemes.

6. The variable-bandwidth family of kernels provides a flexible framework to perform a change of measure
which is equivalent to a time change [55] in the dynamical system—we use such a change of measure
as a regularization tool in certain classes of systems with continuous Koopman spectra.

In what follows, we first develop our approach in the case of systems with pure point spectra, where the
Koopman eigenfunctions form a complete orthonormal basis of the L2 space associated with the invariant
measure. We formulate a Galerkin method for the Koopman eigenvalue problem in the appropriate H1 space
on the phase space manifold—this is important in systems with dense sets of eigenfrequencies (including
pure point spectrum systems), as it eliminates highly oscillatory eigenfunctions from the spectrum through
Tikhonov regularization. Using the Dirichlet energies available from diffusion maps, we select the least rough
set of Koopman eigenfunctions with corresponding rationally independent eigenvalues, and take advantage
of a group structure of the Koopman eigenfunctions to generate a complete basis of the L2 space on the
manifold recursively from the group generators. This basis is employed to decompose the vector field of the
dynamics into a set of linearly-independent, nowhere-vanishing, mutually commuting vector fields (i.e., a
set of dynamically independent components), and to represent the pushforward map carrying along these
vector fields in data space. The reconstructed vector fields are spatial patterns analogous to Koopman
modes, which transform naturally (as tensors) under changes of observation modality. The generating
eigenfunctions are also used to construct factor maps [9, 10] from the phase space manifold to the complex
plane, under which the dynamical vector field is projectible, and the dynamics in the image spaces are
simple harmonic oscillations. We show that through the use of delay-coordinate maps, the Laplace-Beltrami
operator approximated by diffusion maps in the limit of infinitely many delays commutes with the generator
of the Koopman group; as a result, the two operators have common eigenfunctions. This result bridges these
two important families of dimension reduction and mode decomposition techniques, and naturally leads to
efficient Galerkin schemes for the Koopman eigenvalue problem with high robustness to i.i.d. measurement
noise.

Besides dimension reduction and mode decomposition, we utilize the Koopman eigenvalues and eigen-
functions in nonparametric forecasting schemes for probability measures and observables. This approach
is closely related to the nonparametric forecasting method for stochastic systems developed in [44], with
the difference that we advance probability densities using the simple harmonic oscillator structure of the
Koopman eigenfunctions, as opposed to taking powers of a finite-dimensional Fokker-Planck operator. In
particular, Koopman eigenfunctions of pure point spectrum systems evolve as uncoupled oscillators with
frequency given by the corresponding eigenvalue, and by completeness, these eigenfunctions can be used to
predict the time evolution of arbitrary observables in L2 and probability measures with L2 densities.

Next, we consider systems whose Koopman operators do not have pure point spectra, including a class
of weak mixing systems with no nonconstant eigenfunctions. There, a regularization technique inspired
from the theory of time change in dynamical systems [55] is developed which attempts to construct a
new dynamical system having the same orbits as the original one, but with improved spectral properties for
eigendecomposition and forecasting. In particular, we perform a time-change transformation using the norm
of the dynamical vector field in the ambient data space as the time-change function. This technique can be
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applied to arbitrary dynamical systems as it requires no a priori knowledge of the governing equations, and in
special cases it recovers a pure point system with the same orbits as the mixing system generating the data.
We generalize our vector field decomposition and nonparametric forecasting techniques to the time-changed
framework, where the recovered vector field components become non-commuting, and the simple harmonic
oscillators acquire couplings and time-dependent frequencies.

This paper is organized as follows. In Section 2, we lay out our notation and summarize basic results from
ergodic theory. In Section 3, we formulate our dimension reduction, mode decomposition, and forecasting
techniques for systems with pure point spectra. We discuss the numerical implementation of these tech-
niques, including the Galerkin method with diffusion regularization for the Koopman eigenvalue problem, in
Section 4, where we also present numerical applications to variable-speed flows on the 2-torus. In Section 5,
we extend this scheme to delay-coordinate mapped data, and establish the correspondence between the
Laplace-Beltrami and Koopman operators arising in the limit of infinitely many delays along with methods
for removing i.i.d. observational noise. In Section 6, we formulate our time-change approach for improving
the spectral properties of the Koopman group, and present applications to mixing dynamical systems on the
3-torus and fixed-point ergodic flows on the 2-torus. We conclude in Section 7. Appendices A–C contain
auxiliary material and technical results, including high-level listings of the algorithms developed in the main
text, and an asymptotic analysis of denoising using diffusion maps in conjunction with delay-coordinate
maps. Videos showing the temporal evolution of probability densities in the applications of Section 4 and 6
are included as supporting online material (SOM). Also included as SOM is a comparison of our Koopman
eigenfunction results to Koopman eigenfunctions computed via EDMD. An application of the techniques
developed here to atmospheric dynamics can be found in [52].

2. Notation and basic results from ergodic theory

Let M be a closed, connected, compact, orientable, smooth (of class C∞), m-dimensional manifold with
a Borel σ-algebra B. In what follows, M will be the phase space of a continuous-time dynamical system
with a smooth, invertible evolution map Φt : M 7→ M , t ∈ R. The evolution map induces a map Φt∗ on
measures on B such that for a measure µ and A ∈ B, Φt∗µ(A) = µ(Φ−1

t A) = µ(Φ−tA). We will take µ to
be a Φt-invariant probability measure (i.e., µ(M) = 1 and Φt∗µ = µ), characterized by a smooth, positive
density relative to local coordinates. We consider that the dynamical system is observed at a fixed sampling
interval T through a smooth, vector-valued observation function F : M 7→ Rd. That is, we have a dataset
consisting of time-ordered samples {x0, x1, . . . , xN−1} in the d-dimensional data space, with

xi = F (ai), ai = Φtia0, ti = T (i− 1). (1)

Without loss of generality, we assume that F is an embedding of M into Rd, i.e., it is one-to-one and its
derivative, F∗|a : TaM 7→ TF (a)Rd, has full rank at every a ∈M . If F is not an embedding, then with high
probability an embedding can be constructed from F using delay-coordinate maps [45–49], and the methods
described below can be applied in that space (e.g., [53, 54]). The embedding of M into data space induces
a smooth Riemannian metric tensor g on M given by pulling back the canonical inner product of Rd, i.e.,
g(u1, u2) = F∗ u1 ·F∗ u2 for any two tangent vectors u1, u2 ∈ TaM . We denote the Riemannian volume form
associated with g and the corresponding Riemannian measure by dvolg and volg, respectively. From our
point of view F , g, and volg are extrinsic objects to the dynamical system and we would like the results of
our dimension reduction and mode decomposition methods to not depend on them.

Next, we introduce the Koopman and Perron-Frobenius groups of operators and their generator which
will play a central role in our study. We refer the reader to one of the many books and reviews on ergodic
theory (e.g., [56, 57]) for more detailed expositions on these and other related topics. Let L2(M,µ) be the
Hilbert space of square-integrable, complex valued functions on M with inner product 〈f1, f2〉 =

∫
M
f∗1 f2 dµ

and the corresponding norm ‖f‖ = 〈f, f〉1/2. In general, L2(M,µ) is different from the Hilbert space
L2(M, volg) associated with the Riemannian inner product 〈f1, f2〉g =

∫
M
f∗1 f2 dvolg, but because M is

compact the two spaces are isomorphic. The Koopman operator Ut : L2(M,µ) 7→ L2(M,µ) for time t ∈ R
is defined via Utf = f ◦ Φt; that is, the function ft = Utf evaluated at a ∈ M is equal to f evaluated at
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the shifted point at = Φta along the dynamics, ft(a) = f(at). The set of Koopman operators {Ut} forms an
Abelian group under composition of operators, Ut1Ut2 = Ut1+t2 , with U0 = I acting as the identity element
of the group. These operators are unitary on L2(M,µ) with U∗t = U−1

t = U−t, and therefore they induce
an isometry, ‖Utf‖ = ‖f‖. The generator of the group, v = dUt/dt|t=0, is a skew-symmetric operator on
L2(M,µ) with v∗ = −v, and one of its important properties is the Leibniz rule,

v(f1f2) = v(f1)f2 + f1v(f2). (2)

Therefore, v is a smooth vector field in TM giving the directional derivative of functions along the dynamical
flow, v(f)(a) = limt→0(f(Φta) − f(a))/t. Because Φt preserves µ, v has the Liouville property, divµ v = 0,
i.e., it generates an incompressible flow on M with respect to the invariant measure. Let now M be
the space of complex-valued measures on B with densities in L2(M,µ). The Perron-Frobenius operator,
Ũt : L2(M,µ) 7→ L2(M,µ) characterizes the action of the flow on the densities of measures in M; that is,
given ν ∈M with dν/dµ = ρ, then ρt = Ũtρ is equal to the density d(Φt∗ν)/dµ.

In the Hilbert space setting of interest here the Koopman and Perron-Frobenius operators form an adjoint
pair, Ũt = U∗t , so we can characterize both through the generating vector field v. In particular, v maps to
a vector field V = F∗v in the tangent data space, TRd, and because TRd is canonically isomorphic to Rd,
we can intuitively think of V as a collection of Euclidean vectors (“arrows”) tangent to the data manifold
F (M) along the direction of the dynamical flow. Note that V can be approximated at O(T p) accuracy
by taking finite differences of the time-ordered snapshots {xi} [58]; e.g., (xi+1 − xi−1)/(2T ) is an O(T 2)
approximation of V at xi. In Section 3.2, we will represent the pushforward map F∗ in a smooth orthonormal
basis of L2(M,µ), allowing us to reconstruct arbitrary vector fields on M , and in particular, the vector field
decomposition of the generator.

Remark 1 (Continuous vs. discrete time). In practical applications, the data is acquired at the finite
sampling interval T , and we can consider the discrete-time system (M,B, µ, Φ̂n), where Φ̂n = ΦnT and
n ∈ Z. In the discrete case, the Koopman group {Ûn} is generated by UT so that Ûn = UnT . While
some of the constructions discussed below can also be be made using UT instead of the vector field v
(replacing the eigenvalue λ in (3) ahead by eλT ), it is generally more natural to carry out our analysis
in the continuous-time setting, and use finite differences for numerical implementation. In particular, the
discrete-time generator does not have the Leibniz property of the vector field, and cannot be reconstructed
in data space via the pushforward map. Nevertheless, discrete analogs of these properties can be constructed
using finite-difference approximations of v(f), as described in Section 4.3. The diffusion regularization and
time-change techniques of Sections 4 are 6 are also more naturally formulated in the continuous-time setting
and implemented with finite-difference approximations.

Consider now the eigenvalue equation for the generator,

v(z) = λz, λ ∈ C, z ∈ L2(M,µ). (3)

Because v is skew-symmetric on L2(M,µ), for any solution to (3) we have λ = iω, where ω is a real number
that corresponds to an intrinsic (i.e., independent of observation modality) frequency of the dynamical
system. Thus, the set of eigenvalues lies on the imaginary line, and if λ is the eigenvalue corresponding to
the eigenfunction z then λ∗ = −λ is also an eigenvalue corresponding to the eigenfunction z∗. It also follows
from the skew-symmetry of v that eigenfunctions corresponding to distinct eigenvalues are orthogonal on
L2(M,µ). Moreover, by the Leibniz property in (2) (or by unitarity of the Ut), it follows that the eigenvalues
and eigenfunctions of v have a group structure under addition and multiplication, respectively. Specifically,
if z1 and z2 are eigenfunctions corresponding to the eigenvalues λ1 and λ2, respectively, then z1z2 is also
an eigenfunction corresponding to the eigenvalue λ1 + λ2. Because v is a directional derivative operator
annihilating constant functions, (3) always has the solution λ = 0, z = 1, where 1 denotes here a constant
function equal to one µ-a.e. When other solutions to (3) are present (which, as stated in the Introduction,
is not necessarily the case), this group structure is highly beneficial for mode decomposition and forecasting
using λ and z. Note that the spectra of the diffusion operators used traditionally for geometrical analysis of
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data do not have this group structure, but (on compact manifolds) these operators are compact and hence
guaranteed to have pure point spectra with the associated complete orthonormal eigenfunctions.

Hereafter, we will assume that the continuous-time dynamical system under study is ergodic, and that the
discrete-time system for the given sampling interval is also ergodic. It then follows by Birkhoff’s pointwise er-
godic theorem that for µ-a.e. a ∈M and for every f ∈ L2(M,µ) the temporal means, f̄t(a) =

∫ t
0
f(Φτa) dτ/t

and f̄N (a) =
∑N−1
i=0 f(Φ̂ia)/N in the continuous- and discrete-time cases, respectively, both converge in

L2(M,µ) to the ergodic average
∫
M
f dµ. Under these assumptions, inner products on L2(M,µ) and other

related Sobolev spaces can be approximated by Monte Carlo sums of sampled time series, i.e., given the
time series {f1i}N−1

i=0 and {f2i}n−1
i=0 with fji = fj(Φ̂ia) and fj ∈ L2(M,µ), then for µ-a.e. a ∈M we have

lim
N→∞

1

N

N−1∑
i=0

f∗1if2i =

∫
M

f∗1 f2 dµ = 〈f1, f2〉. (4)

This property makes the data-driven techniques in Sections 4 and 6 ahead and in [44] possible. Note that if
the dynamical system is not ergodic but preserves µ, then the Monte Carlo sum in (4) will converge to the L2

inner product over the ergodic component associated with the point a, and the techniques developed below
can be applied for that component provided that the assumptions laid out in the beginning of Section 2
are satisfied. An important spectral implication of ergodicity is that the eigenfunctions of v have µ-a.e.
constant modulus, i.e., they can be normalized to lie on the unit circle |z| = 1 on the complex plane. This is
because |z|2 = z∗z is an eigenfunction with eigenvalue 0 (due to the group structure of the eigenvalues and
eigenfunctions) and therefore a µ-a.e. constant function.

It follows from the spectral theorem for unitary operators on Hilbert spaces [55] that in mixing systems
v has continuous spectrum (but no residual spectrum). This observation, as well as the existence of many
known ergodic dynamical systems with exotic spectral behavior (e.g., [41, 55]) raises concerns about the
suitability of data-driven eigendecomposition techniques involving the generator in systems of high complex-
ity. In Section 6, we will present a regularization scheme based on the theory of time change in dynamical
systems that attempts to transform v to a generator of a dynamical system which is more amenable to eigen-
decomposition via numerical methods. For now, however, we restrict attention to systems with pure point
spectra where the spectral properties of v are “optimal” for both dimension reduction and nonparametric
forecasting.

Definition 2 (Pure point spectrum). A dynamical system (M,B, µ, Φt) is said to have pure point spec-
trum if there exists an orthonormal basis of L2(M,µ) consisting of eigenfunctions of the generator. We say
that the spectrum is generated by l basic frequencies if there exist l rationally independent real numbers
{Ωi}li=1 such that the eigenvalues in (3) can be expressed as

λk = i

l∑
i=1

kiΩi, k = (k1, k2, . . . , kl) ∈ Zl.

Denoting the eigenfunction corresponding to the eigenvalue iΩi by ζi, where we take ‖ζi‖ = 1 by convention,

the eigenfunction corresponding to eigenvalue λk is given by zk =
∏l
j=1 ζ

ki
i .

In systems with pure point spectra, every observable f ∈ L2(M,µ) has the Fourier expansion

f =

∞∑
k1,k2,...,kl=−∞

f̂k1k2···klζ
k1
1 ζk22 · · · ζ

kl
l , with f̂k1k2···kl = 〈ζk11 ζk22 · · · ζ

kl
l , f〉.

Whenever convenient, we will use the shorthand notation f =
∑
k f̂kzk with k = (k1, . . . , kl). Note that by

virtue of the group structure of the spectrum, one needs to store only the l generating eigenfunctions and
the corresponding basic frequencies; the rest of the basis can be generated recursively whenever needed. The
group structure of the eigenfunctions also leads to a useful convolution relationship giving the expansion
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coefficients of products of functions (which we do not quote here in the interest of brevity). Moreover,
applying the decomposition componentwise to the vector-valued observation map F we have

F =
∑
k

F̂kzk, F̂k = 〈zk, F 〉, (5)

where the Fourier coefficients are now spatial patterns in Rd. In particular, these patterns are the Koopman
modes introduced in [9, 10]. In Section 3.2, we will see that Koopman modes also arise naturally in the
spectral representation of the pushforward map F∗ for vector fields.

A classical result in ergodic theory [42] states that ergodic dynamical systems with pure point spectra
are measure-theoretically isomorphic to translations on compact Abelian groups equipped with the Haar
measure. In particular, for pure point systems realized through diffeomorphisms of smooth manifolds (which
is the case studied here), and possessing m basic frequencies and the associated smooth eigenfunctions, the
phase space manifold must necessarily be the m-torus, Tm. Pure-point systems can be constructed from
diffeomorphisms of more general smooth manifolds, but these systems have discontinuous eigenfunctions [59].
Throughout this paper, the case M = Tm will be the canonical setting where we develop our dimension
reduction and forecasting strategies for pure point spectrum systems, as well as for systems with more
general spectral properties.

Remark 3 (Density of the spectrum). The set of frequencies {
∑m
i=1 kiΩi | k1, . . . , km ∈ Z} is countable

and therefore has zero Lebesgue measure on R. However, for m = dimM ≥ 2, and by rational independence
of the Ωi, the set of frequencies is dense in R. Moreover, the basic frequencies {Ωi} are non-unique as linear
combinations of the Ωi with nonzero integer coefficients are also rationally independent. This fact raises the
questions of how to select appropriate generators of the spectrum, and how to ensure the good conditioning
of approximate generators obtained via finite-dimensional numerical algorithms. We will address these issues
in Section 3.1 and 4.3.

3. Dimension reduction and forecasting in systems with pure point spectra

3.1. Intrinsic dimension reduction coordinates

Our approach for systems with pure point spectra is to construct a family of nonlinear projection maps
{πi}mi=1 of the phase space manifold M (or, equivalently, its diffeomorphic copy F (M) in data space) to
the complex plane, using the generating eigenfunctions {ζi}mi=1 from Definition 2 as dimension-reduction
coordinates. Specifically, we set

πi : M 7→ C with πi(a) = ζi(a), (6)

where, by ergodicity, the image πi(M) lies on the unit circle T ⊂ C. Below, we will see that πi is actually
a factor map that projects the dynamical system on M to a rotation on T with frequency Ωi. The use of
such factor maps for dimension reduction was originally proposed in [9, 10].

The projection maps in (6) follow the widely adopted paradigm of applied harmonic analysis and machine
learning, which is to perform dimension reduction of data on nonlinear manifolds using eigenfunctions of
linear operators on function spaces on these manifolds [37, 60–65]. While these methods are typically based
on eigenfunctions of diffusion operators or heat kernels, in this case we use eigenfunctions of a skew-symmetric
operator intrinsic to the dynamical system generating the data, namely the generator of the Koopman group,
with a small amount of diffusion added for annealing. We will formulate algorithms for approximating these
eigenfunctions from data in Section 4.3. For now, we discuss the main features of dimension reduction with
eigenfunctions of the generator of the Koopman group, which follow from basic results of ergodic theory and
maps of manifolds. In what follows, we use the notation {θ1, . . . , θm} for general local coordinates defined
in a neighborhood of a ∈ M . Moreover, we denote the corresponding coordinate basis vectors of TaM and
their duals by { ∂∂θ1 , . . . ,

∂
∂θm } and {dθ1, . . . , dθm}, respectively, where dθµ( ∂

∂θν ) = δµν . In this coordinate

system, we have the expansion v =
∑m
µ=1 v

µ ∂
∂θµ for the generator, and v(f) =

∑m
µ=1 v

µ ∂f
∂θµ .
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First, the eigenfunctions of v are intrinsic to the dynamical system (M,B, µ, Φt), and in particular do
not depend on the observation map F and its associated Riemannian metric and volume form. As stated
in Remark 3, the generating eigenfunctions and the corresponding basic frequencies are non-unique, but
given any two observation maps it is possible to find generating eigenfunctions such that the corresponding
projection maps from (6) are consistent. This means that the πi provide a unified space to parameterize data
acquired from different sensors (different choices of F ), but generated by the same dynamical system. This
property has several data analysis applications (which we do not study here), such as fusion and inference
of data acquired from different sensors and from potentially distinct states in M .

In the setting of a single observation modality, we choose the generating eigenfunctions with the least
oscillatory behavior in the Riemannian metric g associated with the observation map. A natural measure
to quantify this behavior for a function f is the Dirichlet energy, Eg(f) = ‖gradg f‖2, where gradg is the
gradient operator associated with g and ‖·‖ the L2 norm for vector fields. We will provide more precise
definitions for the gradient operator and related Hilbert space notions in Section 4.1, but for now it suffices
to note that the set of Dirichlet energies {Eg(zk)} of the eigenfunctions is discrete in R, and therefore a
finite collection of eigenfunctions can be stably ordered in order of increasing Eg(zk). (Actually, in Section 4
we will work with a conformally transformed metric, h, with stronger invariance properties under changes
of observation modality than g, but for now we work with g to illustrate ideas.) Intuitively, we expect
that functions with small Dirichlet energy can be more accurately approximated from finite datasets than
highly oscillatory functions, so our selection criterion for the generating eigenfunctions is to set {ζi}mi=1 to
the first m eigenfunctions in that ordering corresponding to rationally independent frequencies. We adopt
this selection criterion throughout the paper, and discuss its numerical implementation in Section 4.3. In
general, the generating eigenfunctions selected in this way will not always agree among different observation
modalities, but our selection criterion exhibits some rigidity in the sense that there exist equivalence classes
of observation modalities for which the selected generating eigenfunctions and generating frequencies are
the same.

Further useful properties of the Koopman eigenfunctions pertain to the dynamics in the image space
from (6).

Proposition 4. The vector field v is projectible under πi in the sense that for any a, b ∈ M such that
πi(a) = πi(b), the equality πi∗v|Tπi(a)C = πi∗v|Tπi(b)C holds, where πi∗ : TM 7→ TC is the derivative map of
πi, mapping tangent vectors on M to tangent vectors on C.

Proof. Let {ê1, ê2} = {1, i} be the canonical basis of C. This basis can be canonically identified with a basis

of Tπi(a)C so that v∗ = πi∗v|πi(a) =
∑2
α=1 v

α
∗ êα, where

vν∗ =

m∑
µ=1

vµ
∂χν

∂θµ
= v(χν), χ1 = Re ζi, χ2 = Im ζi.

Because v(ζi) = iΩiζi, we have vν∗ |Tπi(a)C = vν∗ |Tπi(b)C whenever πi(a) = πi(b). In particular, note that

v(χ1) = −Ωiχ2 and v(χ2) = Ωiχ
1.

That v is projectible under πi is a non-trivial property which is not satisfied by general manifold sub-
mersions, and ensures that the time evolution of the data in the image spaces πi(M) can be described by
means of autonomous deterministic dynamical systems, avoiding closure issues. In this particular case, it
is straightforward to check that the projected dynamics are simple harmonic oscillations (rotations) with
frequencies Ωi. Specifically, introducing the time series ζ̃i,a(t) = ζi(Φta) we have the ordinary differential

equation dζ̃i/dt = iΩiζi with the solution

ζ̃i,a(t) = ζi(Φta) = ζi(a)eiΩit. (7)

It follows from (7) that the image πi(M) under each of the projection maps πi is the full unit circle.
Moreover, we have πi ◦ Φt = Ξi,t ◦ πi, where Ξi,t : T 7→ T is the circle rotation with frequency Ωi for time
t ∈ R; i.e., Ξi,t(ϑ) = ei(ϑ+Ωit). Thus, πi is a factor map [9, 10], sending the original flow (which can have
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variable speed; see Section 4.6 ahead) to a constant-frequency rotation on the circle, and this map is chosen
such that it is optimally smooth with respect to the Dirichlet energy Eg. Further, recalling that the Ωi are
rationally independent, we see that for our canonical case, M = Tm, the composite map π : M 7→ Cm with
π(a) = (π1(a), . . . , πm(a)) induces a diffeomorphism of the torus, mapping the original flow to the irrational
flow Ξt = (Ξ1,t, . . . , Ξm,t) on π(M) = Tm such that π ◦ Φt = Ξt ◦ π.

3.2. Vector field decomposition

So far, we have constructed a family of projection maps taking the dynamical vector field v on M to the
vector fields vi∗ on the circle generating simple harmonic oscillations. However, given the vi∗ it is generally
not possible to perform the reverse operation and pull them back on M . In this Section, we construct a
decomposition of v into a sum of vector fields which are mutually commuting, and describe “simpler” (but
non-ergodic) dynamics than v in that they have non-trivial nullspaces.

Theorem 5. Let vi : L2(M,µ) 7→ L2(M,µ) be the linear operator defined through its action on the eigen-
function basis from Definition 2:

vi(ζ
k1
1 · · · ζ

ki
i · · · ζ

km
m ) = ikiΩiζ

k1
1 · · · ζ

ki
i · · · ζ

km
m .

(i) vi is a vector field on M with nullspace ker vi =
∏
j 6=iZj, where {Zj}mj=1 are the orthogonal subrings

of L2(M,µ) generated by ζj.
(ii) At every a ∈ M , the vi are non-vanishing, linearly independent, and have vanishing commutator,

[vi, vj ] = vivj − vjvi = 0.
(iii) The transformations Φi,t : M 7→ M generated by vi preserve the invariant measure of the full

dynamics.
(iv) The Φj,t act on the vi by translations, in the sense that the tangent vector u ∈ TbM with u =

Φj,t∗(vi|a) and b = Φj,t(a) acts on f ∈ L2(M,µ) according to u(f) = vi|b(f) for every a ∈ M , where
Φj,t∗ : TM 7→ TM is the derivative map associated with Φj,t.

(iv) The decomposition v =
∑m
i=1 vi holds.

Proof. To prove that vi is a vector field, it suffices to show that it obeys the Leibniz rule for all f1, f2 ∈
L2(M,µ), and we will verify that this is the case by direct computation. Introducing the multi-indices
k = (k1, . . . , km) and l = (l1, . . . , lm) with k, l ∈ Zm, we have f1 =

∑
k ckζ

k1
1 · · · ζkmm , f2 =

∑
l dlζ

l1
1 · · · ζlmm ,

and f1f2 =
∑
k,l ckdlζ

k1+l1
1 · · · ζkm+lm

m , where ck = 〈ζk11 · · · ζkmm , f1〉 and dl = 〈ζlii · · · ζlmm , f2〉. Therefore,

vi(f1) = iΩi
∑
k kickζ

k1
1 · · · ζ

ki
i · · · ζkmm , vi(f2) = iΩi

∑
l lidlζ

l1
1 · · · ζ

li
i · · · ζlmm , and

vi(f1f2) = iΩi
∑
k,l

(ki + li)ckdlζ
k1+l1
1 · · · ζki+lii · · · ζkm+lm

m .

The Leibniz rule follows directly from the last three equations. Moreover, that ker vi =
∏
j 6=iZj follows by

noting that f in this subspace has the expansion coefficients with ck1···ki···km = 0 for all ki 6= 0, and therefore
vi(f) = 0. This proves part (i) of the Lemma.

The linear independence of vi in part (ii) can be checked by noticing that vj(ζi) = 0 for all j 6= i, but
vi(ζi) = iΩiζi is nowhere-vanishing on M . Thus, vi(ζi) cannot be expressed as a linear combination of
{vj(ζi)}j 6=i. Repeating this argument for all i ∈ {1, . . . ,m} leads to the desired result. To establish commu-

tativity of the vi, we use again the decomposition for f1 and compute vivjf1 = −ΩiΩj
∑
k kikjckζ

k1
1 · · · ζkmm .

This expression is invariant under permutations of i and j, leading to [vi, vj ]f1 = 0 and completing the proof
of part (ii).

Turning to part (iii), we first note that starting from any a ∈M we can follow the integral curves of the
vi for an arbitrary time t ∈ R, and therefore we can construct the flows Φi,t in the statement of the Lemma.
Then, a necessary and sufficient condition that these flows are measure preserving is that the functions
divµ vi vanish everywhere on M , where divµ is the divergence operator on vector fields associated with the
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invariant measure µ (see (15) for an expression in local coordinates). The adjoint of divµ is the negative
gradient with respect to the ambient space metric g, and for any eigenfunction zk we have

〈zk,divµ vi〉 = −〈gradg zk, vi〉 = −
∫
M

vi(z
∗
k) dµ = iΩiki

∫
M

zkdµ = 0,

where the last equality holds because ki = 0 if zk is constant, and
∫
M
zkdµ = 〈1, zk〉 vanishes if zk is

nonconstant by ergodicity. Therefore, divµ vi vanishes everywhere since it is orthogonal to every element in
a complete basis of L2(M,µ).

Next, since {zk} is a basis of L2(M,µ), to verify part (iv) it is sufficient to show that u(zk) = vi|b(zk).
Indeed, according to (7),

u(zk) = (Φj,t∗(vi|a))(zk) := vi|a(zk ◦ Φj,t) = eiΩjtkjvi|a(zk) = eiΩjtkj iΩikizk(a) = iΩikizk(b) = vi|b(zk).

Finally, we verify the decomposition in part (iv) by operating with v on the function f1 and using the
Leibniz rule, viz.

v(f1) =

m∑
i=1

iΩi
∑
k

kickζ
k1
1 · · · ζkmm =

m∑
i=1

vi(f1).

The vanishing commutator of the vi from Theorem 5 is an intrinsic (observation map independent) dy-
namical independence property. This property can also be seen by considering local coordinates (θ̃1, . . . , θ̃m)
constructed through the canonical angle coordinates of the circles πi(M) from the projection maps in (6). In
these coordinates, we have vi = Ωi

∂
∂θ̃i

, and the full vector field, v =
∑m
i=1Ωi

∂
∂θ̃i

, is decomposed into mani-
festly independent components. This decomposition has connections with the nonlinear independent com-
ponent analysis technique of Singer and Coifman [66], which recovers independent components of stochastic
differential equations on manifolds using kernel methods. Globally onM , the vi generate measure-preserving,
but non-ergodic, transformations Φi,t (together with associated Koopman operators), giving the full evolu-
tion map through the composition Φt = Φ1,t ◦ · · · ◦Φm,t, where the order of the components does not matter.
Moreover, as is the case with Φt, the projection maps πi in (6) are factor maps mapping the dynamics on M
associated with Φi,t to the corresponding circle rotation Ξi,t introduced in Section 3.1; i.e., πi◦Φi,t = Ξi,t◦πi.

The vector fields vi are intrinsically defined as differential operators on M , and to reconstruct them in
data space Rd we apply the pushforward map for tangent vectors introduced in Section 2.

Proposition 6. Let u be a smooth vector field on M , and let F be a smooth embedding of M into Rd. Then,
the image u∗ = F∗(u) under the pushforward map F∗ : TM 7→ TRd is given by u∗ = u(F ), where u acts on
F componentwise in a basis of Rd.

Proof. Let {e1, . . . , ed} be a basis of Rd (not necessarily orthonormal). This basis induces a basis of the
tangent space TxRd at every x ∈ Rd through the canonical isomorphism TxRd ' Rd, and we have u∗ =∑d
ν=1 u

ν
∗eν . Denoting the components of u in local coordinates {θ1, . . . , θm} on M by {u1, . . . , um}, for

any smooth function f we have u(f) =
∑m
µ=1 u

µ ∂f
∂θµ . In particular, expanding the observation map in the

{ei} basis, F =
∑d
ν=1 F

νeν , and using the transformation law for tangent vectors on manifolds, we obtain

uν∗ =
∑m
µ=1

∂F ν

∂θµ u
µ = u(F ν) and therefore u∗ = u(F ).

Using Proposition 6 and the Fourier expansion of the observation map in (5), we compute the recon-
structed vector fields in Rd given by

Vi = F∗vi = vi(F ) =
∑
k

ikiΩiF̂kzk, V = F∗v =

m∑
i=1

Vi, (8)

where F̂k = 〈zk, F 〉 ∈ Rd are the Koopman modes from (5), and the last equality follows by linearity
of the pushforward map. Note that V can also be approximated from finite differences of time-ordered
data as described in Section 2 and [58], but the components Vi in general cannot. In applications, the

12



Vi can be visualized as spatiotemporal patterns (movies), or if d is sufficiently small, as arrow plots on
the data manifold F (M). In particular, because F∗ is the pushforward map for vector fields, the vector
Vi|a =

∑
k ikiΩiF̂kzk(a) is guaranteed (modulo numerical errors) to be tangent to F (M) at the point F (a);

see Figs. 1, 5, 14, and 18 for examples. The following is a direct consequence of Proposition 6 and the
definition of the Vi through (8).

Corollary 7. The reconstructed vector fields Vi transform naturally as type (1, 0) tensors. That is, given

a map G : Rd 7→ Rd̃ such that F̃ = G ◦ F is an embedding of M into Rd̃, the reconstructed vector fields

Ṽi = F̃∗vi in Rd̃ are related to the Vi via Ṽi = G∗Vi.

Note that the individual Koopman modes F̂k do not obey an analogous transformation law. That is, if
ˆ̃Fk = 〈zk, F̃ 〉 = 〈zk, G ◦ F 〉, then in general ˆ̃Fk is not equal to G(F̂k).

3.3. Nonparametric forecasting

The availability of the closed form solution in (7) for the temporal evolution of the Koopman eigen-
functions in systems with pure point spectra, together with the fact that they form a complete basis of
L2(M,µ), makes these eigenfunctions well suited for data-driven nonparametric forecasting. In this section,
we formulate a technique for forecasting probability densities and expectation values of observables with
initial data specified as a probability measure. Our approach follows closely the nonparametric framework
developed in [44], with the difference that here we use the additional structure in the temporal evolution of
the eigenfunctions.

Consider the initial data given as a probability measure µ0 on (M,B) with a smooth probability density
ρ0 relative to the invariant measure µ. The measure µ0 evolves at time t according to µt = Φt∗µ0, and
the corresponding density is given by ρt = U∗t ρ0, where U∗t = U−t is the Perron-Frobenius operator, i.e.,
the adjoint of the Koopman operator on L2(M,µ). Thus, for an initial density with Fourier expansion
ρ0 =

∑
k ρ̂k(0)zk, where ρ̂k(0) = 〈zk, ρ0〉, we have

ρt =
∑
k

ρ̂k(t)zk, with ρ̂k(t) = e−iωktρ̂k(0).

Note that the expansion coefficients form the `2 sequence ρ̂(t) = (. . . , ρ̂k−1
(0), ρ̂k0(0), ρ̂k1(0), . . .), and we

can write the formal solution
ρ̂(t) = eiωtρ̂(0), (9)

where ω is the diagonal operator on `2 such that

ωρ̂ = (. . . , ωk−1
ρ̂k−1

, 0, ωk1 ρ̂k1 , . . .). (10)

Next, to compute the expectation value f̄t = Eµtf of an observable f ∈ L2(M,µ) with respect to µt, we
make use of the fact that

Eµtf =

∫
M

fρt dµ = 〈ρ∗t , f〉.

This leads to the expression

f̄t =
∑
k

eiωktρ̂∗k(0)f̂k, (11)

where f̂k = 〈zk, f〉 are the expansion coefficients of f in the eigenfunction basis. Evaluating the mean square
forecast Eµtf2 using a similar approach (or the convolution identity mentioned in Section 2), we obtain the
variance forecast σ2

t = Eµtf2 − f̄2
t which is useful for uncertainty quantification.

Remark 8 (Deterministic forecast). Forecasting with the Koopman eigenfunctions can also be per-
formed with initial data given as a single observation y in the ambient data space Rd. In this case, we first
compute values {ζ̂i}mi=1 for the m generating eigenfunctions at the point a ∈M with F (a) = y using out-of-

sample extension techniques for functions (e.g., [67, 68]), and then evolve the initial values {ζ̂i} via (7). We
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then determine the value of other eigenfunctions using their group structure, and reconstruct the observable
through its expansion coefficients and the eigenfunction values at the desired lead time. Note that if F (M)
is the data manifold from an imperfect model with model error, then y may not lie on F (M), but extended
function values can also be computed in this case. This approach is closely related to to a kernel analog
forecasting framework developed in [69]. In numerical experiments not reported here, we have observed
comparable skill with this method and the statistical forecast results of Section 4.6.

3.4. Irrational flow on the 2-torus

We demonstrate the techniques presented in Sections 3.1–3.3 in an analytically solvable example involving
an irrational flow on the 2-torus. Denoting the azimuthal and polar angles on the 2-torus by (θ1, θ2),
respectively, we consider the dynamical vector field on M = T2 given by

v =

2∑
µ=1

vµ
∂

∂θµ
, with v1 = 1, v2 = α, (12)

where α is a positive angular frequency parameter which is set to an irrational number to produce an ergodic
flow. This dynamical system is observed through the observation map F : M 7→ R3 corresponding to the
standard embedding of the 2-torus into three-dimensional Euclidean space, i.e., for the point a ∈ M with
coordinates (θ1, θ2), we have F (a) = (F 1(a), F 2(a), F 3(a)) = (x1, x2, x3), where

x1 = (1 +R cos θ2) cos θ1, x2 = (1 +R cos θ2) sin θ1, x3 = sin θ2, R ∈ (0, 1). (13)

The equilibrium measure of this system has uniform density relative to the Haar (planar) measure µ, where
dµ = dθ1 ∧ dθ2/(2π)2. Moreover, the eigenvalue problem for v in (3) has solutions λk = i(k1 + k2α) and

zk(θ1, θ2) = ei(k1θ
1+k2θ

2), with k = (k1, k2), ki ∈ Z.
To select generating eigenfunctions {ζ1, ζ2} with low roughness on the torus and their corresponding

basic frequencies {Ω1, Ω2}, we compute the Dirichlet energy of the eigenfunctions in the induced Riemannian
geometry from the observation map as described in Section 3.1. For the embedding in (13), the induced
Riemannian metric has components g11 = (1 + R cos θ2)2, g22 = R2, and g12 = g21 = 0 in the {θµ}
coordinates, leading to the Dirichlet energy values Eg(zk) = C1k

2
1 + C2k

2
2, where C1 = 1/(1 − R2)3/2 and

C2 = α2/R2. Thus, in this geometry, the least-rough eigenfunctions corresponding to rationally independent

frequencies are those with k = (0, 1) and k = (0, 2), i.e., we have Ω1 = 1, Ω2 = α, ζ1(θ1, θ2) = eiθ1 , and

ζ2(θ1, θ2) = eiθ2 . Clearly, the image of the torus under each of the projection maps from (6) is the unit circle,

πi(a) = eiΩiθ
i

, and the system evolves in these coordinates as a simple harmonic oscillator in accordance
with (7).

Remark 9 (Highly oscillatory eigenfunctions and slow observables). In this torus rotation, for ev-
ery eigenfunction zk corresponding to the eigenvalue λk there exist eigenfunctions with eigenvalues arbitrarily
close to λk and with arbitrarily large Dirichlet energy. This is a consequence of the density of the spectrum
of v on the real line (see Remark 3). In particular, the eigenvalue and Dirichlet energy of the constant eigen-
function are both zero, but for any ε, Ē > 0 we can find integers i and j such that for k = (i, j), |λk| < ε and
Eg(zk) > Ē. In other words, there exist observables zk with arbitrarily small frequency |λk| but arbitrarily
large roughness Eg(zk). This behavior is generic in systems possessing two or more rationally independent
Koopman eigenvalues, and can adversely affect the conditioning of numerical schemes for Koopman eigen-
values and eigenfunctions. More generally, the identification of slow observables is an important task in
reduced dynamical modeling (e.g., [6, 34]), and the simple example discussed here suggests that care may
be needed to ensure that the identified slow observables are also smooth. In Section 4.3, we will suppress
the pathological Koopman eigenfunctions with large Dirichlet energy by adding a small amount of diffusion
to v.

Next, we reconstruct the vector fields vi from Theorem 5 associated with the generating eigenfunctions
{ζ1, ζ2} using the spectral expansion of F in the {zk} basis in accordance with (8). Setting k = (i, j) ∈ Z2,
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Figure 1: Decomposition of the vector field of an irrational flow on the torus into mutually commuting components. (a) Full
vector field; (b,c) the components vi = Ωi

∂
∂θi

from Theorem 5, reconstructed in R3 using the pushforward map from (8).

the expansion coefficients are

F̂ 1
ij = 〈zij , F 1〉 =

1

2
(δi1δj0 − δi,−1δj0) +

R

4
(δi1δj1 + δi,−1δj1 + δi1δj,−1 + δi,−1δj1),

F̂ 2
ij = 〈zij , F 2〉 =

1

2i
(δi0δj1 − δi0δj,−1) +

R

4i
(δi1δj1 − δi,−1δj1 + δi1δj,−1 − δi,−1δj,−1),

F̂ 3
ij = 〈zij , F 3〉 =

R

2i
(δi0δj1 − δi0δj,−1),

giving Vi = (V 1
i , V

2
i , V

3
i ) with

V 1
1 = − sin θ1 − R

2
(sin(θ1 + θ2) + sin(θ1 − θ2)), V 1

2 = cos θ1 +
R

2
(cos(θ1 + θ2) + cos(θ1 − θ2)), V 1

3 = 0,

and

V 1
2 = −R

2
(sin(θ1 + θ2) + sin(θ1 − θ2)), V 2

2 =
R

2
(cos(θ1 + θ2)− cos(θ1 − θ2)), V 3

2 = R cos θ2.

This decomposition is depicted in Fig. 1.
Consider now statistical forecasting of the irrational-flow system using the nonparametric approach of

Section 3.3. In this example, we set the initial probability measure µ0 to a von Mises (circular Gaussian)
distribution on the torus with the density function

ρ0(θ1, θ2) = eκ(cos(θ1−θ̄1)+cos(θ2−θ̄2))/(I0(κ))2 (14)

relative to the equilibrium measure. In (14), In is the modified Bessel function of order n, and we use the
values (θ̄1, θ̄2) = (0, 0) and κ = 30 for the location and concentration parameters, respectively. We take
the component F 1 of the observation map as the forecast observable f , and compute the time-dependent
expectation value and standard deviation of f using (11). The latter equation can be evaluated analytically
using properties of Bessel functions and the expansion of F 1 in the eigenfunction basis. In particular, using

the result
∫ 2π

0
einθ+κ cos θ dθ = 2πI|n|(κ)/I0(κ), we find

f̄t =
I1(κ)

I0(κ)
cos t+

RI2
1 (κ)

I2
0 (κ)

(cos((1 + α)t) + cos((1− α)t)),

f2
t =

(
1 +

I2(κ)

I0(κ)
cos(2t)

)[
1

2
+
RI1(κ)

I0(κ)
cos(αt) +

R2

4

(
1 +

I2(κ)

I0(κ)
cos(2αt)

)]
.

The time evolution of f̄t and the standard deviation σt = (f2
t − f̄2

t )1/2 are shown in Fig 2.

4. Galerkin approximation in a data-driven orthonormal basis

In this section, we present a Galerkin method with regularization for the eigenvalue problem of the
generator in an orthonormal basis acquired through the diffusion maps algorithm. Our approach follows
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Figure 2: Statistical forecast of the component x1 of the torus embedding in R3 for the irrational flow with frequencies (1, 301/2).
The initial probability measure has the circular Gaussian density from (14) relative to the Haar measure with location and
concentration parameters (0, 0) and 30, respectively. (a) Mean forecast; (b) standard deviation.

closely [44], with the difference that we work in the Sobolev space H1(M,µ) appropriate for the weak
formulation of the regularized eigenvalue problem (as opposed to the L2(M,µ) space employed in [44]). We
also discuss the spectral properties of the regularized operator, including its asymptotic behavior in the
weak-diffusion limit—this discussion will also motivate the time-change techniques of Section 6. We then
describe the implementation of the techniques of Section 3 in the approximate eigenfunction basis acquired
via the Galerkin scheme, and present numerical applications to a variable-speed ergodic flow on the 2-torus.

4.1. Choice of Galerkin approximation space

Let g be the Riemannian metric on M inherited from the observation map (see Section 3.1), and σ
the C∞ density of the invariant measure of the dynamics relative to the Riemannian measure of g; i.e.,
σ = dµ/dvolg, where σ is bounded away from zero by compactness of M . For data generated by ergodic
dynamical systems, σ is also the sampling density relative to the Riemannian measure, though the samples
collected from a single time series (as is the case in (1)) are not independent. In general, σ will be a
nonconstant function, and in what follows we work with the conformally transformed metric h = gσ2/m. In
particular, we will use Laplace-Beltrami eigenfunctions associated with h as a basis of our approximation
space for the Koopman generator. Note that h contracts (expands) local distances with respect to the
original metric g in regions of small (high) sampling density σ. As we will see below, due to this property
the Laplace-Beltrami eigenfunctions associated with h acquire increased “resolution” in high-σ regions, i.e.,
in regions where high resolution can be robustly attained using finite datasets. In Section 4.2, we will discuss
how to approximate the Laplace-Beltrami eigenfunctions associated with h via diffusion maps.

Proposition 10. Let F : M 7→ Rd and F̃ : M 7→ Rd̃ be embeddings of M with the corresponding induced
Riemannian metrics g and g̃, respectively. Assume that g and g̃ are conformally equivalent, i.e., that there
exists a positive function r ∈ C∞(M) such that g̃ = rg. Then, gσ2/m = g̃σ̃2/m, where σ = dµ/dvolg and
σ̃ = dµ/dvolg̃ are the sampling densities associated with g and g̃, respectively.

Proof. The claim follows immediately from the fact that σ̃ = dµ/dvolg̃ = r−m/2dµ/dvolg = r−m/2σ.

Corollary 11. The metric h is unique for each equivalence class of observation maps associated with con-
formally equivalent induced metrics. Moreover, h has uniform volume form relative to the invariant measure
of the dynamics since dµ/dvolh = (1/σ) dµ/dvolg = 1.

Consider now the Hilbert space L2T (M,h) of square-integrable vector fields on M associated with h,
equipped as usual with the Hodge inner product 〈u1, u2〉 =

∫
M
h(u1, u2) dvolh =

∫
M
h(u1, u2) dµ and norm

‖u‖ = 〈u, u〉1/2. We denote the gradient of a function f ∈ C∞(M) with respect to h by gradh f = h−1(df, ·),
where h−1 is the “inverse metric”. Note that gradh f = σ−2/m gradg f , and because dµ/dvolh is a constant,
gradh = −div∗µ where adjoints are taken on the Hilbert spaces associated with h and µ. In local coordinates,
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we have dvolh =
√

deth dθ1 ∧ · · · ∧ dθm, gradh =
∑m
i=1(gradh)i ∂∂θi , and

(gradh f)i =

m∑
j=1

h−1,ij ∂f

∂θj
, divµ(u) =

1√
deth

m∑
i=1

∂

∂θi

(√
dethui

)
. (15)

We also introduce the order-1 Sobolev space H1(M,h, µ) associated with h and µ (henceforth abbreviated as
H1(M,h) since µ = volh), which is equipped with the inner product 〈f1, f2〉1 = 〈f1, f2〉+〈gradh f1, gradh f2〉.

The Dirichlet energy of functions in H1(M,h) is given by the functional

Eh(f) = 〈gradh f, gradh f〉 =

∫
M

‖gradh f‖2h dµ =

∫
M

‖gradg f‖2gσ−2/m dµ, (16)

where ‖gradh f‖2h = h(gradh f, gradh f) and ‖gradg f‖2g = g(gradg f, gradg f). This functional provides a
metric-dependent measure of roughness of functions which can be used to select generators for the spectrum
of the Koopman group as described in Section 3.1. Note that due to the presence of the σ−2/m term in the
last integral in (16), functions with large gradient with respect to the ambient space metric g in regions of
small sampling density will generally acquire large Dirichlet energy with respect to h.

Next, consider the Laplace-Beltrami operator ∆h = −divµ gradh associated with the Riemannian metric
h. This operator is positive-semidefinite and self-adjoint on L2(M,µ), and there exists an orthonormal basis
{φi}∞i=0 consisting of the eigenfunctions

∆hφi = ηiφi, φi ∈ C∞(M), 0 = η0 < η1 ≤ η2 ≤ · · · ↗ ∞, (17)

with the corresponding eigenvalues {ηi}∞i=0. Note that while the inner product of L2(M,µ) is metric-tensor-
independent, the gradient operator, and hence ∆h, φi, and ηi, all depend on h (which depends in turn
on the observation map F ). It is a standard result on Laplace-Beltrami operators that the eigenvalues
are extrema of the Rayleigh quotient Rh(f) = Eh(f)/‖f‖2, and the corresponding eigenfunctions are the
extremizers; i.e., λi = Rh(φi), and Rh(φi) = Eh(φi) for normalized eigenfunctions. Since the integrals
in the evaluation of Rh are with respect to the invariant measure of the dynamics, we interpret Rh as a
measure of “expected roughness” with respect to the Riemannian metric h. In particular, due to the σ-
dependent term in (16), the leading extrema of Rh will generally correspond to eigenfunctions with weaker
oscillatory behavior (as measured with respect to the ambient space metric) in regions of small sampling
density and stronger oscillatory behavior (thus, higher resolution) in regions of large sampling density. Thus,
we can interpret the finite collection {φ0, φ1, . . . , φl−1} as the l-element orthonormal set on L2(M,µ) with
the least expected roughness for the equivalence class of observation maps associated with h, in the sense
that

∑l−1
i=0Rh(φi) ≤

∑l−1
i=0Rh(fi), where {f0, f1, . . . , fl−1} is any l-element orthonormal set on L2(M,µ).

Intuitively, functions with small expected roughness can be robustly approximated from finite datasets
in M , and in the case of i.i.d. samples this intuition can be rigorously verified through pointwise and spectral
convergence results established for graph Laplacians [37, 43, 62, 70–73]. In particular, it has recently been
shown [73] that a spectrum of the Laplacian-Beltrami operator for a Riemannian metric analogous to h
can be consistently estimated by normalized graph Laplacians for a variable-bandwidth kernel of the same
class as (20). Moreover, they show that for the class of conformally invariant metrics h the variance of the

approximated eigenvalues has the leading-order behavior var ηi = ε−(m/2+1)

N(N−1) Cηi〈φ
2
i , φ

2
i 〉/〈φi, φi〉2, where C is

a constant independent of ηi, φi, and, importantly, the sampling density σ. In other words, the effect of the
conformal change of metric g 7→ h is to “undo” the effect of sampling density fluctuations and increase the
robustness of the approximated spectrum of ∆h. While we are not aware of analogous spectral or pointwise
convergence results in the case of correlated samples generated by ergodic dynamical systems, the favorable
properties of h for robust data analysis should hold in that case too.

Notice now that the Laplace-Beltrami eigenfunctions from (17) are orthogonal onH1(M,h) with 〈φi, φj〉1 =
(1 + ηi)δij , but because ‖φi‖1 = (1 + ηi)

1/2 exhibits unbounded growth as i → ∞, functions of the form
f =

∑∞
i=0 ciφi with (c0, c1, . . .) ∈ `2 are not necessarily in H1(M,h). On the other hand, the rescaled

eigenfunctions

ϕi =

{
φ0, i = 0,

η
−1/2
i φi, i > 1,

(18)
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with 〈ϕi, ϕj〉 = (1+η
−1/2
i )δij for i > 0 and (ϕ0, ϕi) = δ0i, are orthogonal (but not orthonormal) on H1(M,h)

and have bounded H1 norm, ‖ϕi‖1 = (1 + η−1
i ). Therefore, {ϕi}∞i=0 is an orthogonal basis of H1(M,h) with

the property that every sequence (c0, c1, . . .) ∈ `2 corresponds to a function f =
∑∞
i=0 ciϕi ∈ H1(M,h).

Moreover, the Dirichlet energies of the basis elements are all equal to one for i > 0. Due to this property
and the fact that the approximated spectrum of ∆h is robust against variations in the sampling density,
{ϕi} will be our basis of choice for a well-conditioned Galerkin method for the eigenvalue problem of the
Koopman generator. We also note that because Eh(ϕ0) = 0 and Eh(ϕi) = 1 for i > 1, the Dirichlet energy
from (16) can be conveniently computed from the `2 norm of the expansion coefficients with i ≥ 1, i.e.,

Eh(f) =

∞∑
i=1

|ci|2. (19)

Remark 12 (Weighted Laplacian). An alternative elliptic operator to ∆h, whose eigenfunctions also
provide an orthonormal basis of L2(M,µ) is the weighted Laplacian ∆g,µ = −divµ gradg associated with
the invariant measure of the dynamics and the ambient-space metric g. This operator is the generator
of a gradient flow on the Riemannian manifold (M, g) with potential − log σ, and its eigenvalues and
eigenfunctions can be obtained by extremizing the Rayleigh quotient Rg,µ(f) = Eg,µ(f)/‖f‖2, where
Eg,µ(f) =

∫
M
‖gradg f‖2g dµ. Note that unlike Eh from (16), the Dirichlet energy Eg,µ does not feature

a σ-dependent term in the integral with respect to the invariant measure. Numerically, eigenfunctions
of ∆g,µ can be computed using variable-bandwidth kernels [43], or the canonical formulation of diffusion
maps with radial Gaussian kernels and the “α = 1/2” normalization [37]. In [44], eigenfunctions of ∆g,µ

approximated via a variable bandwidth kernel were used to approximate Kolmogorov and Fokker-Planck
operators of stochastic dynamical systems on manifolds. The Galerkin scheme for the Koopman operator
developed here can be implemented using eigenfunctions of either ∆h or ∆g,µ (computed via either standard
diffusion maps, or variable-bandwidth kernels), though in practice we find that ∆h behaves more stably
in applications with large variations of the sampling density σ (including the applications discussed in this
paper).

4.2. Data-driven orthonormal basis

To approximate the basis in (18) from data, we start from the variable-bandwidth kernelKε : Rd×Rd 7→ R
given by [43]

Kε(x, y) = exp

(
− ‖x− y‖2

εσ̂
−1/m
ε (x)σ̂

−1/m
ε (y)

)
, (20)

where ε is a positive bandwidth parameter, σ̂ε is a function approximating the sampling density σ at O(ε)
accuracy, and m is the dimension of M . The function σ̂ε can be computed using any suitable density-
estimation technique, and in what follows we employ the kernel method described in [43, 44]. This method
uses an updated formulation of an automatic bandwidth-selection procedure originally developed in [74],
and also provides an estimate of m. Alternatively, m can be estimated using one of the dimension estimation
techniques available in the literature (e.g., [75, 76]). In the numerical experiments that follow we use a priori
known values for m, though the estimates from the bandwidth selection algorithm are in good agreement
with the true values.

Let q be the sampling density of the data relative to the invariant measure µ. Throughout this section
we consider that the sampling measure is equal to the invariant measure so that q = 1, but we carry out
our analysis in the more general setting with nonuniform q in anticipation of the time-change techniques
of Section 6. Using the same method to tune the kernel bandwidth parameter as in the density-estimation
step, we perform the normalizations originally introduced in diffusion maps [37] and further developed in
[65] to construct from the kernel in (20) an integral operator Pε : L2(M,µ) 7→ L2(M,µ) approximating the
heat operator on the Riemannian manifold (M,h). Specifically, we compute the action of Pε on a function
f ∈ L2(M,µ) through the operations,

Gεf =
1

εm/2

∫
M

Kε(F (·), F (a))f(a) dµ(a), qε = Gεq, Hεf = Gε(fq/qε), Pεf =
Hεf
Hε1

. (21)
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The operator Pε preserves constant functions (i.e., it is an averaging operator with Pε1 = 1), and we have
Pεf =

∫
M
pε(·, a)f(a) dµ(a) for the Markov kernel

pε(a, b) =
Kε(F (a), F (b))q(b)

Hε1(a)qε(b)
, a, b ∈M.

The role of the normalizations in (21) is to remove biases due to curvature in h and the potentially nonuniform
sampling density. In particular, taking Taylor expansions of Pε about ε = 0 (e.g., [58, 65]), one can show
that uniformly on M , and independently of q,

Pεf(a) = f(a)− εc∆hf(a) +O(ε2) (22)

for a constant c, so that (I−Pε)/ε can be used to approximate the desired eigenfunctions in (18) even when
q is nonuniform.

Because the Markov kernel pε can be nonsymmetric, Pε is generally not self-adjoint on L2(M,µ). Instead,
Pε is self-adjoint on the space L2(M, µ̃ε), where

dµ̃ε = q̃ε dµ, q̃ε(a) =
Hε1(a)q(a)

qε(a)
. (23)

Specifically, we have

Pεf(a) =

∫
M

sε(a, b)f(b) dµ̃ε(b), sε(a, b) =
Kε(F (a), F (b))

Hε1(a)Hε1(b)
,

and the self-adjointness of Pε on L2(M, µ̃ε) follows from the fact that the kernel sε is symmetric. Also, it
is straightforward to verify that the density q̃ε is the eigenvector of the adjoint operator P∗ε on L2(M,µ)
corresponding to eigenvalue 1; i.e., q̃ε is the invariant density relative to µ for a discrete-time diffusion
process on M generated by pε [37]. Note that q̃ε = 1 +O(ε) and the eigenfunctions of Pε are orthogonal on
L2(M,µ) at O(ε). In the algorithms described below, we find that including a discrete analog of q̃ε in inner
products involving eigenfunctions from diffusion maps leads to a moderate increase in performance.

Turning to the discrete setting, we represent functions on the dataset consisting of the ergodic time series
in (1) by N -dimensional vectors ~f = (f0, . . . , fN−1) with components fi = f(ai), and the integral operator

Pε by an N ×N Markov matrix P such that
∑N−1
j=0 Pijfj approximates Pεf(ai) for µ-a.e. ai ∈ M . In the

presence of nonuniform sampling, time averages of the form
∑N−1
i=0 fi/N converge µ-a.s. to the integrals∫

M
fq dµ [37, 65]. Therefore, up to unimportant proportionality constants, we approximate qε(ai) and

Hεf(ai) by q̂i =
∑N−1
j=0 Kij and

∑N−1
j=0 Hijfj , respectively, where Kij = Kε(F (ai), F (aj)), and Hij = Kij/q̂j .

The matrix elements of P are then given by Pij = Hij/
∑N−1
k=0 Hik. The leading left eigenvector of P ,

wP = w, has elements wi =
∑N−1
j=0 Hij/q̂i = Kij/(q̂iq̂j) approximating (up to a proportionality constant)

the continuous function q̃ε/q. Therefore, the weighted inner product

〈~f1, ~f2〉w =

N−1∑
i=0

wif1if2i (24)

converges µ-a.s. to
∫
M
f1f2 dµ̃ε = 〈f1, f2〉µε as N → ∞, and moreover 〈f1, f2〉µ̃ε converges to the ergodic

inner product 〈f1, f2〉 as ε→ 0. The limit N →∞ and ε→ 0 with an appropriate scaling relationship ε(N)
corresponds to the limit of large data [43, 62].

With these ingredients, we approximate the eigenvalues and eigenfunctions of ∆h in (17) using the
corresponding eigenvalues and eigenvectors of P ,

P ~φi = κi~φi, i ∈ {0, 1, . . . , N−1}, 1 = κ0 < κ1 ≤ κ2 ≤ · · · ≤ κN−1, ~φi = (φ0i, . . . , φN−1,i) ∈ RN . (25)

As stated in Section 4.1, to our knowledge there are no pointwise or spectral convergence results for diffu-
sion maps and related kernel algorithms for correlated data generated by ergodic dynamical systems, but
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pointwise [37, 43, 62, 65] and spectral [70–73] convergence results are available in the case of i.i.d. data. Here-
after, we will assume that spectral convergence of the operator (I − P )/ε to ∆h holds in the ergodic case,
so that as N → ∞ and for a suitable scaling ε(N) we have φji → φj(ai) and log κi → ηi, µ-a.s. and up to
proportionality constants. By convention, we will work with the normalized eigenvalues η̂i = log κi/ log κ1.
Geometrically, this scaling is equivalent to a uniform scaling of the Riemannian metric h, which has no
influence on the spectrum of ∆h other than an unimportant global scaling of the eigenvalues.

The discrete eigenvectors from (25) form an orthonormal basis for functions ~f on the dataset with

respect to the inner product in (24), and we have ~f =
∑N−1
i=0 ci~φi with ci = 〈~φi, ~f〉w. This inner product is

asymptotically equivalent as ε→ 0 to the uniformly-weighted ergodic sum from (4), but as mentioned earlier,
in practice we find that the mode decomposition and forecasting algorithms presented below exhibit moderate
performance gains by including the weights w. The analog of the Dirichlet energy in (16) for the discrete

eigenfunctions is E(~φi) = η̂i (whenever κi > 0), and for the function ~f above we have E(~f) =
∑N−1
i=1 η̂i|ci|2.

By our spectral convergence assumption, E(~f) converges up to a proportionality constant to its continuous
counterpart, Eh(f). Hereafter, whenever there is no risk of confusion with the continuous case we will omit

hats and overarrows in our notation for quantities computed for the discrete dataset, such as ~φi and η̂i. The
construction of our data-driven orthonormal basis of L2(M,µ) is summarized in Algorithm 1 in Appendix
A.

4.3. Spectral Galerkin method

We solve the eigenvalue problem for the Koopman generator v in weak form in the basis of H1(M,µ)
in (18). Because the set of eigenvalues is dense on the imaginary line (see Remark 3), we first regularize the
problem by adding a small amount of diffusion to v to form the operator

Lε = v − ε∆h. (26)

Qualitatively, the effect of the diffusion term ε∆h is to suppress highly oscillatory eigenfunctions from the
spectrum, which, as stated in Remark 9, can have arbitrarily small frequencies (eigenvalues). With these
pathological modes suppressed from the spectrum, we identify the generating frequencies and eigenfunc-
tions by ordering the computed eigenfunctions in order of increasing Dirichlet energy. We will return to a
discussion of the effects of diffusion in the spectral properties of Lε in Section 4.4.

We solve the eigenvalue problem for Lε using spectral Galerkin methods for elliptic eigenvalue problems
[77]. To pass from the strong form of the problem,

Lεu = γu, (27)

to the weak form, we multiply the eigenvalue equation by a test function ψ ∈ C∞(M), integrate by parts
with respect to the invariant measure, and require that the resulting integral equation is satisfied for all
elements of appropriate trial and test spaces, which we both take to be H1(M,µ).

Definition 13 (Eigenvalue problem for Lε, weak form). Find γ ∈ C and u ∈ H1(M,µ) such that for
any ψ ∈ H1(M,µ),

A(ψ, u) = γB(ψ, u),

where A and B are sesquilinear forms on H1(M,µ)×H1(M,µ) given by

A(ψ, u) = 〈ψ, v(u)〉 − ε〈gradh ψ, gradh u〉, B(ψ, u) = 〈ψ, u〉.

In the discrete formulation of the problem, we formally restrict the trial and test spaces to the n-
dimensional subspaces H1,n = span{ϕ0, . . . , ϕn−1} ⊂ H1(M,µ) spanned by the basis functions in (18); i.e.,

we have ψ =
∑n−1
i=0 diϕi and u =

∑n−1
i=0 ciϕi, where c = (c0, . . . , cn−1) and d = (d0, . . . , dn−1) are complex-

valued expansion coefficients. However, because instead of the true Laplace-Beltrami eigenfunctions we
only have access to the approximate eigenfunctions from Algorithm 1, and furthermore we do not have
access to the exact generator v, we additionally make the following approximations for the evaluation of the
sesquilinear forms in the continuous problem.
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1. We approximate the basis function values on the dataset by the vectors ~ϕi = (ϕ0i, . . . , ϕN−1,i) ∈ RN

with ϕji = φji/η̂i ≈ ϕi(aj), where {~φi} and {η̂i} are the eigenvectors and eigenvalues from Algorithm 1.

2. In the case of D, we put

D(ψ, u) =

n−1∑
i,j=0

∫
M

d∗i cj gradh ϕi · gradh ϕj dµ = d†Dc, (28a)

where D is the n× n identity matrix since Dij = 〈gradh ϕi, gradh ϕj〉 = δij .

3. In the case of B, we put

B(ψ, u) =

n−1∑
i,j=0

∫
M

d∗i cjϕiϕj dµ ≈
n−1∑
i,j=0

d∗i cj〈~ϕi, ~ϕj〉w = d†Bc, (28b)

where B is the n× n diagonal matrix with the diagonal entries Bii = 1 + η̂
−1/2
i .

4. In the case of V, we proceed similarly as with D and B, but we also approximate the action of the
Koopman generator v(ϕi) on the basis elements using finite differences in time as stated in Remark 1.
Hereafter, we will use a second-order central scheme for the sampling interval T , and make the ap-
proximation v(ϕi(aj)) ≈ (ϕi,j+1 − ϕi,j−1)/(2T ). We therefore set

V(ψ, u) =

n−1∑
i,j=0

∫
M

d∗i cjϕiv(ϕj) dµ ≈ d†V c, (28c)

where V is the n× n matrix with elements Vij =
∑N−2
k=1 ϕikwk(ϕi,k+1 − ϕi,k−1)/(2T ).

With these approximations, we define:

Definition 14 (Eigenvalue problem for Lε, discrete approximation). Find λ ∈ C and c ∈ Cn such
that for any d ∈ Cn,

Â(d, c) = γB̂(d, c),

where Â and B̂ are sesquilinear forms on Cn × Cn given by

Â(d, c) = d†Ac, A = V − εD, B̂(d, c) = d†Bc.

The solution to the discrete problem is given by the generalized eigenvalue problem

Ac = λBc. (29)

Remark 15. The {ϕi} basis from (18) and its discrete counterpart {~ϕi} are adapted to the H1 regularity
of the eigenvalue problem for Lε in the sense that the highest-order sesquilinear form D appearing in the
weak formulation of the problem is represented by the identity matrix, D = I. This property ensures that
the scheme remains well-conditioned at large spectral order of approximation n. In contrast, the condition
number of the D matrix would exhibit unbounded growth with n if we were to work in the unscaled
eigenfunction basis. This approach of tailoring the approximation basis to the Sobolev regularity of the
continuous problem is sometimes used in spectral Galerkin methods with polynomial basis functions (e.g.,
[78, 79]).

The numerical solution of the generalized eigenvalue problem in (29) yields n′ ≤ n (depending on the

numerical algorithm used) eigenvalue-eigenvector pairs {(γk, ck)}n
′−1
k=0 with ck = (c0k, . . . , cn−1,k) ∈ Cn and

the corresponding discretely sampled eigenfunctions uk =
∑n−1
i=0 ϕicik with uk = (u0k, . . . , uN−1,k) ∈ CN .

Throughout, we work with the normalization ‖uk‖w = 1 from (24), which approximates the normalization
‖uk‖ = 1 on L2(M,µ) in the continuous case.
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To identify a generating set {ζi}mi=1 for the eigenfunctions and the corresponding basic frequencies {Ωi}mi=1

using the approach of Section 3.1, we first order the eigenfunctions in order of increasing Dirichlet energy,
which we compute from the discrete analog of (19), E(zk) =

∑n
i=1|cik|2 = ‖ck‖2. Then, we select {ζi}

and {Ωi} from the first m nonconstant eigenfunctions in this set with “numerically rationally independent”
eigenvalues up to some precision. Operationally, we declare Ωi and Ωj to be rationally independent at
precision (δ, q̄) if there exist no integers qi and qj with absolute value smaller than q̄ such that |qjΩi−qiΩj | ≤
δ. In practice, it is usually easy to identify rationally independent frequencies from the first few numerical
eigenvalues manually. The numerical procedure to compute the generating frequencies and eigenfunctions
is summarized in Algorithm 2 in Appendix A.

Using the identified generating sets, we form the product bases {zk} and associated frequencies {ωk}
as described in Definition 2. Note that the numerical generators ζi = (ζ0i, . . . , ζN−1,i) ∈ CN will not lie
exactly on the unit circle, and this happens because of sampling errors (i.e., errors that vanish as N →∞),
but also bias errors in the Markov operator Pε in diffusion maps and the regularized generator Lε occurring
at nonzero ε. We therefore rescale the generators pointwise to ensure that |ζij | = 1 before taking powers.
Experimentally, we find that generating the spectrum recursively from the generators produces more accurate
eigenfunctions than the raw solutions of (29), presumably because the accuracy of the data-driven basis
degrades more rapidly at high eigenfunctions than the loss of accuracy in the {ζi} products.

4.4. Spectral properties of the regularized generator

The spectral properties of the regularized generator Lε from (26) are compounded by the facts that (1)
the limit ε → 0 is a singular limit of the corresponding eigenvalue equation; (2) apart from special cases
(e.g., irrational flows on flat tori), the operators v and ∆h do not commute, and as result Lε is nonnormal
with

[L∗ε , Lε] = 2ε[v,∆h]. (30)

If v has smooth eigenfunctions, one can confirm with asymptotic expansions that the influence of the diffusion
term on these eigenfunctions is benign. In particular, writing uk = zk+εu′k+O(ε2) and γk = λk+εγ′k+O(ε2)
with v(zk) = λkzk, and inserting these asymptotic series in the eigenvalue equation (27), we obtain the O(ε)
equation

(v − λk)u′k = (γ′k −∆h)zk.

This equation can be solved by requiring that u′k is orthogonal to zk as a solvability condition, i.e., u′k =∑
i 6=k cikzi, giving

cik =
〈gradh zi, gradh zk〉

λi − λk
, γ′k = 〈gradh zk, gradh zk〉 = Eh(zk). (31)

We therefore see that, at O(ε), the diffusion term perturbs the eigenvalues of v corresponding to smooth
eigenfunctions by a purely real term equal to the Dirichlet energy of the unperturbed eigenfunctions. This
provides a more quantitative estimate of the suppression of highly-oscillatory eigenfunctions of v from the
spectrum of Lε claimed in Section 4.3. Note that the imaginary part of the perturbation to λk, which is
important for nonparametric forecasting, occurs at O(ε2). It also follows from these results that the non-
orthogonality of the eigenfunctions of Lε can be estimated by 〈ui, uk〉 = εcik + O(ε2), and the coefficients
cik vanish if zi and zk are eigenfunctions of both v and ∆h.

More generally, it follows from the spectral theorem and (30) that orthogonality and completeness of the
eigenfunctions of Lε is guaranteed at all orders in ε if v and ∆h are commuting operators. One situation that
this occurs is when the dynamical flow Φt preserves the Riemannian metric h, i.e., v generates h-isometries.
A necessary and sufficient condition for v to generate isometries is that v is a Killing vector field satisfying
the equation Lvh = 0, where Lv is the Lie derivative on type (0, 2) tensors with respect to v. One can
check that if this equation is satisfied then [v,∆h] = 0. Moreover, when v generates isometries of a smooth
Riemannian metric, then it must necessarily have a pure point spectrum [42, §7.1.c]. This is because the
group of diffeomorphisms of a Riemannian manifold is a compact Lie group containing {Φt} as an Abelian
subgroup, and translations on compact Abelian groups have pure point spectra (see Section 2).
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A particularly important property that holds if [v,∆h] = 0 is that v and ∆h have joint eigenfunctions.
This means that (1) the eigenvalue problem for Lε yields exact eigenfunctions of v; (2) the Galerkin method
for approximating these eigenfunctions becomes highly efficient in the eigenbasis of ∆h; (3) the eigenfunctions
of v are extrema of the Rayleigh quotient Rh for the metric h. In particular, (3) implies that the leading
generating eigenfunction ζ1 identified with respect to the Dirichlet energy Eh(ζ1) lies entirely in the subspace
of L2(M,µ) spanned by eigenfunctions of ∆h corresponding to its smallest nonzero eigenvalue. These facts
suggest that for a system with pure point spectrum it would be preferable to regularize the generator with
diffusion in a Riemannian metric h preserved by the dynamics. In Section 5, we will present an approach for
approximating such a metric using delay-coordinate maps, but for the rest of this Section we will continue to
work with h as defined in Section 4.1. As expected from the asymptotics (and verified in the experiments in
Section 4.6 ahead), the effects of noncommutativity of v and ∆h should have minimal impact on the quality
of the numerical eigenfunctions in this case. Moreover, it is important to establish that accurate Koopman
eigenfunctions can be computed without having to perform delay-coordinate maps.

What about the behavior of Lε in more general ergodic systems where the generator also has a continuous
spectrum, and in particular in weak-mixing and mixing systems where it has no nonconstant eigenfunctions?
Mathematically, Lε has the same structure as a class of advection-diffusion operators arising in incompressible
fluid dynamics on compact manifolds (recall that v generates an incompressible flow with respect to the
invariant measure), for which theoretical results are available in the literature [80–82]. The latter references
study the dynamical and spectral properties of operators of the form L̃α = αv+∆ in the advection dominated
regime, α → ∞, and these operators are equivalent to εLε with ε = 1/α. Franke et al. [82] show that L̃α
(and hence Lε) has no continuous spectrum irrespective of the mixing properties of v. For our purposes,
this is a positive result as it eliminates an important source of numerical instability in the discrete problem.
However, the physical significance of the eigenfunctions of Lε (and their utility in the dimension reduction
and forecasting schemes of Sections 3 and 4) becomes questionable, especially in weak-mixing systems where
v has no nonconstant eigenfunctions.

In [81], Constantin et al. establish necessary and sufficient conditions for L̃α to have the so-called
relaxation-enhancing property as α → ∞, i.e., the property that the associated Kolmogorov semigroup
(the advection-diffusion analog of the Koopman group) will produce relaxation of any function in L2(M,µ)
to its mean value in arbitrarily small time. They show that L̃α is relaxation enhancing if and only if v has no
eigenfunctions in H1(M,µ); a condition that includes but is not necessarily limited to weak-mixing systems.
The spectral manifestation of the relaxation-enhancing property is that the spectral gap of L̃α diverges
as α → ∞ [82], meaning that Lε = εL̃1/ε will generally exhibit complicated spectral behavior, including
the possibility of no eigenvalues with negligible real parts at arbitrarily small ε. On the other hand, if v
has eigenfunctions in H1(M,µ), then Lε must necessarily have a vanishing spectral gap, and the asymp-
totic behavior described earlier applies. Due to these considerations, rather than attempting to regularize
weak-mixing systems by diffusion alone, in Section 6 we will put forward an alternative approach which
also involves a time change [55], implemented with variable bandwidth kernels of the same class as (20),
attempting to reduce the mixing properties of the system while preserving its orbits.

4.5. Numerical implementation of the dimension reduction and forecasting schemes

With the availability of the approximate generators and the corresponding basic frequencies from Algo-
rithms 1 and 2, algorithms for dimension reduction, vector field decomposition, and forecasting of densities
in systems with pure point spectra can be constructed following closely the continuous formulation in Sec-
tions 3.1 and 3.3, replacing inner products on L2(M,µ) with the π-weighted inner products from (24), and
representing the action of the generator through finite differences of the diffusion maps basis as described
in Section 4.3. An additional issue that needs to be taken into account is the non-orthogonality of the
eigenfunctions of the regularized generator discussed in Section 4.4. In particular, the lack of orthogonality
of the eigenfunctions leads to a modification of the inverse transforms to reconstruct observables and vector
fields. For an observable f with expansion coefficients f̂k = 〈f, zk〉w we now have f =

∑
k f̃kzk (as opposed

to f =
∑
k f̂kzk), where f̃k =

∑
iG
−1
ki f̂i, and G−1 is the inverse of the Gramm matrix Gij = 〈zi, zj〉w. This

matrix will generally fail to be an identity matrix due to both sampling and bias errors, but in applications
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Figure 3: Observed time series for the variable-speed dynamical system on the 2-torus. (a) Embedding in R3; (b, c) components
x1 and x3 of the embedding, respectively.

we find that it is a well conditioned, sparse matrix. Our algorithms for vector field decomposition and
nonparametric forecasting are listed in Algorithms 3 and 4 in Appendix A, respectively.

4.6. Applications to variable-speed flows on the 2-torus

We apply the dimension reduction, vector field decomposition, and nonparametric forecasting techniques
described above to the dynamical system on T2 with the generator (cf. (12))

v =

2∑
µ=1

vµ
∂

∂θµ
, v1 = 1 + (1− β)1/2 cos θ1, v2 = α(1− (1− β)1/2 sin θ2), (32)

where θ1, θ2 ∈ [0, 2π) are the two angles on the torus, α is a frequency parameter set to an irrational number,
and β ∈ (0, 1] is a parameter controlling the speed of the flow. This system, which was also studied in [58], is
ergodic and has pure point spectrum as it can be transformed to an irrational flow with appropriate changes
of coordinates. Its unique invariant measure has density

σ(θ1, θ2) ∝ 1/[(1 + (1− β)1/2 cos(θ1))(1− (1− β)1/2 sin θ2)] (33)

relative to the Haar measure on T2, and the orbit (θ̇1, θ̇2) = (v1, v2) passing through (θ1, θ2) = (0, 0) at time
t = 0 is given by

tan(θ1/2) = [1 + (1− β)1/2]β−1/2 tan(βt/2), cot(θ2/2) = (1− β)1/2 + β1/2 cot(β1/2αt/2). (34)

Here, we use the same frequency parameter, α = 301/2, as in the irrational flow example of Section 3.4,
and set the parameter β to 1/2. We also use the same observation map as in Section 3.4, i.e., the standard
embedding of the 2-torus into R3 from (13) with radius parameter R = 1/2. As illustrated in Fig. 3, with this
choice of parameters the system “slows down” at (θ1, θ2) ∼ (π, π/2) and “speeds up” at (θ1, θ2) ∼ (0,−π/2),
resulting in a large density contrast σ(π, π/2)/σ(0,−π/2) ' 34 relative to the Haar measure. Moreover, the
system exhibits two timescales which are mixed together in the components of the nonlinear observation
map. Despite the apparent complexity of these time series, the underlying dynamical system is completely
integrable and our method is able to detect this structure using no information other than time-ordered
data.

In these experiments, we used as training data a time series consisting of 64,000 samples {xi} taken
from the orbit in (34) at a timestep T = 2π/500. Using this data, we computed 1000 diffusion eigenvalues
and eigenfunctions {(ηi, ϕi)} through Algorithm 1, and constructed the generating set {ζ1, ζ2} and the
corresponding basic frequencies {Ω1, Ω2} using Algorithm 2 with ε = 3 × 10−4. We use the true manifold
dimension, m = 2, as an input to these algorithms, but in this case an accurate dimension estimate can also
be obtained from the kernel density estimation procedure in Algorithm 1. The eigenvalues of the approximate
generator Lε corresponding to the basic frequencies are γ1 = 0.0005 + 0.707i and γ3 = 0.0016 + 3.871i (γ2 is
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Figure 4: The generating Koopman eigenfunctions ζ1 (a–c) and ζ2 (d–f) for the variable-speed dynamical system on the 2-
torus. (a, d) Scatterplots of Re(ζi) on the torus; (b, e) time series of Re ζi and Im ζi; (c, f) scatterplots of (Re ζi, Im ζi). The
eigenfunctions shown here have not been rescaled to the unit circle—they are the result of Step 5 of Algorithm 2.

the complex conjugate of γ1), and Ωi = Im γi. According to our convention, these eigenvalues are ordered
in order of increasing Dirichlet energy; in this case E1 = 1.52 and E3 = 5.34, and the computed eigenvalues
have Re γ1/ε = 1.51 ≈ E1 and Re γ3/ε = 5.34 ≈ E2, which is in good agreement with the asymptotic result
in (31).

The generating eigenfunctions from these calculations are displayed in Fig. 4. There, it is evident that
the projection maps from (6) based on the eigenfunctions send the data set to a near-exact circle in the
complex plane, and the time series ζ̃i(t) from (7) describe simple harmonic oscillations. The frequencies of
these oscillations (measured, e.g., through FFT) are in very good agreement with Ωi. As illustrated by the
scatterplots in Fig. 4(a, b), eigenfunctions ζ1 and ζ2 vary purely along angles θ1 and θ2, respectively. This
is an outcome of the fact that in the induced Riemannian geometry from F these eigenfunctions have the
smallest Dirichlet energies, but in other geometries we could have mixtures of the form ζq11 ζq22 appearing as
the least oscillatory eigenfunctions. Compared to their counterparts for the irrational flow in Section 3.4
(which are pure sinusoids in the θ1 and θ2 angles), the generating eigenfunctions for the variable-speed flow
exhibit “compressed” (“expanded”) waveforms in the regions of anomalously high (low) phase-space speed.
As discussed in the SOM, the results in Fig. 4 are in good agreement with results obtained via EDMD using
a dictionary of functions consisting of time-lagged components of the observation vector in R3.

With these results for the generating eigenfunctions and basic frequencies, we use Algorithm 3 to de-
compose v into the mutually commuting vector fields {vi}2i=1 from Theorem 5, and reconstruct these vector
fields in data space. Figure 5 shows the reconstructions obtained with a spectral order parameter l = 30,
corresponding to n = (2l + 1)2 = 3721 eigenfunctions. The vector fields exhibit the qualitative features
expected from the corresponding generating eigenfunctions in Fig. 4, namely the reconstructed vector fields,
V1 and V2, describe flows purely along the θ1 and θ2 directions, respectively. As discussed in Section 3.2,
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Figure 5: Vector field decomposition for the variable-speed dynamical system on the 2-torus. (a) Full vector field embedded
in R3; (b, c) mutually commuting components from Theorem 5 corresponding to the generators in Fig. 4, reconstructed in R3

via the pushforward map in (8).

Figure 6: Time-dependent density ρt for the variable-speed dynamical system on the 2-torus relative to its equilibrium measure
computed via the nonparametric method in Algorithm 4. (a) Initial von Mises density with location and concentration
parameters (π, π) and 30, respectively; (b–d) snapshots of ρt illustrating phases of high uncertainty (b, d) and a phase of low
uncertainty (c). The dynamic evolution of ρt is also shown in Movie 1.

these flows preserve the equilibrium measure of the dynamics (but not the Riemannian measure of the torus
embedded in R3), and are clearly not ergodic—v1 (v2) has a non-trivial nullspace spanned by functions with
no θ2 (θ1) dependence. With this large number of basis functions, the time-averaged (root mean square)
reconstruction error in V1 + V2 is 0.2% of the time-averaged norm of the full vector field V in R3. Note
that good-quality reconstructions are possible with substantially fewer basis functions (e.g., l = 5, n = 121
yields a 5.9% error). Moreover, the expansion coefficients of the Vi in the {zk} basis exhibit strong sparsity,
suggesting that the reconstructed patterns can be efficiently compressed using subsets of the {zk} basis as
dictionaries.

Next, we consider statistical forecasting of the components F 1(a) = x1 and F 3(a) = x3 of the state vector
in R3 using the nonparametric technique in Algorithm 4. As with the irrational-flow example in Section 3.4,
we assign an initial probability measure µ0 with a von Mises density relative to the Haar measure. In this
case, we set the location and concentration parameters (θ̄1, θ̄2) = (π, π) and κ = 30, respectively. Note that
the equilibrium measure µ of the variable-speed system differs from the Haar measure on the torus, so the
initial density ρ0 = dµ0/dµ is given by the density in (14) divided by σ from (33). We normalize the initial

density on the dataset so that
∑N−1
i=0 ρ0i/N = 1, where ρ0,i = ρ0(ai). A scatterplot of the initial density

on the torus is shown in Fig. 6(a). We advance this density and the corresponding expectation values and
standard deviations for x1 and x3 for the lead times {ti}1000

i=1 with ti = i T using Algorithm 4. Figure 6
shows representative snapshots of the time-dependent density for these lead times, which is is also visualized
as a video in Movie 1. Figure 7 displays the means and standard deviations of x1 and x3 obtained via
Algorithm 4 and an ensemble forecast with the perfect model using 10,000 samples drawn independently
from µ0.

Following an initial transient stage, the probability density in Fig. 6 relaxes to an aperiodic pattern
characterized by alternating phases of high (Fig. 6(b, d)) and low (Fig. 6(b)) uncertainty, corresponding to
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Figure 7: Statistical forecasts via the nonparametric method in Algorithm 4 and a 10,000-member ensemble from the perfect
model for the variable-speed system on the 2-torus. The forecast observables are the components x1 (a, b) and x2 (c, d) of the
embedding of the 2-torus into R3 from (13) with radius parameter R = 1/2. The initial probability measure has the circular
density in Fig. 6(a).

the regions with high speed (low density relative to the Haar measure) and low speed (high density relative
to the Haar measure), respectively. Qualitatively, the time-dependent measure will eventually explore the
full phase space on the torus by ergodicity, but because the system is not mixing, the density ρt retains
its coherence and its Dirichlet energy is bounded in time. The results in Fig. 7(a, c) indicate that the
mean forecast with the nonparametric model is in very good agreement with the ensemble forecast. The
standard deviation forecast in Fig. 7(b, d) is also in good agreement with the ensemble, but in this case
the nonparametric model overestimates the standard deviation in the low-uncertainty periods (especially
for x3). A factor that may be contributing to this discrepancy is that during those periods the density ρt
exhibits small-scale behavior and correspondingly large bandwidth in the {zk} basis, limiting the accuracy
of our finite-l truncation.

5. Galerkin method with delay-coordinate maps for systems with pure point spectra

Despite the attractive numerical results in Section 4.6, in Section 4.4 we saw that due to non-commutativity
of v and ∆h, the advection-diffusion operator Lε constructed via (26) may not be optimal for approximating
Koopman eigenfunctions. In this Section, we present an approach for spectral decomposition of systems with
pure point spectra that uses delay-coordinate maps to construct a diffusion operator that commutes with
the Koopman group. This approach leads to a highly efficient Galerkin scheme for solving the Koopman
eigenvalue problem, and provides a natural way of denoising data corrupted by i.i.d. observational noise.

5.1. Relationship between Koopman and Laplace-Beltrami operators in delay-coordinate space

Delay-coordinate maps [45–49] were originally developed as a state-space reconstruction technique that
maps a time-ordered signal into a higher-dimensional space of sequences where, under mild assumptions,
the attractor of the dynamical system generating the data is recovered. Fixing an integer parameter s (the
number of delays), we replace the observed time series {xi}N−1

i=0 in Rd by the time series {Xi}N−1
i=s−1, where

Xi = (xi, xi−1, . . . , xi−s+1) ∈ Rsd. This procedure implicitly defines a new observation map, Fs : M 7→ Rsd,
with

Fs(ai) = (F (ai), F (Φ̂i−1(ai)), . . . , F (Φ̂i−s+1(ai))), (35)
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where F and Φ̂i are the observation map and discrete-time flow map introduced in Section 2, respectively.
(Recall that the dynamical system is assumed to be invertible so we can evaluate Φ̂k for both positive and
negative k.) Here, we are interested in the behavior of diffusion maps for this class of observation maps at
large numbers of delays s.

First, we examine the Riemannian metric gs induced on M via the embedding in (35) when Rsd is

equipped with the “time-average” inner product 〈Xi, Xj〉s =
∑s−1
k=0〈xi−k, xj−k〉/s, where 〈·, ·〉 denotes the

canonical inner product on Rd. The Riemannian inner product of two tangent vectors u1, u2 ∈ TaM with
respect to this metric becomes

gs(u1, u2) =
1

s

s−1∑
k=0

g(Φ̂−k∗u1, Φ̂−k∗u2) =
1

s

s−1∑
k=0

〈F∗Φ−k∗u1, F∗Φ−k∗u2〉, (36)

where g is the induced Riemannian metric associated with F , and Φ̂k∗ : TM 7→ TM and F∗TM 7→ TRd are
the pushforward maps on tangent vectors associated Φ̂k and F , respectively. The limiting behavior of the
sequence of smooth Riemannian metrics g1, g2, . . . is controlled by the spectrum of Lyapunov exponents of
the system, and for systems with nonzero Lyapunov exponents gs will generally fail to converge to a smooth
tensor. In particular, according to Oseledets’ multiplicative ergodic theorem [83, 84], there exists a splitting
of the tangent bundle into the direct sum TM =

⊕m
i=1Ei where the subspaces Ei are invariant under the

flow, Φ̂k∗Ei = Ei, and for µ-a.e. a ∈M and u ∈ Ei|a \ 0,

lim
k→∞

1

2k
log (g(Φ−k∗u, Φ−k∗u)) = −Λi,

where Λi is the Lyapunov exponent corresponding to Ei. This means that if Λi < 0, the inner product
gs(u, u) from (36) will exhibit exponential growth with s, and similarly if Λi > 0 gs(u, u) will converge to
zero. Thus, in systems with nonzero Lyapunov exponents the limit metric lims→∞ gs will be non-smooth.
Note that had we used forward-looking instead of backward-looking delays, gs would expand (contract) the
unstable (stable) subspaces (again in a measure-preserving manner). However, in the case of systems with
pure point spectra, ḡ = lims→∞ is a smooth, flow-invariant metric tensor.

Theorem 16. In systems with pure point spectra and intrinsic dimension m,

ḡ =

m∑
i=1

Bijβi ⊗ βj ,

where βi are smooth dual vector fields to the vector fields vi from Theorem 5, defined uniquely through the
relations βi(vj) = δij, and Bij =

∫
M
g(vi, vj) dµ are the Hodge inner products of the vi on L2(TM, g, µ).

Moreover, ḡ has the following properties:
(i) It is invariant under each of the flows Φi,t generated by vi; i.e., Φi,t∗ḡ = ḡ, where Φi,t∗ is the pullback

map on (0, 2) tensors associated with Φi,t∗.
(ii) It is flat.
(iii) Its associated volume form has uniform density relative to the invariant measure; i.e., dvolḡ /dµ = Γ ,

where Γ is a positive constant.

A proof of Theorem 16 can be found in Appendix B.

Corollary 17. The inverse metric associated with ḡ is given by ḡ−1 =
∑m
i=1B

−1
ij vi ⊗ vj , where B−1

ij are

the elements of the m×m inverse Gram matrix [Bij ]
−1.

According to Theorem 16, the vi are Killing vector fields of ḡ, which in turn implies that vi (and hence
v) commute with the Laplace-Beltrami operator ∆ḡ associated with ḡ (see Section 4.4); a result which can
be also verified by explicit calculation of ∆ḡ.
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Lemma 18. In systems with pure point spectra, and in the limit of infinitely many delays, the Laplace-
Beltrami operator ∆ḡ becomes

∆ḡ = −
m∑

i,j=1

B−1
ij vi ◦ vj .

Proof. It follows from Corollary 17 that the gradient of a function f ∈ L2(M,µ) with respect to ḡ is given
by gradḡ f = ḡ−1(·, df) =

∑m
i=1B

−1
ij vi(f)vj . Moreover, according to Theorem 5, the vi have vanishing

µ-divergence, and since volḡ = Γµ by Theorem 16(iii), the vi have vanishing divergence with respect to volḡ
too (in fact, divµ = divḡ as can be seen from the expression for the divergence in local coordinates in (15)).
Using the Leibniz rule for the divergence, divḡ(uf) = f divḡ u + u(f) where u is an arbitrary vector field,
we obtain

∆ḡf = −divḡ gradḡ f = −
m∑

i,j=1

B−1
ij divḡ(vi(f)vj) = −

m∑
i,j=1

B−1
ij (vi ◦ vj)(f).

The expression for ∆ḡ in Lemma 18 in conjunction with the fact that [vi, v] = 0 manifestly shows that
v and ∆ḡ are commuting operators. Thus, a Koopman eigenfunction zk with corresponding eigenvalue
λk = i

∑m
i=1 kiΩi is also an eigenfunction of ∆ḡ. In particular, {zk, z∗k}, or, equivalently {Re zk, Im zk},

are orthogonal eigenfunctions of ∆ḡ at the corresponding eigenvalue
∑m
i=1B

−1
ij ΩiΩjkikj . As stated in

Section 4.4, the leading generating eigenfunction ζ1 selected on the basis of the Dirichlet energy Eḡ(ζ1) lies
entirely in the eigenspace of ∆ḡ corresponding to its smallest nonzero eigenvalue, B−1

11 Ω
2
1 . Moreover, the

Galerkin approximation space associated with the eigenfunctions of ∆ḡ is efficient for approximating the
eigenfunctions of v since each zk is expressible as a finite linear combination of eigenfunctions of ∆ḡ.

To approximate eigenfunctions of ∆ḡ using a finite number of delays we apply diffusion maps with a
variable-bandwidth kernel on Rsd × Rsd analogous to (20), viz.

Kε(Xi, Xj) = exp

(
− ‖Xi −Xj‖2

εσ̂
−1/m
s,ε (Xi)σ̂

−1/m
s,ε (Xj)

)
, (37)

where σ̂s,ε are estimates of the sampling density σs = dµ/dvolgs , accurate at O(ε). Note that as s→∞, σs
tends to a constant σ̄ = 1/Γ in accordance with Theorem 16(iii), but at finite s it will exhibit fluctuations,
and the variable-bandwidth kernel ensures that the numerical eigenfunctions are orthogonal with respect
to the invariant measure despite fluctuations in the sampling density. In particular, at finite s, diffusion
maps approximates the Laplace-Beltrami operator ∆hs associated with the conformally transformed metric

hs = gsσ
2/m
s , which has analogous invariance properties and stable behavior as the metric h introduced in

Section 4.1.
The procedure for tuning the kernel bandwidth and computing σ̂s,ε and the Laplace-Beltrami eigenfunc-

tions follows Algorithm 1 with the kernel in (20) replaced by (37). The computational cost of pairwise-kernel
evaluations associated with delay-coordinate maps scales linearly with s. In applications, we sometimes
found that the automatic tuning procedure somewhat underestimates appropriate values for ε at large s,
and a modest bandwidth inflation was necessary to produce stable solutions to the diffusion maps eigenvalue
problem. However, the results of the Galerkin method in Algorithm 2 were not too sensitive after ε exceeded
a threshold. We have checked that the numerical results presented in this Section and in Section 5.2 are
robust for different values of bandwidth inflation in the range 4× to 10×. In practice, there are obvious
limitations on how large s can be since delay embedding reduces the N samples originally available for
analysis to N − s (the first s samples are “used up” to create X̃1), and N − s must be significantly larger
than N to avoid the risk of spurious correlations in the data.

To illustrate the behavior of the diffusion maps basis obtained via this approach, in Fig. 8 we compare the
moduli |〈φk, ζi〉| of the expansion coefficients of the Koopman eigenfunctions computed via Algorithm 2 in
the diffusion maps basis {φk} for s = 1 (i.e., the case studied in Section 4.6) and s = 800. In the latter case,
the ambient space dimension is sd = 2400, but the dataset lies in a set Fs(M) of intrinsic dimension m = 2
which has the manifold structure of a 2-torus equipped (according to Theorem 16) with an approximately
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Figure 8: Moduli |〈φk, ζi〉| of the expansion coefficients of the generating Koopman eigenfunctions ζ1 and ζ2 in the Laplace-
Beltrami eigenfunction basis {φk} from diffusion maps for the variable-speed flow on the 2-torus. (a) No delay coordinate
maps, s = 1; (b) delay-coordinate maps with s = 800 delays.

flat metric. To compute Koopman eigenvalues and eigenfunctions, we used the same dataset (prior to delay-
coordinate mapping) as in Section 4.6, and executed Algorithm 2 using the same parameters as in that
Section. While the spectra of the ζi in Fig. 8 are concentrated in the leading (. 30) diffusion eigenfunctions
in both cases, it is evident that in the s = 800 case the spectra are significantly sparser, especially for ζ1
which projects almost entirely onto the diffusion eigenfunctions in the leading two-dimensional eigenspace
with corresponding eigenvalue η1, as expected theoretically. Eigenfunction ζ2 also exhibits a tight spectral
expansion for s = 800 but includes significant contributions from three pairs of diffusion eigenfunctions.

Remark 19 (Diffusion maps and timescale separation). Delay-coordinate maps have previously been
employed in conjunction with diffusion maps for extraction of spatiotemporal patterns in complex systems
([53, 54], and citing references). In these works, a behavior that has typically been observed is that as the
number of delays increases, the time series formed by the diffusion eigenfunctions φk become increasingly
monochromatic, and are able to isolate distinct frequencies from broadband input signals. In [54], it was
argued that this behavior can be explained under the assumption that (for a suitable normalization) the
diffusion operator approximated by diffusion maps approximates the long-time relaxation to equilibrium of
the true (deterministic) system. Under that assumption, the time series of the leading φk should evolve
independently at the characteristic timescales determined by the corresponding diffusion eigenvalues, and
the fact that the diffusion eigenvalues have finite spacings leads to timescale separation. Here, we have
shown that in the case of systems with pure point spectra the timescale separation in diffusion maps can
be explained from the connection between the generator of the Koopman group and the Laplace-Beltrami
operator established in Lemma 18. That is, in pure point systems and in the limit of infinitely many de-
lays the diffusion eigenfunctions converge to Koopman eigenfunctions, which provide “maximal” timescale
separation due to the fact that they evolve at a single frequency. Of course, the analysis presented here
strictly applies only in the restrictive case of pure point spectrum systems. Nevertheless, our results should
provide a useful reference point to study connections between diffusion maps and Koopman operators in
more complex systems.

As stated below (36), in systems with nonzero Lyapunov exponents the induced metric gs becomes ill-
behaved as s→∞ since it exponentially expands the stable Oseledets subspaces while shrinking the stable
subspaces (in a manner that preserves the invariant measure). The consequence of this behavior in the
context of diffusion maps is that in the limit s → ∞ and ε → 0 the operator (I − Pε)/ε (see Section 4.2)
fails to converge to a Laplace-Beltrami operator associated with a smooth metric. Operationally, this
means that as s increases the eigenfunctions from diffusion maps become increasingly biased towards the
subspace of L2(M,µ) consisting of functions with vanishing directional derivatives along all but the most
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stable subspace (in other words, eigenfunctions with appreciable directional derivatives along the unstable
subspaces become increasingly rough in the kernel induced geometry). This effect was first identified in [54],
who used a weighted version of the delay coordinate map in (35) to regularize the induced metric and
establish connections with Lyapunov metrics of dynamical systems [84]. While biasing the eigenfunctions
towards stable subspaces may actually be desirable in certain cases (e.g., by providing an effective means
for intrinsic dimension reduction in systems with many positive Lyapunov exponents), in other cases, delay-
coordinate maps with many delays may hinder the performance of approximation methods for Koopman
eigenfunctions (e.g., if approximate eigenfunctions associated with unstable directions are desired). For
these reasons, the availability of schemes such as those presented in Section 4 and Section 6 ahead which
are able to accurately approximate Koopman eigenfunctions without performing delay-coordinate maps is
important.

5.2. Koopman eigenfunctions from noisy data

In this section, we demonstrate that besides being useful for improving the efficiency of spectral Galerkin
schemes for the Koopman eigenvalue problem, delay-coordinate maps are also effective when dealing with
data generated by dynamical systems with pure point spectra which are corrupted by i.i.d. observational
noise. Specifically, we consider that instead of the noise-free time series {xi} we observe a noisy time series
{x̃i}, where x̃i = xi+ξi, and the ξi are i.i.d. random variables in Rd such that E(ξi) = 0, E(‖ξi‖2) = R2 <∞,
and the third and fourth moments of ξi are finite (note that the ξi should not to be confused with the time
change function ξ introduced in Section 6). Here, the assumption that the ξi have vanishing expectation
leads to no loss of generality since a nonzero constant expectation can be absorbed by a shift of the data,
which leaves the pairwise distances in the diffusion maps kernel unchanged. Besides the above requirements,
we do not make specific assumptions about the distribution of the ξi, but in the numerical experiments
below we use Gaussian noise.

Following the approach presented in Section 5.1, we fix an integer parameter s and replace the observed
time series {x̃i}N−1

i=0 by the time series {X̃i}N−1
i=s−1, where X̃i = (x̃i, x̃i−1, . . . , x̃i−s+1) ∈ Rsd. Note that we

can also write X̃i = Xi +Ξi, where Xi = Fs(ai) = (xi, xi−1, . . . , xi−s+1) are the noise-free samples in delay-
coordinate space, and Ξi = (ξi, ξi−1, . . . , ξi−s+1). To compute diffusion eigenfunctions from noisy data, we
replace the kernel in (37) by

Kε(X̃i, X̃j) = exp

(
− ‖X̃i − X̃j‖2

ετ
−1/m
s,ε (X̃i)τ

−1/m
s,ε (X̃j)

)
, (38)

where the functions τs,ε(X̃i) are modified bandwidth functions which estimate the sampling density up to a
proportionality constant in the presence of noise. Details on these functions and the asymptotic properties
of diffusion maps with the kernel in (38) are included in Appendix C.

Kernels in delay-embedding space have previously been used in conjunction with diffusion maps for
correction of timing uncertainties in time-ordered data [85]. Here, we demonstrate that such kernels are
also useful for denoising data corrupted by i.i.d. noise. As discussed in Appendix C, the effect of i.i.d.
noise is to introduce a random bias with positive expectation to the pairwise squared distances ‖X̃i− X̃j‖2.
In particular, by the law of large numbers, as the number of delays s increases that bias converges to a
constant number equal to 2R2. This bias affects the kernel by introducing (1) a multiplicative bias in
the density estimates σ̂s,ε used in (37), and (2) a positive offset in ‖X̃i − X̃j‖2 relative to the true value
‖Xi−Xj‖2. However, both of these effects can be removed through appropriate normalizations; in particular,
the influence on the bandwidth functions can be removed by a rescaling of σ̂s,ε to construct R-independent
functions τs,ε, and the influence of the distance offset is canceled out in the diffusion maps normalization. As

a result, the diffusion maps matrix P̃ constructed from the noisy data provides a consistent approximation
of the integral operator Pε (see Section 4.2) up to an O(ε2) correction which does not affect the consistency
of the Laplace-Beltrami operator approximated through (I − P̃ε)/ε. We can therefore employ our Galerkin
scheme for the Koopman eigenvalue problem in Algorithm 2 using clean basis functions determined through
the eigenfunctions of P̃ . Theoretically, this approach allows for the removal of i.i.d. noise of arbitrarily large
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Figure 9: The generating Koopman eigenfunctions ζ1 (a–c) and ζ2 (d–f) for the variable-speed dynamical system on the 2-torus
computed using data corrupted by i.i.d. Gaussian noise with standard deviation 0.1 in each component of the observation vector
in R3. (a, d) Scatterplots of Re(ζi) on the noisy torus; (b, e) time series of Re ζi and Im ζi; (c, f) scatterplots of (Re ζi, Im ζi).
The eigenfunctions shown here have not been rescaled to the unit circle—they are the result of Step 5 of Algorithm 2 executed
with the modified kernel in (38) for s = 100 lags. The number of samples in this dataset is 64,000.

variance provided that arbitrarily many delays s can be used. In practice, the amount of variance that can
be feasibly handled is limited by the total number of samples N (as we must have s� N). Furthermore, if
the system has nonzero Lyapunov exponents (a case that we are not treating here) adding delays leads to
the same eigenfunction bias issues as described in Section 5.1.

Figures 9 and 10 show the generating Koopman eigenfunctions computed via the approach described
above and in Appendix C for the same variable-speed torus system as in Section 4.6 but with Gaussian noise
added to the observed data in R3. We consider two cases; one with moderate noise of standard deviation 0.1
added to each component of the observation vector (Fig. 9), and one with strong noise of standard deviation
1 (Fig. 9). In the moderate-noise case, we used a dataset of 64,000 samples sampled at the same time interval
as in Section 4.6. In the strong-noise case the number of samples was 128,000 though reasonably good results
can also be obtained using 64,000 samples. For ease of comparison, we used s = 800 delays in both cases,
though in the moderate-noise the case as few as 20 delays are sufficient for denoising. Using the diffusion
eigenfunctions from each case, we computed the generating Koopman eigenfunctions using Algorithm 2 with
the same parameters as in Section 4.6 except that in the strong-noise case we used n = 401 (as opposed to
1001) diffusion eigenfunctions to build the Galerkin approximation space.

As is evident from Figs. 9 and 10, with the modifications for noisy data described above, Algorithms 1
and 2 successfully recover the generating Koopman eigenfunctions shown for the noise-free data in Fig. 4,
in both the moderate- and strong-noise cases. In both cases, the Koopman frequencies Ωi agree to their
counterparts computed from the noise-free data to within 3 significant figures. As expected from its small
Dirichlet energy, eigenfunction ζ1 is particularly well recovered in both cases. Eigenfunction ζ2 exhibits a
moderate amount of amplitude modulation in the strong-noise case, but it retains a nearly-monochromatic
oscillation at the correct theoretical frequency. Koopman eigenfunction results analogous to Figs. 9 and 10
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Figure 10: Same as Fig. 9 but for noise standard deviation equal to 1 and number of observed samples equal to 128,000.

obtained via EDMD are shown in Figs. 2 and 3 in the SOM, respectively. There, it can be seen that while our
approach and EDMD perform comparably in the moderate-noise case, in the strong-noise case the quality
of the numerical Koopman eigenfunctions obtained via our approach is higher.

6. Regularization by time change

6.1. Time change in dynamical systems

Time change (e.g., [55]) is a technique in continuous-time dynamical systems which involves scaling the
generator v by a smooth positive function ψ to create the vector field w = ψ−1v. This new vector field
generates a flow Ψt on M having the same orbits as the original flow Φt (since w and v are parallel), but time
flows differently with respect to Ψt than it does with respect to Φt. In particular, for Ψτa = Φta we have
τ =

∫ t
0
ψ(Φt′a) dt′. Moreover, if (M,B, µ, Φt) is ergodic, then (M,B, ν, Ψt) is also ergodic for the invariant

probability measure ν with density

dν =
ψ

ψ̄
dµ, ψ̄ =

∫
M

ψ dµ. (39)

While time change preserves ergodicity, the same is not true for mixing—a theorem due to Kočergin [86]
states that for any ergodic flow there exists a time change by a smooth function which renders it mixing.
Heuristically, we can think of mixing by time change in the following way. Suppose that A ⊂ M is a
measurable set that we picture as a coherent globular object. In the original, non-mixing system, Φt(A)
maintains its coherence in the course of dynamical evolution, but in the time-changed system parts of A will
lag behind others. For a suitable time-change function, Ψt(A) will become increasingly stretched and twisted,
and its volume will become asymptotically equidistributed in M in accordance with the condition for mixing
in Section 2. As a concrete example, which we will study with numerical experiments in Section 6.4.1 ahead,
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Fayad [50] shows that an irrational flow on the 3-torus becomes mixing through the analytic time-change
function

ψ(θ2, θ2, θ3) = 1 + Re

∞∑
k=1

∑
|l|≤k

e−k

k

(
eikθ1 + eikθ2

)
eilθ3 , (40)

where θµ ∈ [0, 2π) are the three angles on T3. Figure 11 shows 1/ψ as a time series for the underlying

irrational flow v =
∑3
µ=1 v

µ ∂µ

∂θµ with frequencies (α1, α2, α3) = (v1, v2, v3) = (1, 51/2, 101/2).

6.2. Dimension reduction and nonparametric forecasting with time change

Traditionally, time change is used as a technique to improve mixing and stochasticity of dynamical sys-
tems. Here, our approach is to use time change as a regularization tool to reduce mixing and improve the
spectral properties of the Koopman operators for dimension reduction and nonparametric forecasting. In
essence, we will use the eigenfunctions of the time-changed system to decompose the original dynamical sys-
tem into a collection of non-autonomous oscillators with variable frequency (as opposed to simple harmonic
oscillators). We will also use these eigenfunctions to perform a vector field decomposition analogous to
Theorem 5, but the vector field components in this case will be non-commuting. Finally, we will generalize
the forecasting methods of Section 3.3 to the time-changed framework.

In what follows, (M,B, µ, Φt) will be an ergodic dynamical system on an m-dimensional manifold M
with vector field v generating the observed data, and (M,B, ν, Ψt) will be a time-changed system with vector
field w = ψ−1v and invariant measure ν with the density in (39).

Proposition 20 (Dimension reduction with time change). Assume that (M,B, ν, Ψt) has pure point spectrum
with basic frequencies {Ωi}mi=1 and corresponding orthonormal eigenfunctions {ζi}mi=1 on L2(M,ν), and
define the projection maps πi : M 7→ C as in (6), i.e., πi(a) = ζi(a). Then, the time series ζ̃i(t) = ζi(Φta)
evolves as a non-autonomous variable-frequency oscillator with

dζ̃i
dt

= iΩiψ̃(t)ζ̃i(t), ψ̃(t) = ψ(Φta).

Proof. This equation follows directly from the facts that dζi(Ψτa)/dτ = iΩiζi(Ψτa) and dτ = ψ̃(t) dt when
Φta = Ψτa.

Proposition 20 indicates that if the dynamical system generating the data is related to a system with pure
point spectrum by a time change, we can use the spectral properties of that system to perform dimension
reduction and forecasting at the expense of introducing additional complexity (in the case of Proposition 20,
non-autonomous dynamics) due to the time change function. The following Lemma, which we state without
proof, is the analog of Theorem 5 for time-changed systems.

Lemma 21 (Vector field decomposition with time change). Let (M,B, ν, Ψτ ) be as in Proposition 20 and
let w =

∑m
i=1 wi be the vector field decomposition of w from Theorem 5. Then, v admits the decomposition

v =
∑m
i=1 vi into the nowhere-vanishing, linearly independent, µ-preserving vector fields vi = ψwi.

Unlike Theorem 5, in this case the vector fields vi can be non-commuting due to the presence of ψ, which
means that in general we cannot view them as generators of independent dynamical processes. Nevertheless,
the vi can still be reconstructed in data space using a pushforward operation analogous to (8), with the
difference that the observation map F is now decomposed in the orthonormal basis of L2(M,ν) associated
with w. That is, we write F =

∑
k F̂kzk, where F̂k = 〈zk, F 〉ν , and zk =

∏m
i=1 ζ

ki
i is the eigenfunction of

w corresponding to eigenvalue λk = i
∑m
i=1 kiΩi, k = (k1, . . . , km) ∈ Zm. In this basis, the pushforward

operation for vi becomes

Vi := F∗vi = vi(F ) =
∑
k

ikiΩiψF̂kzk, V := F∗v =

m∑
i=1

Vi. (41)
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We proceed similarly to modify the forecasting scheme of Section 3.3. As before, we are interested in
forecasting the density ρt = dµt/dµ of a time-dependent measure µt relative to µ given the initial data ρ0.
The evolution of the density is still governed by the Perron-Frobenius operator U∗t = U−t for the dynamical
system (M,B, µ, Φt), but in this case we treat ρt as a function in L2(M,ν) and expand it in the orthonormal
basis {zk}. That is, substituting the expansion ρt =

∑
i ρ̂i(t)zi with ρ̂i(t) = 〈zi, ρ0〉ν into the equation

dρt
dt

= lim
δt→0

U∗δtρt − ρt
δt

= −v(ρt),

we obtain ∑
j

dρ̂j
dt
zj = −

∑
j

ρ̂j(t)v(zj) = −
∑
j

iωj ρ̂j(t)ψzj . (42)

Taking now L2(M,ν) inner products of the last equation with the basis elements {zi}, it follows that

dρ̂i
dt

= −
∑
j

iHijωj ρ̂j(t), Hij = 〈zi, ψzj〉ν = ψ̄−1〈zi, ψ2zj〉µ. (43)

Thus, the uncoupled simple harmonic oscillators of Section 3.1 are replaced by coupled oscillators in the
time-changed setting with coupling coefficients given by the Hij coefficients. These coefficients can be viewed
as the elements of an operator on sequences in `2, and writing ρ̂(t) = (. . . , ρ̂i−1 , ρ̂i0 , ρ̂i1 , . . .) we have

dρ̂

dt
= −iHωρ̂(t),

where ω is the diagonal operator on `2 in (10). This last equation has the formal solution (cf. (9))

ρ̂(t) = e−iHωtρ̂(0).

With this solution, the time-dependent expectation value of an observable f =
∑
j f̂jzj can be computed

from an analogous expression to (11), but with additional coupling terms due to time change, viz.

f̄t = Eµtf =

∫
M

fρtdµ =
∑
i,j

ρ̂i(t)H
′
ij f̂j , (44)

where the coefficients H ′ij are given by

H ′ij = 〈zi, zj〉µ = ψ̄〈zi, ψ−1zj〉ν . (45)

Note that as with (43), we can compute H ′ij using the inner products of either of L2(M,µ) or L2(M,ν).

Remark 22 (Loss of predictability.). The coupling of the expansion coefficients ρ̂i(t) can potentially
lead to barriers in predictability. In particular, if ψ is a polynomial in {ζi} of degree N <∞ then knowledge
of a finite number of expansion coefficients is sufficient to forecast the expectation values of polynomial
observables at arbitrarily long times. On the other hand, if the number of coefficients needed to represent ψ
exactly is infinite (e.g., the time-change function in (40)), then prediction of polynomial observables at arbi-
trarily long times may not be possible with finite numbers of ρ̂i coefficients known at forecast initialization.
Note that if the system is mixing then in the course of dynamical evolution ρt develops arbitrarily small
lengthscales on M and arbitrarily large bandwidth in the eigenfunction basis. However, the corresponding
measures µt converge to µ in the sense that

∫
M
f dµt →

∫
M
f dµ for all f ∈ L2(M,µ) [41].
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6.3. Data-driven implementation

The analysis in Section 6.2 shows that time-change transformations can extend the applicability of
Koopman eigenfunction techniques to certain systems that do not posses nonconstant eigenfunctions. Of
course, the systems in question have special structure, namely that they are related to pure point systems
via time change. Even in such cases, taking advantage of this special structure from data is challenging
without prior information about the time-change function ψ. Nevertheless, motivated from the results of
Section 6.2, in this section, we put forward a time-change scheme whose objective is to improve the spectral
properties of the generator for eigendecomposition. This method employs a time-change function which is
empirically accessible from time-ordered data, and recovers ψ in special cases.

Let ξ = ‖v‖g =
√
g(v, v) be the norm of the dynamical vector field with respect to the ambient space

Riemannian metric g. This quantity is nonnegative and measurable, and thus can be used as a time change
function to obtain the vector field ŵ = ξ−1v. Note that ξ vanishes only at fixed points of v, which have
measure zero by ergodicity. In the special case that v is indeed related to a system with pure point spectrum
by a time change with function ψ, then it follows from Lipschitz equivalence of Riemannian metrics on
compact manifolds that there exists a constant 0 < C <∞ such that ξ/C ≤ ψ ≤ Cξ. Moreover, there exits
a metric g (e.g., the flat metric on the torus) such that ξ = ψ.

A key property of ξ is that it can be approximated from time-ordered data using finite differences.
In particular, we have ξ2 = V · V , where V = F∗v is the pushforward of v in data space, and we can
approximate V via finite differences as described in Section 2. Our approach is to use ξ as an empirically
accessible time-change function, and consider ŵ as a candidate vector field with well-behaved eigenfunctions
on the Hilbert space L2(M, ν̂) with dν̂ = ξ dµ/ξ̄, ξ̄ =

∫
M
ξ dµ. In what follows, we will carry out the vector

field decomposition in Theorem 5 and the statistical forecasts in (42) and (44) using ξ as the time-change
function in place of ψ.

Proceeding in direct analogy with the methods of Section 4.3, we compute approximate eigenfunctions of
ŵ by approximating this operator in a basis of eigenfunctions of a Laplace-Beltrami operator for a suitable
Riemannian metric ĥ. In this case, the metric should have volume form equivalent to dν̂, so we consider
the conformal transformation ĥ = (ξσ)2/mg, where, as before, σ is the density of the invariant measure µ
relative to the Riemannian measure volg of the ambient space metric. We approximate the Laplace-Beltrami
operator for this geometry using diffusion maps with the modified kernel (cf. (20))

K̂ε(x, y) = exp

(
− ‖x− y‖2

ε(ξ(x)σ̂ε(x))−1/m(ξ(y)σ̂ε(y))−1/m(y)

)
(46)

and the same normalization as Algorithm 1. Note that in this case the sampling density q relative to the
Riemannian measure of ĥ is nonuniform, but the effects of q are canceled out as ε→ 0 via normalization as
described in Section 4.2. Applying Algorithm 1 with the kernel in (46), we obtain an orthonormal basis of

L2(M, ν̂) from the Laplace-Beltrami eigenfunctions {φ̂i} associated with ĥ. We then construct the associated
basis {ϕ̂i} of H1(M, ν̂) following (18), and compute approximate eigenvalues and eigenfunctions of ŵ from
the eigenvalue problem for the advection-diffusion operator

L̂ε = ŵ + ε∆ĥ (47)

with an analogous algorithm to Algorithm 2.
Our vector field decomposition and statistical forecasting techniques with time change can then be carried

out using Algorithms 3 and 4 with appropriate modifications to take into account the change of basis and
the coupling coefficients in (42) and (45). Instead of giving full listings for these modified algorithms, we
indicate below the required changes.

• The eigenfunctions {ui} and eigenvalues {γi} are for the time-changed operator L̂ε. Similarly, the

discrete inner product weights wi are for the diffusion eigenfunction basis {φ̂i}.

• In Step 3 of Algorithm 3, the vector components Vi are now given by Vi = iF̂G−1Ω̄iz
> diag ξ, where

diag ξ is an N × N diagonal matrix whose i-th diagonal entry is set to the value of the time-change
function at the i-th data sample, ξi.
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Figure 11: Time series from the mixing system on the 3-torus. (a, b) State vector components x1 and x3, respectively, in the
flat embedding of the 3-torus in R6; (c) magnitude ‖V ‖ = ‖v‖g of the dynamical vector field with respect to the ambient-space
metric. In this case, ‖V ‖ is inversely proportional to the time-change function ψ producing mixing.

• In Algorithm 4, we also compute the n × n matrices H = z† diagw diag ξz and H ′ = z†z/N approx-
imating the coupling coefficients in (43) and (45), respectively. Note that we avoid division by ξi in
the expression for H ′ using ergodic sums to approximate the L2(M,µ) inner product in (45).

• In Step 3(a) of Algorithm 4, the expansion coefficients for the density are now given by ρ̃(ti) =
exp(−iG−1H diagωti)ρ̃0. Similarly, in Step 3(c), the expectation value of the observable now becomes

f̄(ti) = f̂(G−1H ′ρ̃(ti))
†.

6.4. Applications

6.4.1. Mixing flow on the 3-torus

As a first application of our dimension reduction and nonparametric forecasting techniques with time
change, we study the mixing system on M = T3 in [50] with the time-change function ψ in (40), using the
underlying irrational flow with angular frequencies (α1, α2, α3) = (1, 51/2, 101/2). For this set of experiments,
we generated a time series consisting of N = 512,000 samples in R6 taken at a timestep T = 0.01 with the
canonical embedding F (a) = (x1, . . . , x6) = (cos θ1, sin θ1, cos θ2, sin θ2, cos θ3, sin θ3), where (θ1, θ2, θ3) are
the angles corresponding to the point a ∈ M . With this embedding, the torus inherits the flat metric g,
and we have ‖v‖g = ψ−1(α2

1 +α2
2 +α2

3)1/2. Therefore, in this case, ‖v‖g = ξ is inversely proportional to the
true time-change function ψ, and the method described in Section 6.3 is guaranteed to recover an irrational
flow on T3. This application is therefore a “best-case scenario” for the techniques of Section 6.3 to perform
well, but nevertheless it remains challenging for data-driven eigendecomposition and forecasting techniques
due to mixing dynamics.

Figure 11 shows representative time series from this system together with the vector field norm ‖v‖g =
ξ ∝ ψ−1. Qualitatively, ξ exhibits a series of intermittent spikes whose amplitude is modulated by a low-
frequency envelope. These variations in the speed of the flow, whose maxima and minima differ by more
than a factor of 10, produce phase-modulated wavetrains in the observed time series (see Fig. 11(a, b)). As
a result, the invariant measure µ has highly nonuniform density relative to the Haar measure on the 3-torus.

For comparison, we begin by solving the eigenvalue problem for the generator using the method in
Section 4.5 which does not involve time change. Because the system is mixing and v has no eigenfunctions,
the spectrum of the regularized operator Lε is expected from theory [81, 82] to deviate significantly from the
simple harmonic oscillator patterns arising in systems with pure point spectra, and as shown in Fig. 11 this
is indeed the case. The eigenfunctions in Fig. 11, which were computed for the regularization parameter ε =
3×10−4, include one with a quasiperiodic time series (Fig. 12(a)) that appears to capture the low-frequency
modulating envelope of the time change function (Fig. 11(c)). However, other eigenfunctions (Fig. 12(b,
c)) exhibit strong amplitude modulation—a manifestation of the fact that advection and diffusion interact
non-trivially in Lε in the presence of mixing and even for small ε. Note that applying no regularization
(ε = 0) results in significantly less coherent patterns than those in Fig. 12.
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Figure 12: Generating eigenfunctions for the mixing system on the 3-torus without time change. (a) Quasiperiodic pattern
associated with the low-frequency envelope in Fig. 11(c); (b, c) amplitude-modulated patterns.

Next, we discuss the results obtained via the time-change technique of Section 6.3. As shown in Fig. 13,
the generating eigenfunctions {ζ1, ζ2, ζ3} from this method lie on the unit circle to a good approximation
(though with somewhat less fidelity than the eigenfunctions for the 2-torus system in Fig. 4), and, as expected
from Proposition 20, the corresponding time series have the structure of phase-modulated wavetrains. The
basic frequencies associated with the generating eigenfunctions are {Ω1, Ω2, Ω3} = {0.5587, 0.2498, 0.7902};
these values agree to within three significant figures with the frequencies (α̂1, α̂2, α̂3) = (1, 51/2, 101/2)/4 ≈
(0.2500, 0.5590, 0.7906), of the irrational flow ŵ = ‖v‖−1

g v =
∑3
µ=1 α̂µ

∂
∂θµ . Based on this identification, we

expect the eigenfunctions corresponding to the Ωi to have the structure ζi = eiθi and to have equal Dirichlet
energies Eζi in the flat metric. Indeed, the numerical Dirichlet energies for the eigenfunctions in Fig. 6.3 are
Eζ1 = 1.264, Eζ2 = 1.266, and Eζ3 = 1.28. The real parts of the numerical eigenvalues are Re γi ≈ 5× 10−4

in all three cases, indicating that the effects of diffusion in the regularized operator L̂ε are minimal after
time change.

Figure 14 displays the vector field decomposition from Lemma 21 for this system using a moderately
small spectral order parameter l = 5 (see Algorithm 3), i.e., n = (2l+1)3 = 1331 eigenfunctions in total. The
vector field components are reconstructed in the six-dimensional data space, and then projected to three-
dimensional periodic boxes for visualization. At this spectral order of approximation, the reconstruction
error in

∑3
i=1 Vi is 1% in R6, but note that the visualizations in Fig. 14 are subject to additional projection

errors, and therefore appear noisier than the native vector fields in R6. Nevertheless, the plots in Fig. 14(b–
d) illustrate clearly that V1, V2, and V3 generate flows along the θ2, θ1, and θ3 directions, respectively, which
is consistent with the identification with the ŵ system made earlier.

Next, we turn to nonparametric forecasting of this system. We set the initial probability measure µ0 to
a measure with isotropic circular Gaussian density σ relative to the Haar measure on T3, viz. σ(θ1, θ2, θ3) =

exp(κ
∑3
i=1 cos(θi − θ̄i))/(I0(κ))3 which is the three-dimensional analog of (14). Taking into account the

density of the invariant measure relative to the Haar measure, our initial probability measure has density
ρ0 = dµ0/dµ = σψ̄/ψ relative to µ, where ψ and ψ̄ are the time change function and its ergodic mean
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Figure 13: Generating eigenfunctions ζi for the mixing system on the 3-torus with time change. (a–c) Mapping of the 3-torus to
the circles (Re ζi, Im ζi) on the complex plane; (d–f) time series of the real and imaginary parts of the eigenfunctions exhibiting
time-dependent frequency (cf. the eigenfunctions in Fig. 4 for the 2-torus system with pure point spectrum).
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Figure 14: Vector field decomposition for the mixing dynamical system on the 3-torus. (a) Full vector field; (b–d) vector field
components from Lemma 21. All vector fields are visualized in a periodic box with the x, y, and z axes corresponding to the
normalized angles θ1/π, θ2/π, and θ3/π, respectively, on T3. To create these plots, the vector fields were first reconstructed in
data space, R6, via (41) and then projected to the periodic box via the inverse derivative map ∂θµ/∂xν . This projection step
is needed because (41) cannot be applied to reconstruct the vector fields directly in the periodic box (in that case, the map
F : T3 7→ R3 would be discontinuous). Because ∂θµ/∂xν has singularities, the reconstructed arrow plots are more noisy than
the natively reconstructed vector fields in R6.
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Figure 15: Nonparametric and ensemble forecasts of the components x1 (a, b), x3 (c, d), and x5 (e, f) of the flat embedding into
R6 for the mixing dynamical system on the 3-torus. The initial probability measure has circular Gaussian density relative to the
Haar measure with location and concentration parameters (θ̄1, θ̄2, θ̄3) = (π, π, π) and κ = 30, respectively. The nonparametric
forecast is performed via Algorithm 4, modified for time change as described in Section 6.3. The ensemble forecast is based on
10,000 independent samples drawn from the initial probability measure and evolved using the perfect model.

from (40). Here, we use the location and concentration parameters θ̄µ = π and κ = 30. Also, we take the
components {x1, x3, x5} of the observation map as our forecast observables.

Figure 15 displays forecast results for the mean and standard deviation of these observables obtained
via the method in Section 6.3 for l = 13 (n = 19,683) and an ensemble forecast with 10,000 particles using
the perfect model. Because this system is mixing, expectation values with respect to the time-dependent
probability measures µt converge to expectation values with respect to µ (see Remark 22). This late-time
behavior is clearly evident in the ensemble forecast results, but as it turns out it is particularly challenging
to emulate with the nonparametric model consisting of a finite collection of coupled oscillators. That is,
the stochastic behavior of this mixing deterministic system involves the generation of arbitrarily small
lengthscales in the time-dependent densities ρt, and as a result any diffusion-free algorithm that attempts
to replicate this behavior via a finite collection of deterministic systems will ultimately fail at late times. In
Fig. 15, the nonparametric model is able to accurately track the mean and standard deviation of the ensemble
forecast over times less than the the equilibrium relaxation time of the perfect model, but eventually develops
spurious oscillations. The latter are possibly due to aliasing effects in the finite-bandwidth representation
of ρt, and could be suppressed at a fixed time t by increasing l. However, failure to relax to the correct
equilibrium should occur at long-enough times for fixed l. Note that the consequences of this shortcoming
may not be particularly detrimental if the timescale at which the nonparametric model deviates from the
perfect model is comparable or exceeds the intrinsic predictability limits for the given initial distribution
and forecast observable (as is the case in Fig. 15).

6.5. Ergodic flow on the 2-torus with a fixed point

In this set of experiments, we consider the dynamical system on the 2-torus with the vector field v =∑2
µ=1 v

µ ∂
∂θµ , where

v1 = v2 + (1− α)(1− cos θ2), v2 = α(1− cos(θ1 − θ2)), (48)
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Figure 16: Time series for the fixed-point system on the 2-torus. (a) Phase space diagram on a periodic box for 64,000 samples;
(b, c) components x1 = cos θ1 and x3 = cos θ2 of the standard (flat) embedding F : T2 7→ R4.

and α is an irrational frequency parameter. Originally introduced by Oxtoby [51], flows of this class have a
fixed point b with coordinates θ1 = θ2 = 0, and are ergodic for the Haar measure on the 2-torus.1 Indeed, it
is straightforward to check that divµ v vanishes everywhere on T2 for the Haar measure, which is a necessary
and sufficient condition for the flow to be µ-preserving. Due to the presence of the fixed point, this system
is not uniquely ergodic, but the Haar measure is its only invariant Borel probability measure for which
µ(b) = 0. Besides the Haar measure, its only other ergodic Borel probability measure is the trivial measure
with µ(b) = 1. The system is topologically equivalent (i.e., equivalent up to homeomorphism) to a class of
dynamical systems on the 2-torus called Stepanoff flows. The latter have the structure of a time-changed
linear flow as in Section 6.1, but contain a single fixed point where the time change function diverges.
Systems of this type are known to be topologically mixing, but we have not been able to find results on
their measure-theoretic mixing properties apart from a conjecture in [51] that a class of Stepanoff flows
that includes (48) is mixing. In summary, the system specified in (48) does not in itself have the structure
of a time changed flow, but is connected to a (singular) time changed-system system via a continuous
transformation. Our objective in this section is to demonstrate how the time-change methods of Section 6.3
behave in this more general context.

Qualitatively, the orbit of a point a 6= b under (48) will pass by the fixed point at arbitrarily small
distances, but by incompressibility, the trajectory develops “bumps” and circumvents the fixed point when
it comes close to it. Because the speed of the flow can become arbitrarily slow near the fixed point,
the time series of observables of this system exhibit complex behavior over a broad range of timescales,
with intervals of rapid evolution separated by quasi-stationary periods. This behavior is illustrated in
Figure 16 for the frequency α = 201/2 and the standard (flat) embedding of the 2-torus in R4, F (a) =
(cos θ1, sin θ1, cos θ2, sin θ2). In what follows, we discuss dimension reduction and forecasting results for this
system and observation map using a time series of 128,000 samples initialized at (θ1, θ2) = (π/2, π/2) and
sampled at a timestep T = 0.01.

First, we note that the methods of Section 4 with no time change fail in the initial diffusion maps stage, as
the Laplace-Beltrami eigenfunctions computed via Algorithm 1 are corrupted by series of spikes (a hallmark
of ill conditioning of the heat kernel matrix P ). We experimented with different kernels, tuning procedures,
and normalizations (including the standard α = 1/2 normalization of diffusion maps that requires no density
estimation), but in all cases the quality of the eigenfunctions was poor. This ill-conditioning is likely caused
by the behavior of the system near the fixed point, where the sampling density through finite-time trajectories
has a singular, “one-dimensional” structure (see Fig. 16(a)), even though the asymptotic sampling density

1The convention in [51] is that the frequency parameter lies in the unit interval; the cases with α > 1 are equivalent to
systems with frequency 1/α up to an unimportant change of sign in v1 and a constant time change.
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is uniform with respect to the Haar measure. On the other hand, after time change by the empirically
accessible phase-space speed function ξ, the quality of the eigenfunctions from diffusion maps improves
markedly. We attribute this improvement to the modified Riemannian metric ĥ from Section 6.3. This
metric becomes degenerate near the fixed point where ξ vanishes, assigning arbitrarily small norm to all
tangent vectors (this can also be seen from the fact that the kernel in (46) assigns near-maximal affinity

to all pairs of points with small corresponding ξ). Therefore, the heat kernel associated with ĥ produces
stronger averaging (smoothing) near the fixed point resulting in a well-behaved eigenfunction basis which is
crucial to the success of the techniques of Section 6.3.

In what follows, we work with the approximate eigenfunctions for the time-changed vector field computed
using the advection-diffusion operator L̂ε from (47) for the regularization parameter ε = 0.02. We selected
this value as a reasonable compromise between bias error and smoothness of the computed eigenfunctions
after testing various candidate values of ε in the interval 10−4 to 10−1. As shown in Fig. 17, the generating
eigenfunctions {ζ1, ζ2} for this value of ε do not lie on the unit circle with the same accuracy as the earlier
results in Figs. 4 and 13. Nevertheless, the eigenfunctions lie on a narrow annulus about the unit circle, and
the corresponding time series have the structure of phase-modulated waves with weak amplitude modulation.
The basic frequencies and Dirichlet energies are {Ω1, Ω2} = {0.735, 0.165} and {Eζ1 , Eζ2} = {1.54, 2.42}.
The eigenfunction time series exhibit timescale separation, with ζ1 evolving at faster timescales than ζ2,
but this timescale separation has a time-dependent nature in the sense that both time series evolve slowly
near the fixed point. The timescale separation between ζ1 and ζ2 is also evident from the scatterplots on
the torus in Fig. 17(a, d). There, it can be seen that the level sets of ζ2 are aligned with the orbits of the
dynamics, whereas the level sets of ζ1 are transverse to the dynamics resulting to rapid oscillations due to
frequent level-set crossings. As discussed in the SOM, EDMD implemented with a dictionary consisting of
lags of the state vector fails to recover Koopman eigenfunctions of comparable quality to those in Fig. 17. In
particular, as shown in Fig. 4 in the SOM, the EDMD spectrum contains an eigenfunction that somewhat
resembles eigenfunction ζ2 in Fig. 17, but is significantly more noisy. Moreover, we did not find evidence
of an EDMD eigenfunction analogous to ζ1 which varies predominantly in the direction along the flow as
opposed to directions transverse to the flow.

Figure 17 shows the vector field decomposition from Lemma 21 associated with the generating eigen-
functions from Fig. 18. This decomposition was performed using the bandwidth parameter l = 30, and
similarly to the 3-torus example of Section 6.4.1, the results were projected to a periodic box on the plane
for visualization. With this choice of bandwidth, the time-averaged reconstruction error of the full vector
field was 7%. Qualitatively, the vector field component V1 corresponding to ζ1 describes a flow which is
primarily directed along the θ2 direction, apart from a band centered around the θ1 = θ2 line where the
flow turns towards the negative θ1 direction and its magnitude is diminished. On the other hand, the flow
described by the component V2 has significant magnitude along that band, together with inflow (outflow)
from the θ2 > θ1 (θ2 < θ1) portions of the torus.

Turning now to nonparametric forecasting, we use an initial probability measure µ0 from the same von-
Mises family as the irrational flow example of Section 3.4. That is, µ0 has the density function in (14) relative
to the Haar measure, and in this case we set the location and concentration parameters to (θ̄1, θ̄2) = (π, π)
and κ = 30, respectively. The dynamic evolution of the density for the time interval [0, 10] is illustrated
with snapshots in Fig. 19 and as a video in Movie 2. With the chosen mean and concentration parameter,
the initial density function is concentrated away from the fixed at point at (0, 0). In the course of dynamical
evolution, the density function wanders close to the fixed point and becomes increasingly stretched. Even-
tually (around t = 350), the density function appears to break up into disconnected components, but it is
possible that these are artifacts caused by truncation to a finite number of basis functions and/or errors in
the generating eigenfunctions and basic frequencies.

To assess the forecast skill of this nonparametric model, we compare its predictions against ensemble fore-
cast obtained from 10,000 independent samples drawn from ρ0 and evolved using the true model from (48),
taking the observation-map components x1 = cos θ1 and x3 = cos θ2 as our forecast observables. As shown in
Fig. 20, over the time interval [0, 10] the mean forecast from the nonparametric model is in good agreement
with the ensemble forecast. The nonparametric model also provides a reasonable uncertainty quantification
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Figure 17: Generating eigenfunctions ζ1 (a–c) and ζ2 (d–f) for the fixed point system on the 2-torus obtained via the time-
change technique. (a, d) Scatterplots of Re(ζi); (b, e) time series of Re(ζi); (c, f) scatterplots of (Re(ζi), Im(ζi)). The imaginary
parts of ζi are not shown in (b, e) for clarity, but to a good approximation they are 90◦ phase-shifted versions of Re ζi apart
from near fixed points where that phase relationship holds less accurately.
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Figure 18: Vector field decomposition for the fixed-point system on the 2-torus. (a) Full vector field; (b, c) vector field
components from Lemma 21. All vector fields are visualized in a periodic box for the angles (θ1, θ2). As with Fig. 14, the
vector fields were first reconstructed in data space, R4, and subsequently projected to the periodic domain. As a result, the
arrow plots in (b, c) are noisier than the native vector fields in R4.
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Figure 19: Snapshots of the time-dependent probability density ρt relative to the equilibrium (Haar) measure for the fixed-
point system on the 2-torus. (a) At initialization time, the density is strongly concentrated around the point (π, π); (b,
c) at early times, most of the probability mass is located away from the fixed point at (0, 0); (d) the peak of the density
function approaches the fixed point and becomes highly stretched; (e) eventually, the numerical density function breaks up into
disconnected components.

through the predicted standard deviation, but as with the previous experiments the deviations from the
ensemble forecast are greater for the standard deviation than the mean. In summary, the time-change ap-
proach is particularly effective in this class of systems both in terms of the quality of the diffusion maps basis
(which is useful in other contexts besides the Koopman operators studied here), but also as a regularization
tool that transforms the dynamical system to an orbit-equivalent system with improved spectral properties.

7. Concluding remarks

In this work, we developed a family of of data analysis techniques for dimension reduction, mode de-
composition, and nonparametric forecasting of data generated by ergodic dynamical systems. Our approach
is based on the Koopman and Perron-Frobenius formalisms for nonlinear dynamical systems, where the
central objects of study are groups of unitary operators governing the evolution of observables and proba-
bility measures. In certain classes of systems (in particular, systems with pure point spectra), the spectral
properties of these operators naturally lead to algorithms for dimension reduction and mode decomposition
of spatiotemporal data, featuring timescale separation and strong invariance properties under changes of
observation modality. The Perron-Frobenius operators also provide algorithms for equation-free forecasting
of probability measures and expectation values of observables. Here, we develop these algorithms using a
recent technique [44] for approximating the generator of the Koopman group in a complete orthonormal
basis of the L2 space of the dynamical system, acquired from time-ordered data through the diffusion maps
algorithm [37]. Placed in context, this work has connections with methods for mode decomposition and
model reduction based on both the Koopman [1, 9–22] and Perron-Frobenius [23–34] perspectives, since the
complete orthonormal basis learned from the data via diffusion maps allows us to pass between the two
representations using standard linear algebra operations.

The ability to work in a complete orthonormal basis for the L2 space of the dynamical system with a
well-defined notion of smoothness has a number of advantages which enable us to (1) construct nonlinear
dimension reduction maps from Koopman eigenfunctions with projectible dynamics and small roughness on
the data manifold; (2) decompose the generator of the Koopman group into a sum of mutually commuting
vector fields, which we reconstruct in data space through a spectral representation of the pushforward
map for vector fields on manifolds; (3) improve the efficiency and noise robustness of Galerkin methods
for the Koopman eigenvalue problem through delay-coordinate maps; (4) predict the time-evolution of
arbitrary probability densities and the expectation values of observables. These techniques perform best in
the setting of systems with pure point spectra, where they lead to a decomposition of nonlinear dynamical
systems into uncoupled simple harmonic oscillators. We demonstrated the efficacy of these methods in
numerical experiments with variable-speed flows on the torus with multiple timescales, large contrasts of
the sampling density in ambient data space, and strong i.i.d. observational noise. We also established
an explicit connection between Koopman operators for systems with pure point spectra and the Laplace-
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Figure 20: Nonparametric and ensemble forecasts of the mean and standard deviation of the components x1 (a, b) and x4 (c,
d) of the canonical (flat) embedding of the 2-torus in R4 for the fixed-point system. The initial probability measure has the
circular Gaussian density in Fig. 19(a). The nonparametric forecast is performed via Algorithm 4, modified for time change
as described in Section 6.3. The ensemble forecast is based on 10,000 independent samples drawn from the initial probability
measure and evolved using the perfect model.

Beltrami operators approximated by diffusion maps applied to delay-coordinate mapped data, providing a
rigorous justification of the timescale separation seen in diffusion coordinates [54] for this class of systems.

Another objective of this work has been to study and improve the regularity of numerically approximated
eigenvalues and eigenfunctions of the Koopman group, particularly for mixing dynamical systems where
the generator has no nonconstant eigenfunctions. In systems with pure point spectra, we demonstrated
that adding a small amount of diffusion to the generator in an appropriate basis tailored to H1 regularity
eliminates oscillatory eigenfunctions with large Dirichlet energy for the given observation modality. This
type of regularization is important even in simple systems such as irrational flows, since the spectrum of the
generator is dense in the imaginary line, and contains highly oscillatory eigenfunctions near (in the sense of
the corresponding eigenvalues) eigenfunctions with low roughness.

In mixing systems, rather than regularizing the spectrum of the generator by diffusion alone (which is
known to impart singular changes [81, 82] that are difficult to analyze in generality), we followed a different
approach inspired by time-change methods in dynamical systems [50, 55]. In particular, we developed a
strategy that involves rescaling the generator by its norm in the ambient data space and using the spectrum
of the rescaled generator for dimension reduction and forecasting. This transformation is empirically com-
putable from time-ordered data, and preserves the orbits of the dynamics while changing the flow of time
along the orbits. In special cases, the transformation formally recovers a system with pure point spectrum
from a class of time-changed mixing systems, but can be broadly used as an ad hoc regularization tool.
We constructed analogs of our vector field decomposition and nonparametric forecasting techniques in the
time-changed setting, where non-commuting vector fields and coupled oscillators encode the time-change
function producing mixing. We demonstrated this approach in applications to a mixing flow on the 3-torus
[50], and a challenging ergodic flow on the 2-torus with a fixed point [51] where diffusion maps fails to
produce a well-conditioned basis if no time change is applied.

There is a number of areas for future research stemming from this work. First, the methods and applica-
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tions discussed in the paper are heavily focused on dynamical systems on tori, so they should be investigated
in more general classes of systems. In particular, we expect the techniques developed here to be useful in
dynamical systems with Kronecker factors [55], i.e., systems possessing invariant subspaces of their full L2

space spanned by a (non-complete) set of eigenfunctions of the Koopman group. Also, it would be useful
to study connections between Koopman operators and diffusion maps applied in delay-coordinate space for
systems with nonzero Lyapunov exponents. Similarly, the time-change regularization strategy based on the
empirical norm of the generator could be extended to other transformations having the goal of mapping
the system under study to a system with improved spectral properties. At a more operational level, the
algorithms formulated in this paper are all based on spectral expansions in global bases of L2 spaces, and
these bases are generally inefficient in representing localized objects such as probability densities. It would
therefore be fruitful to explore applications of multiscale bases (e.g., [87, 88]) as alternatives to the global
L2 bases used here and in [44]. We plan to study these topics in future work.
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Appendix A. Algorithms

In this Appendix, we list the spectral decomposition and forecasting algorithms developed in Sections 4
and 6.

Algorithm 1 summarizes the construction of our data-driven orthonormal basis of L2(M,µ) via diffusion
maps. This algorithm also includes a summary of the kernel density estimation and bandwidth-parameter
tuning procedures. These procedures require a set {εl} of candidate bandwidth parameters and a nearest-
neighbor truncation parameter knn as additional inputs; see [43, 44] for complete descriptions. We note that
the content of Algorithm 1 and the other algorithms in the paper are intended to be at a conceptual level,
and some of the steps would be implemented differently in practice to ensure efficiency. In particular, in
applications with N � 1, we can truncate P to k nearest neighbors (incurring small loss of accuracy due
to exponential decay of Kε). Also, it is customary for efficiency and stability to obtain the eigenvalues and
eigenvectors of P from the eigenproblem for the symmetric matrix S = D1/2PD−1/2, where D is an N ×N
diagonal matrix with Dii =

∑N
j=1Hij . The eigenfunctions of P and the inner product weights w can be

computed from the eigenvectors of S through the relationships in the last step of Algorithm 1. We refer the
reader to [37, 43, 44, 58, 65] for further details on the numerical implementation and error estimates for this
class of kernel algorithms.

Algorithm 1 (Data-driven orthonormal basis).

• Inputs

– Observed time series {xi}N−1
i=0 , xi ∈ Rd, at sampling interval T

– Candidate bandwidth parameter values {εl} with εl = 2l

– Number of nearest neighbors knn for kernel density estimation

– Manifold dimension m

– Desired number of eigenvalues and eigenfunctions n

• Outputs

– Sampling densities {σ̂ε(xi)}N−1
i=0 relative to the Riemannian measure
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– Estimated manifold dimension m̃

– Laplace-Beltrami eigenfunctions {φ0, φ1, . . . , φn−1}, φi ∈ RN , and the corresponding eigenvalues
{η0, η1, . . . , ηn−1}

– Inner product weights w ∈ RN

• Density estimation phase

1. For each xi, compute the ad-hoc bandwidth function r2
i =

∑knn
j=2‖xi − xI(i,j)‖2/(knn − 1), where

I(i, j) is the index of the j-th nearest neighbor of xi in the dataset.

2. For each εl, compute the sum Σl =
∑N−1
i,j=0 K̃ε(xi, xj)/N

2 for the kernel

K̃ε(xi, xj) = exp(−‖xi − xj‖2/(εlrirj)).

3. Choose the bandwidth parameter ε ∈ {εl} that maximizes Σ′l = (logΣl+1 − logΣl)/(log εl+1 −
log εl). The estimated manifold dimension is m̃ = 2Σ′l .

4. With the bandwidth parameter from Step 2, compute the sampling density

σ̂ε(xi) =
N−1∑
j=0

K̃ε(xi, xj)/[N(wεr2
i )
m/2].

• Main calculation phase

1. Select the bandwidth parameter ε for the kernel Kε in (20) using the same method as Steps 2
and 3 of the density estimation phase.

2. Compute the vector q ∈ RN with qi =
∑N−1
j=0 Kε(xi, xj) and the N × N matrix H with Hij =

Kε(xi, xj)/qj .

3. Compute the vector D ∈ RN with Di =
∑N−1
j=0 Hij and the N × N symmetric matrix S with

Sij = Hij/(DiDj)
1/2.

4. Solve the eigenvalue problem Sφ̃i = κiφ̃i with i ∈ {0, 1, . . .} and φ̃i = (φ̃0i, . . . , φN−1,i) ∈ RN .

5. Set the eigenvalues to ηi = log κi/ log κ1, the inner product weights to w = (w0, . . . , wN−1) ∈ RN
with wi = φ̃2

i0, and the eigenfunctions to φi = (φ0i, . . . , φN−1,i) with φji = φ̃ji/φ̃0i.

Note that Algorithm 1 is not too sensitive to the choice of the nearest neighbor parameter knn and the
candidate bandwidth parameter values. Hereafter, we will always work with the values knn = 8 and εl = 2l

with l ∈ {−30,−29.9, . . . , 9.9, 10}, which were also used in [44].
Algorithm 2 summarizes the numerical procedure to compute the generating frequencies and eigenfunc-

tions of the Koopman group.

Algorithm 2 (Generating frequencies and eigenfunctions).

• Inputs

– Diffusion eigenvalues {ηi}ni=0, eigenfunctions {ϕi}ni=0, and invariant measure w from Algorithm 1

– Manifold dimension m

– Regularization parameter ε

• Outputs

– Generating frequencies {Ωi}mi=1, Ωi ∈ C, and eigenfunctions {ζi}ni=1, ζi ∈ CN

• Execution steps

1. Compute the n× n matrices D, B, and V from (28), and form form the matrix A = V + εD.
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2. Solve the generalized eigenvalue problem in (29); obtain the eigenvalues {γi}n
′

i=1, λi ∈ C, and the

eigenvectors {ui}n
′

i=1, ui ∈ CN , for n′ ≤ n.

3. Normalize each eigenvector to unit norm ‖ui‖w, where ‖ui‖2w =
∑N
j=1 wj |uji|2/ηi.

4. Compute the Dirichlet energies of the eigenvectors, E(ui) =
∑n
j=1|uji|2, and order the eigenvec-

tors and eigenvalues in order of increasing E(ui).

5. Set {Ωi}mi=1 to the first m rationally independent frequencies Im γi and {ζi}mi=1 to the correspond-
ing eigenvectors.

Next, we summarize the main steps in the numerical implementation of the vector field decomposition
from Theorem 5 and the statistical forecasting scheme in Section 3.3 in Algorithms 3 and 4, respectively.
In these algorithms, the notation diagw refers to an N ×N diagonal matrix with diagonal elements equal
to the components wi of the inner product weight vector w. Moreover, in Algorithm 4 we present our
nonparametric forecast scheme for general vector-valued observables in Rs, instead of the scalar-valued
observables discussed in the main text.

Algorithm 3 (Vector field decomposition).

• Inputs

– Observed time series {xi}N−1
i=0 , xi ∈ Rd, at sampling interval T

– Invariant measure w ∈ RN from Algorithm 1

– Basic frequencies {Ωi}mi=1 and generating eigenfunctions {ζi}mi=1 from Algorithm 2

– Spectral order parameter l

• Outputs

– Vector field components {Vi}mi=1, where Vi = {Vi0, . . . , Vi,N−1}, and Vij ∈ Rd is a tangent vector
at xj

• Preparatory steps

1. Arrange {xi}N−1
i=0 into a d×N data matrix x = (x1 · · ·xN ).

2. Rescale the generators ζi = (ζ0i, . . . , ζN−1,i) ∈ CN to lie on the unit circle, ζji ← ζji/|ζji|.
3. Construct the index set K = {k1, . . . , kn} with ki = (q1, . . . , qm), |qi| ≤ l and n = (2l + 1)m.

4. For each i ∈ {1, . . . , n} form the basis vector zi =
∏m
j=1 ζ

qj
j with (q1, . . . , qm) = ki ∈ K. Arrange

the zk in the N × n matrix z = (z1 · · · zn).

5. Compute the Gramm matrix G ∈ Cn×n with Gij = 〈zi, zj〉w; in matrix notation, G = z† diagwz.

• Execution steps

1. Compute the expansion coefficient matrix F̂ ∈ CN×n of the observation map s.t. F̂ = (F̂1 · · · F̂n),

F̂i = 〈zi, F 〉w =
∑N
j=1 wjxjz

∗
ji. In matrix notation, F̂ = xdiagwz∗.

2. For i ∈ {1, . . . ,m} compute the diagonal matrix Ω̄i ∈ Rn×n, where Ω̄i,jj = qiΩi and qi is the i-th
element of the index vector kj ∈ K.

3. Reconstruct the vector fields in (8) by forming the d×N matrices Vi = iF̂G−1>Ω̄iz
>. Set Vij to

the j-th column of Vi.

Algorithm 4 (Nonparametric forecast).

• Inputs

– Observable time series {fi}N−1
i=0 , fi ∈ Rs with sampling interval T

– Invariant measure w ∈ RN from Algorithm 1
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– Discretely sampled initial probability density ρ0 = (ρ00, . . . , ρ0,N−1) ∈ RN , normalized such that∑N
i=1 ρ0i = 1

– Forecast times {ti}N
′

i=1 in multiples of T

– Basic frequencies {Ωi}mi=1 and generating eigenfunctions {ζi}mi=1 from Algorithm 2

– Spectral order parameter l

• Outputs

– Forecast densities {ρ(ti)}N
′

i=1, ρ(ti) ∈ RN

– Expectation values {f̄(ti)}N
′

i=1, f̄(ti) ∈ Rs, of the observable

• Preparatory steps

1. Repeat the preparatory steps of Algorithm 3.

2. Compute the frequency ωi =
∑m
j=1 qjΩj corresponding to each index vector ki = (q1, . . . , qm) ∈

K.

• Execution steps

1. Compute the expansion coefficient matrix f̂ ∈ Cs×n of the observable s.t. f̂ = f diagwz∗.

2. Compute the expansion coefficients ρ̂ = (ρ̂1, . . . , ρ̂n) of the initial density with ρ̂ = ρ0 diagwz∗;
pre-multiply with the inverse Gramm matrix to form the coefficients ρ̃0 = G−1ρ̂.

3. For each forecast time ti
(a) Advance the expansion coefficients of the density using ρ̃j(ti) = e−iωjti ρ̃j . Arrange the result

in a row vector ρ̃(ti) = (ρ̃1(ti), . . . , ρ̃n(ti)) ∈ Cn.
(b) Reconstruct the density ρ(ti) using ρ(ti) = ρ̃(ti)z

>.

(c) Compute the expectation value of the observable f̄(ti) = f̂ ρ̃†(ti).

Appendix B. Proof of Theorem 16

According to Theorem 5, the vector fields vi are nowhere-vanishing and linearly independent. Therefore,
to verify the desired expression for ḡ it suffices to show that ḡ(vi, vj) = Bij . Indeed, using (8), (36), and
Theorem 5, we find

ḡ(vi, vj) = lim
s→∞

1

s

s−1∑
k=0

〈F∗Φ̂k∗vi, F∗Φ̂k∗vj〉

= lim
s→∞

1

s

s−1∑
k=0

〈Φ̂k∗vi(F ), Φ̂k∗vj(F )〉

= lim
s→∞

1

s

s−1∑
k=0

〈vi(F ◦ Φ̂k), v̂j(F ◦ Φ̂k)〉

= lim
s→∞

1

s

s−1∑
k=0

〈
vi

(∑
p

F̂ ∗p (ζ−p11 · · · ζ−pmm ) ◦ Φ̂k

)
, vj

(∑
q

F̂q(ζ
q1
1 · · · ζqmm ) ◦ Φ̂k

)〉

= lim
s→∞

1

s

s−1∑
k=0

〈
vi

(∑
p

F̂ ∗p ζ
−p1
1 · · · ζ−pmm e−

∑m
l=1 ikΩlTpl

)
, vj

(∑
q

F̂qζ
q1
1 · · · ζqmm e−

∑m
n=1 ikΩnTqn

)〉

= lim
s→∞

1

s

s−1∑
k=0

〈(∑
p

F̂ ∗pΩipiζ
−p1
1 · · · ζ−pmm e−

∑m
l=1 ikΩlTpl

)
,

(∑
q

F̂qΩjqjζ
q1
1 · · · ζqmm e

∑m
n=1 ikΩnTqn

)〉
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=
∑
p,q

〈F̂ ∗p , F̂q〉ΩiΩjpiqjζ
q1−p1
1 · · · ζqm−pmm

(
lim
s→∞

1

s

s−1∑
k=0

e
∑m
l=1 ikΩlT (ql−pl)

)
=
∑
p,q

〈F̂ ∗p , F̂q〉ΩiΩjpiqjζ
q1−p1
1 · · · ζqm−pmm δq1p1 · · · δqmpm

=
∑
p

‖F̂p‖2ΩiΩjpipj .

On the other hand,

Bij =

∫
M

g(vi, vj) dµ

=

∫
M

〈F∗vi, F∗vj〉 dµ

=

∫
M

〈vi(F ), vj(F )〉 dµ

=

∫
M

〈
vi

(∑
p

F̂ ∗p ζ
−p1
1 · · · ζ−pmm

)
, vj

(∑
q

F̂ ∗q ζ
q1
1 · · · ζqmm

)〉
dµ

=

∫
M

〈(∑
p

F̂ ∗pΩipiζ
−p1
1 · · · ζ−pmm

)
,

(∑
q

F̂ ∗q Ωjqjζ
q1
1 · · · ζqmm

)〉
dµ

=
∑
p,q

〈F̂ ∗p , Fq〉ΩiΩjpiqi〈ζ
p1
1 · · · ζpmm , ζq11 · · · ζqmm 〉

=
∑
p,q

〈F̂ ∗p , Fq〉ΩiΩjpiqiδp1q1 · · · δpmqm

=
∑
p

‖F̂p‖2ΩiΩjpipj .

We therefore have ḡ(vi, vj) = Bij as claimed above.
Next, to verify that Φn,t∗ is an isometry of ḡ as claimed in part (i), is sufficient to show that

ḡ(vi|a, vj |a) = ḡ(Φ̂n,t∗vi|a, Φ̂n,t∗vj |a)

for all i, j ∈ {1, . . . ,m} and a ∈M . This can be confirmed using Theorem 5(iv), according to which

ḡ|(Φ̂n,t∗vi|a, Φ̂n,t∗vj |a) = ḡ(vi|Φn,t(a), vj |Φn,t(a))

=

m∑
k,l=1

Bkl(βk(vi))|Φn,t(a)(βl(vj))|Φn,t(a)

= Bij

= ḡ(vi|a, vj |a).

Moreover, to show that ḡ is flat as stated in part (ii) we note that each vi is a Killing vector field since it
generates a one-parameter group of isometries Φi,t, and therefore by Theorem 5 {vi}mi=1 is a set of m linearly
independent, mutually commuting, Killing vector fields. It is a standard result from differential geometry
that whenever such vector fields exist in an open neighborhood of a point in M the metric is flat at that
point, and the global flatness of ḡ follows from the fact that the vi are globally defined on M .

Finally, we check that dvolḡ /dµ is a constant as stated in part (iii) working in local coordinates
{θ1, . . . , θm} such that vi = ∂

∂θi . (Note that such coordinates exist at every point in M since the vi are
linearly independent and mutually commuting.) In these coordinates ḡ has constant components ḡij = Bij ,
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and we have dvolḡ =
√

detB dθ1 ∧ · · · ∧ dθm where B is the m×m positive matrix with elements Bij . Sim-
ilarly, we can expand dµ = γ dθ1 ∧ · · · dθm, where γ is a smooth positive function. Now, by Theorem 5(iii),
the vi have vanishing µ-divergence, and using the local-coordinate expression for the divergence in (15) we
obtain 0 = divµ vi = γ−1∂γ/∂θi. Thus, dvolḡ /dµ =

√
detB/γ = Γ is locally a constant, and since the vi

are smooth and defined at every point in M , dvolg /dµ is also globally constant.

Appendix C. Treatment of i.i.d. noise through delay embeddings and diffusion maps

In this Appendix, we study the asymptotic properties of the procedure employed in Section 5.2 to remove
the effects of i.i.d. observational noise from the diffusion eigenfunctions computed through Algorithm 1. In
particular, we are interested in the behavior of diffusion maps at small kernel bandwidth ε and in the limit
of infinitely many delays, s → ∞, with an appropriate scaling relationship between s and the number of
samples N .

Theorem 23. Let f be an observable in L2(M,µ) with the values (f(as−1), . . . , f(aN−1)) = ~f on the sampled
states {ai}N−1

i=s−1. Under the assumptions on the noise stated in Section 5.2 and for an ergodic dynamical
system with a pure point spectrum, as s,N →∞ and s = o(N), with high probability,

(P̃ ~f)i = Pεf(ai) +O(ε2),

where Pε is the averaging operator on L2(M,µ) constructed through (21) for the kernel in (38), P̃ is the
corresponding Markov matrix constructed from the noisy data via (C.3), and the estimate holds uniformly
on M .

To prove Theorem 23, note that the noise variables in delay embedding space are sequences Ξi =
(ξi, ξi−1, . . . , ξi−s+1) of the i.i.d. noise variables ξi, and for s = o(N), the probability (with respect to the
sampling measure from the dynamics) that Ξi and Ξj have at least one overlapping element is O(N−1).
Since later on we will be taking N →∞ limits, it suffices to consider the case |i− j| > s where Ξi and Ξj
are independent. In that case,

E(‖Ξi −Ξj‖2) =
1

s

s−1∑
k=0

E(‖ξi−k − ξj−k‖2) =
1

s

s−1∑
k=0

(E(‖ξi−k‖2) + E(‖ξj−k‖2)) = 2R2,

where we have used the facts that E(ξi) = 0 and E(‖ξi‖2) = R2. Since the random variables ξi have finite
moments up to order 4, ‖ξi‖2 have finite variance and by the law of large numbers, as s→∞, ‖Ξi − Ξj‖2
converges almost surely to 2R2. Similarly, writing X̃i− X̃j = Xi−Xj +Ξi−Ξj , it follows that the squared

pairwise distances ‖X̃i − X̃j‖2 between the noisy data have the expectation

E(‖X̃i − X̃j‖2) = ‖Xi −Xj‖2 + E(‖Ξi −Ξj‖2) = ‖Xi −Xj‖2 + 2R2.

Therefore, as s→∞, ‖X̃i−X̃j‖2 converges to ‖Xi−Xj‖2+2R2; i.e., the noisy pairwise distances ‖X̃i−X̃j‖2
acquire a shift which is constant on the dataset. In particular, one can check that the variance of ‖Xi−Xj‖2
is O(s−1).

As stated in Section 5.2, one of the effects of the bias in the pairwise distances ‖X̃i−X̃j‖2 is to introduce

a bias in the density estimates σ̂s,ε(X̃i). In particular, in the case of noisy data and as s→∞, the kernel K̃ε

used in Algorithm 1 for density estimation takes the values K̃ε(X̃i, X̃j) = e−2R2/(εrirj)Kε(Xi, Xj) with high

probability. To remove the non-constant multiplicative bias term e−2R2/(εrirj), we replace K̃ε with the fixed

bandwidth kernel K̄ε(X̃i, X̃j) = e−‖X̃i−X̃j‖
2/ε, and perform density estimation with the normalized kernel

κε(X̃i, X̃j) =
K̄ε(X̃i, X̃j)

(N − s+ 1)−1
∑N−1
k,l=s−1 K̄ε(X̃k, X̃l)

. (C.1)
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Note that the sum in the denominator in (C.1) runs from s− 1 to N − 1 (instead of 0 to N − 1) since the
first s− 1 samples x̃i are used for delay embedding.

As s→∞ and for non-overlapping sequences X̃i and Xj ,

K̄ε(X̃i, X̃j)
a.s.−−→ e−2R2/εK̄ε(Xi, Xj), (C.2)

where we used the fact that K̄ε is continuous and bounded. We therefore see that K̄ε(X̃i, X̃j) acquires a

constant multiplicative bias e−2R2/ε, but this bias appears in both the numerator and denominator in (C.1)
and is therefore canceled. (At finite N , the cancellation is approximate since the sum in the denominator
contains kernel values at potentially overlapping sequences X̃i, X̃j whose pairwise distance bias is smaller
than 2R2, but the effect of these terms vanishes as N →∞ and s = o(N).)

Defining

τs,ε(X̃i) =
1

(N − s+ 1)

N−1∑
j=s−1

κε(X̃i, X̃j),

it follows from the above arguments and the pointwise ergodic theorem that as s→∞ and s = o(N),

τs,ε(X̃i)
a.s.−−→ τ̄ε(Xi) = lim

s→∞

∫
M

κε(Fs(ai), Fs(aj)) dµ(aj) = lim
s→∞

∫
M
K̄ε(Fs(ai), Fs(aj)) dµ(aj)∫

M

(∫
M
K̄ε(Fs(ak), Fs(al)) dµ(ak)

)
dµ(al)

,

where ai the unique state in M underlying the noisy observation X̃i (i.e., X̃i = Xi +Ξi with Xi = Fs(ai)).
Using small-bandwidth asymptotics for Gaussian integrals on compact manifolds (e.g., [37, 65]), we obtain,
uniformly on M ,

1

εm/2

∫
M

K̄ε(Fs(ai), Fs(aj)) dµ(aj) =
1

εm/2

∫
M

K̄ε(Fs(ai), Fs(aj))σs(aj) dvolgs(aj)

= csσs(ai) + σ′s(ai)ε+O(ε2),

where σs = dµ/dvolgs is the density of the invariant measure relative to the Riemannian measure at s
delays, cs is a constant that does not depend on ε, and σ′s is a function that vanishes if gs is flat. Moreover,
according to Theorem 16, ḡ is flat and has uniform volume form relative to µ, so that lims→∞ σs = 1/Γ ,
lims→∞ σ′s = 0, and

τ̄ε(Xi) = lim
s→∞

σs(ai) + σ′s(ai)ε+O(ε2)∫
M

[(σs(al))2 + σs(al)σ′s(al)ε] dvolgs(al) +O(ε2)
= Cm +O(ε2),

where C is a positive constant. We therefore conclude that in the limit of large data and infinitely many
delays τε(X̃i) converges up to O(ε2) to a constant on M . Since in this limit the sampling density relative to
the Riemannian measure is also a constant, τε(X̃i) provides an O(ε2) estimate of the true sampling density
up to a proportionality constant, which is of sufficient accuracy for the theory of variable-bandwidth kernels
to apply [43].

Next, consider the diffusion maps normalization performed on the kernel Kε in (38) for the noisy data.
Following the approach described in Section 4.2, we normalize Kε(X̃i, X̃j) to construct a Markov matrix P̃
such that

P̃ij =
H̃ij∑N−1

k=s−1 H̃ij

, H̃ij =
Kε(X̃i, X̃j)∑N−1

k=s−1Kε(X̃j , X̃k)
. (C.3)

Then, we use P̃ to approximate the action Pεf of the averaging operator Pε associated with the kernel on
the observable f through the matrix-vector product P̃ ~f . By the same arguments used to write down (C.2)
and the results on τs,ε derived above, as s→∞, s = o(N), and non-overlapping X̃i, X̃j ,

Kε(X̃i, X̃j) = exp

(
− ‖X̃i − X̃j‖2

ετ
−1/m
s,ε (X̃i)τ

−1/m
s,ε (X̃j)

)
a.s.−−→ exp

(
− 2R2

ε(C2 +O(ε2))

)
Kε(Xi, Xj).
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Using this result together with the pointwise ergodic theorem to convert sums in (C.3) to integrals with

respect to µ, we conclude that as s → ∞, (P̃ ~f)i = Pεf(ai) + O(ε2) with high probability, proving the
theorem.

We therefore see that provided that sufficiently many delays are used, the effect of i.i.d. noise is to
produce an O(ε2) bias in the pointwise approximation of the action of Pε on functions. However, that bias
is of the same order as the error in approximating ∆ḡ through Pε (see (22)); that is, in the limit of infinitely

many delays, (I − P̃ ~fi)/ε approximates ∆ḡf(ai) at the same accuracy as (I − Pε)f(ai)/ε. We note again
that in systems with nonzero Lyapunov exponents this type of noise removal is generally accompanied with
biasing of the eigenfunctions extracted from P̃ towards subspaces of the full L2 space of the dynamical
system associated with stable or unstable Oseledets subspaces of the tangent bundle (for backward- and
forward-looking delays, respectively).
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[16] M. R. Jovanović, P. J. Schmid, J. W. Nichols, Sparsity-promoting dynamic mode decomposition, Phys. Fluids 26 (2014)

024103. doi:10.1063/1.4863670.
[17] J. H. Tu, C. W. Rowley, C. M. Lucthenburg, S. L. Brunton, J. N. Kutz, On dynamic mode decomposition: Theory and

applications, J. Comput. Dyn. 1 (2) (2014) 391–421. doi:10.3934/jcd.2014.1.391.
[18] M. S. Hemati, C. W. Rowley, E. A. Deem, L. N. Cattafesta, De-biasing the dynamic mode decomposition for applied

Koopman spectral analysis (2015). arXiv:1502.03854.
[19] M. O. Williams, I. G. Kevrekidis, C. W. Rowley, A data-driven approximation of the Koopman operator: Extending

dynamic mode decomposition, J. Nonlinear Sci. (2015). doi:10.1007/s00332-015-9258-5.
[20] J. N. Kutz, X. Fu, S. L. Brunton, Multiresolution dynamic mode decomposition, SIAM J. Appl. Dyn. Sys. 15 (2) (2016)

713–735. doi:10.1137/15M1023543.
[21] J. L. Proctor, S. L. Brunton, J. N. Kutz, Dynamic mode decomposition with control, SIAM J. Appl. Dyn. Sys. 15 (1)

(2016) 142–161.
[22] M. Budisić, I. Mezić, Geometry of the ergodic quotient reveals coherent structures in flows, Phys. D 241 (2012) 1255–1269.

doi:10.1016/j.physd.2012.04.006.

53

http://dx.doi.org/10.1063/1.4772195
http://dx.doi.org/http://dx.doi.org/10.1103/PhysRevLett.59.845
http://dx.doi.org/http://dx.doi.org/10.1103/PhysRevLett.59.845
http://dx.doi.org/10.1016/s0167-2789(97)00171-1
http://dx.doi.org/10.1002/aic.10106
http://arxiv.org/abs/1404.0667
http://dx.doi.org/10.1016/j.physd.2004.06.015
http://dx.doi.org/10.1016/j.physd.2004.06.015
http://dx.doi.org/10.1007/s11071-005-2824-x
http://dx.doi.org/10.1146/annurev-fluid-011212-140652
http://dx.doi.org/10.1017/s0022112009992059
http://dx.doi.org/10.1007/s00332-012-9130-9
http://dx.doi.org/10.1017/S0022112010001217
http://dx.doi.org/10.1017/S0022112010001217
http://dx.doi.org/10.1063/1.4863670
http://dx.doi.org/10.3934/jcd.2014.1.391
http://arxiv.org/abs/1502.03854
http://dx.doi.org/10.1007/s00332-015-9258-5
http://dx.doi.org/10.1137/15M1023543
http://dx.doi.org/10.1016/j.physd.2012.04.006


[23] M. Dellnitz, O. Junge, On the approximation of complicated dynamical behavior, SIAM J. Numer. Anal. 36 (1999) 491.
doi:10.1137/S0036142996313002.

[24] M. Dellnitz, G. Froyland, On the isolated spectrum of the PerronFrobenius operator, Nonlinearity (2000) 1171–1188doi:
10.1088/0951-7715/13/4/310.

[25] G. Froyland, M. Dellnitz, Detecting and locating near-optimal invariant sets and cycles, SIAM J. Sci. Comput. 24 (6)
(2003) 1839–1863. doi:10.1137/S106482750238911X.

[26] G. Froyland, On Ulam approximation of the isolated spectrum and eigenfunctions of hyperbolic maps, Discrete Cont.
Dyn. S. 17 (3) (2007) 671–689. doi:10.3934/dcds.2007.17.671.

[27] G. Froyland, Unwrapping eigenfunctions to discover the geometry of almost-invariant sets in hyperbolic maps, Phys. D.
237 (2008) 840–853. doi:10.1016/j.physd.2007.11.004.
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