
ar
X

iv
:1

71
1.

05
50

1v
1 

 [
m

at
h.

O
C

] 
 1

5 
N

ov
 2

01
7

Sparse identification of nonlinear dynamics for
model predictive control in the low-data limit

Eurika Kaiser a, J. Nathan Kutz b, Steven L. Brunton a

aDepartment of Mechanical Engineering, University of Washington, Seattle, WA, 98195
bDepartment of Applied Mathematics, University of Washington, Seattle, WA, 98195

Abstract

The data-driven discovery of dynamics via machine learning is currently pushing the frontiers of modeling and control efforts,
and it provides a tremendous opportunity to extend the reach of model predictive control. However, many leading methods
in machine learning, such as neural networks, require large volumes of training data, may not be interpretable, do not easily
include known constraints and symmetries, and often do not generalize beyond the attractor where models are trained. These
factors limit the use of these techniques for the online identification of a model in the low-data limit, for example following an
abrupt change to the system dynamics. In this work, we extend the recent sparse identification of nonlinear dynamics (SINDY)
modeling procedure to include the effects of actuation and demonstrate the ability of these models to enhance the performance
of model predictive control (MPC), based on limited, noisy data. SINDY models are parsimonious, identifying the fewest terms
in the model needed to explain the data, making them interpretable, generalizable, and reducing the burden of training data. We
show that the resulting SINDY-MPC framework has higher performance, requires significantly less data, and is more computa-
tionally efficient and robust to noise than neural network models, making it viable for online training and execution in response
to rapid changes to the system. SINDY-MPC also shows improved performance over linear data-driven models, although linear
models may provide a stopgap until enough data is available for SINDY.

Key words: Model predictive control, nonlinear dynamics, sparse identification of nonlinear dynamics (SINDY), system
identification, control theory, machine learning.

1 Introduction

The data-driven modeling and control of complex
systems is currently undergoing a revolution, driven by
the confluence of big data, advanced algorithms in ma-
chine learning, and modern computational hardware.
Model-based control strategies, such as model predictive
control, are ubiquitous, relying on accurate and efficient
models that capture the relevant dynamics for a given ob-
jective. Increasingly, first principles models are giving way
to data-driven approaches, for example in turbulence,
epidemiology, neuroscience, and finance [24]. Although
these methods offer tremendous promise, there has been
slow progress in distilling physical models of dynamic
processes from data. Moreover, many modern techniques
in machine learning (e.g., neural networks) rely on ac-
cess to massive data sets, have limited ability to general-
ize beyond the attractor where data is collected, and do
not readily incorporate known physical constraints. The
challenges associated with data-driven discovery limit
its use for real-time control of strongly nonlinear, high-
dimensional, multi-scale systems, and prevent online re-
covery to abrupt changes in the dynamics. Fortunately,
a new paradigm of sparse and parsimonious modeling
is enabling interpretable models in the low-data limit. In
this work, we extend the recent sparse identification of

Email addresses: eurika@uw.edu (Eurika Kaiser),
kutz@uw.edu (J. Nathan Kutz), sbrunton@uw.edu
(Steven L. Brunton).

nonlinear dynamics (SINDy) framework to identify mod-
els with actuation, and combine it with model predictive
control (MPC) for effective and interpretable data-driven,
model-based control. We apply the proposed SINDY-MPC
method to control several nonlinear systems and demon-
strate improved control performance in the low-data
limit, compared with other leading data-driven methods,
including linear response models and neural networks.

Model-based control techniques, such as MPC [12]
and optimal control [48, 15], are cornerstones of advanced
process control, and are well-positioned to take advantage
of the data-driven revolution. Model predictive control
is particularly ubiquitous in industrial applications, as
it enables the control of strongly nonlinear systems with
constraints, which are difficult to handle using traditional
linear control approaches [17, 38, 35, 40, 39, 18, 25, 33, 16].
MPC benefits from simple and intuitive tuning and the
ability to control a range of simple and complex phenom-
ena, including systems with time delays, non-minimum
phase dynamics, and instability. In addition, it is straight-
forward to incorporate known constraints, intrinsic com-
pensation for dead time, multiple operating conditions,
and it provides the flexibility to formulate and tailor a
control objective. The major drawback of model-based
control, such as MPC, is in the development of a suit-
able model via existing system identification or model
reduction [8], which may require expensive and time-
consuming data collection and computations.

Nearly all industrial applications of MPC rely on

Preprint submitted to 16 November 2017

http://arxiv.org/abs/1711.05501v1


Input

Measurements

Plant

Reference

Output

Optimization

J = J(x,u,∆u)

s.t. constraints

SINDY-MPC

u(t)

Prediction

SINDYc

ŷ(t)
f(x,u)

Model updating

Trust region:

ε

J
rj

||yj − ŷj ||
2

2
< ε

ŷj

uj yj

PSfrag replacements

[? ]

Fig. 1. Schematic overview of the proposed SINDY-MPC framework, using sparse nonlinear models for predictive control.

empirical models, and increasing plant complexity and
tighter performance specifications require models with
higher accuracy. There are many techniques to ob-
tain data-driven models, including state-space models
from the eigensystem realization algorithm (ERA) [21]
and other subspace identification methods, Volterra se-
ries [6, 5, 30], autoregressive models [2] (e.g., ARX, ARMA,
NARX, and NARMAX [3] models), and neural network
models [27, 14, 54, 1], to name only a few. These proce-
dures all tend to yield black-box models, with limited
interpretability, physical insights, and ability to general-
ize. More recently, linear representations of nonlinear sys-
tems using extended dynamic mode decomposition [55]
have been successfully paired with MPC [23], exhibiting
improved performance. Nonlinear models based on ma-
chine learning, such as neural networks, are increasingly
used due to advances in computing power, and recently
deep reinforcement learning has been combined with
MPC [36, 56], yielding impressive results in the large-data
limit. However, large volumes of data are often a luxury,
and many systems must be identified and controlled with
limited data, for example in response to abrupt changes.
Current efforts are focused on rapid learning based on
minimal data.

There are many important open challenges associ-
ated with data-driven discovery of dynamical systems for
real-time control. The foremost challenge is the reliance
on large quantities of training data to generate models.
When abrupt changes occur in the system, an effective
controller must rapidly characterize and compensate for
the new dynamics, leaving little time for discovery based
on limited data. A second challenge is the ability of mod-
els to generalize beyond the training data, which is related
to the ability to incorporate new information and quickly
modify the model. Machine learning algorithms often suf-
fer from overfitting and a lack of interpretability, although
the application of these algorithms to physical systems of-
fers a unique opportunity to incorporate known symme-
tries and constraints. These challenges point to the need
for parsimonious and interpretable models [4, 47, 9] that
may be characterized from limited data and in response
to abrupt changes. Whereas traditional methods require
unrealistic amounts of training data, the recently pro-
posed SINDY framework [9] relies on sparsity-promoting
optimization to identify parsimonious models from lim-

ited data, resulting in interpretable models that avoid
overfitting. It has also been shown recently [28] that it is
possible to enforce known physics (e.g., constraints, con-
servation laws, and symmetries) in the SINDY algorithm,
improving stability and performance of models.

In this work, we combine SINDY with MPC for en-
hanced data-driven control of nonlinear systems in the
low-data limit. First, we extend the SINDY architecture to
identify interpretable models that include nonlinear dy-
namics and the effect of actuation. Next, we show the en-
hanced performance of SINDY-MPC compared with lin-
ear data-driven models and with neural network models.
The linear models are identified using dynamic mode de-
composition with control (DMDc) [37, 24], which is closely
related to SINDY and traditional state-space modeling
techniques such as ERA. SINDY-MPC is shown to have
better prediction accuracy and control performance than
neural network models, especially for small and moder-
ate amounts of noisy data. In addition, SINDY models are
less expensive to train and execute than neural network
models, enabling real-time applications. SINDY-MPC
also outperforms linear models for moderate amounts of
data, although DMDc provides a working model in the
extremely low-data limit for simple problems. Thus, in
response to abrupt changes, a linear DMDc model may be
used until a more accurate SINDY model is trained.

2 SINDY-MPC framework

The SINDY-MPC architecture combines the system-
atic data-driven discovery of dynamics with advanced
model-based control to facilitate rapid model learning
and control of strongly nonlinear systems. The overar-
ching SINDY-MPC framework is illustrated in Fig. 1. In
the following sections, we will describe the sparse iden-
tification of nonlinear dynamics with control and model
predictive control algorithms.

We consider the nonlinear dynamical system

d

dt
x = f(x,u), x(0) = x0 (1)

with state x ∈ R
n, control input u ∈ R

q , and continuously
differentiable dynamics f(x,u) : Rn × R

q → R
n.

2



Fig. 2. Schematic of the SINDYc algorithm. Active terms in a library of candidate nonlinearities are selected via sparse regression.

2.1 Sparse identification of nonlinear dynamics with control

Here, we generalize the sparse identification of non-
linear dynamics (SINDY) method [9] to include inputs
and control, building on a previous conference paper [10].
SINDY identifies nonlinear dynamical systems from mea-
surement data, relying on the fact that many systems
have relatively few terms in the governing equations.
Thus, sparsity promoting techniques may be used to find
models that automatically balance sparsity in the number
of model terms with accuracy, resulting in parsimonious
models. In particular, a library of candidate nonlinear
terms Θ(x) is constructed, and sparse regression is used
to identify the few active terms [9].

SINDY with control (SINDYc) is based on the same
assumption, that Eq. (1) only has a few active terms in the
dynamics. SINDY is readily generalized to include actu-
ation, as this merely requires a larger library Θ(x,u) of
candidate functions that include u; these functions can in-
clude nonlinear cross terms in x and u. Thus, we measure
m snapshots of the state x and the input signal u in time
and arrange these into two matrices:

X =
[

x1 x2 · · · xm

]

, Υ =
[

u1 u2 · · · um

]

. (2)

The library of candidate nonlinear functions, Θ may
now be evaluated using the data in X and Υ:

ΘT (X,Υ) =











































1

X

Υ

X⊗X

X⊗Υ
...

sin(X)

sin(Υ)

sin(X⊗Υ)
...











































, (3)

where x ⊗ y defines the vector of all product combina-

tions of the components in x and y. The library of candi-
date terms is a crucial choice in the SINDY algorithm. One
strategy is to start with a basic choice, such as polynomi-
als, and continually increase the complexity of the library
by including other terms (trigonometric functions, etc.).
Moreover, it is also possible to incorporate partial knowl-
edge of the physics (fluids vs. quantum mechanics, etc.).

The system in Eq. (1) can thus be written as:

Ẋ = ΞΘT (X,Υ). (4)

The coefficients Ξ are sparse for most dynamical systems.
Therefore, we employ sparse regression to identify a
sparse Ξ corresponding to the fewest nonlinearities in our
library that give good model performance:

ξk = argmin
ξk
‖Ẋk − ξkΘ

T (X,Υ)‖2 + λ‖ξk‖1, (5)

where Ẋk represents the k-th row of Ẋ and ξk is the k-
th row of Ξ. To approximate derivatives from noisy state
measurements, the SINDY algorithm uses the total varia-
tion regularized derivative [42, 13].

The ‖ · ‖1 term promotes sparsity in the coefficient
vector ξk. This optimization may be solved using the
LASSO [50] or the sequentially thresholded least squares
procedure [9]. The parameter λ is selected to identify the
Pareto optimal model that best balances low model com-
plexity with accuracy. A coarse sweep of λ is performed
to identify the rough order of magnitude where terms are
eliminated and where error begins to increase. Then this
parameter sweep may be refined, and the models on the
Pareto front are evaluated using information criteria [32].

Since the original SINDY paper [9], it has been ex-
tended to include constraints and known physics [28], for
example to enforce energy preserving constraints in an
incompressible fluid flow. SINDY has also been extended
to high dimensional systems, by identifying dynamics
on principal components [9], learning partial differen-
tial equations [43, 45], and extracting dynamics on delay
coordinates [7]. Robust variants of SINDY have been for-
mulated to identify models despite large outliers and
noise [51, 44].

3



2.1.1 Discovering discrete-time dynamics
In the original SINDY algorithm, it was shown that it

is possible to identify discrete-time models of the form

xk+1 = F(xk). (6)

It is also possible to extend SINDY to identify discrete-
time models with inputs and control:

xk+1 = F(xk,uk). (7)

Instead of computing derivatives, we collect a matrix X′

with the columns of X advanced one timestep:

X′ =
[

x2 x3 · · · xm+1

]

. (8)

Then, the dynamics may be written as

X′ = ΞΘT (X,Υ), (9)

and the regression problem becomes

ξk = argmin
ξk
‖X′

k − ξkΘ
T (X,Υ)‖2 + λ‖ξk‖1. (10)

2.1.2 Relationship to dynamic mode decomposition
The SINDY regression is related to the dynamic mode

decomposition (DMD), which originated in the fluids
community to extract spatiotemporal coherent structures
from large fluid data sets [41, 46, 52, 24]. DMD modes
are spatially coherent and oscillate at a fixed frequency
and/or growth or decay rate. Since fluids data is typically
high-dimensional, DMD is built on the proper orthogo-
nal decomposition (POD) [19], effectively recombining
POD modes in a linear combination to enforce the tem-
poral coherence. The dynamic mode decomposition has
been applied to a wide range of problems including fluid
mechanics, epidemiology, neuroscience, robotics, finance,
and video processing [24]. Many of these applications
have the ultimate goal of closed-loop feedback control.

In DMD, a similar regression is performed to identify
a linear discrete-time model A mapping X to X′:

X′ = AX. (11)

Thus, SINDY reduces to DMD if formulated in discrete-
time, with linear library elements in Θ, and without a
sparsity-promoting L1 penalty term.

DMD was recently extended to include actuation in-
puts by Proctor et al [37], to disambiguate the effect of in-
ternal dynamics and control. In dynamic mode decompo-
sition with control (DMDc), a similar regression is formed,
but with the actuation input matrix Υ:

X′ = AX+BΥ. (12)

Thus, SINDY with control similarly reduces to DMDc un-

der certain conditions. In this work, we will use DMDc
and SINDYc to discover dynamics for model predictive
control. The DMDc algorithm has also been shown to be
closely related to other subspace identification methods,
such as the eigensystem realization algorithm [21], but de-
signed for high-dimensional input–output data.

It is interesting to note that the extended DMD [55] re-
gression is performed on the nonlinear library Θ(X′) =
AΘ(X), and an L1 penalty may also be added. Extended
DMD may also be modified to incorporate actuation in-
puts, and these models have recently been used effectively
for model predictive control [23].

2.1.3 Identification of dynamics with feedback control
If the input u corresponds to feedback control, so that

u = K(x), then it is impossible to disambiguate the ef-
fect of the feedback control u with internal feedback terms
K(x) within the dynamical system; namely, the SINDY
regression becomes ill-conditioned. In this case, we may
identify the actuation u as a function of the state:

Υ = ΞuΘ
T (X). (13)

To identify the coefficients Ξ in Eq. (4), we perturb the sig-
nal u to allow it to be distinguished from K(x) terms. This
may be done by injecting a sufficiently large white noise
signal, or occasionally kicking the system with a large im-
pulse or step in u. An interesting future direction would
be to design input signals that aid in the identification of
the dynamical system in Eq. (1) by perturbing the system
in directions that yield high-value information.

2.2 Model predictive control

In this section, we outline the control problem and
summarize key results in MPC, which is shown schemati-
cally in Fig. 3. Model predictive control solves an optimal
control problem over a receding horizon, subject to system
constraints, to determine the next control action. This opti-
mization is repeated at each new timestep, and the control
law is updated, as shown in Fig. 4.

The receding horizon control problem can generally
be formulated as an open-loop optimization at each step,
which determines the optimal sequence of control inputs
u(·|xj) := {uj+1, . . . ,uj+k, . . . ,uj+mc

} given the current
measurement xj over the control horizon Tc = mc∆t
that minimizes a cost J over the prediction horizon
Tp = mp∆t; ∆t is the timestep of the model, which may
be different from the sampling time of measurements.
The control horizon is generally less than or equal to the
prediction horizon, so that Tc ≤ Tp; if Tc < Tp, then the
input u is assumed constant thereafter. The first control
value uj+1 := u(uj+1|xj) is applied, and the optimization
is reinitialized and repeated at each subsequent timestep.
This results in an implicit feedback control law

K(xj) = uj+1(xj), (14)

where uj+1 is the first in the optimized actuation sequence
starting at the initial condition xj .

4



Input

Measurements

Control Optimizer Plant
Reference Output

Predictor

Optimizer

Cost function Constraints

rj

rj+k

yj

yjuj

rj ej
ej+k

ŷj+k

uj+k uj

Fig. 3. Schematic for model predictive control. In SINDY-MPC, the output is the full state y = x, and ŷ = x̂ is the model prediction.

Past Future

Prediction horizon

Control horizon

Moving horizon window

Set point

j j+1 j+mc−1

j+mp−1

Fig. 4. Receding horizon control: The control input sequence
(light blue solid) is optimized over the control horizon based on
predicted future outputs (red solid) in order to drive the system
to the set point (green dashed). The first input (blue star) in the
sequence is enacted. Past measurements and control inputs are
displayed as purple and blue solid lines, respectively.

The cost optimization at each timestep is given by:

min
u(·|xj)

J(xj) = min
u(·|xj)

[

||x̂j+mp
||2Qmp

+

mp−1
∑

k=0

||x̂j+k ||2Q

+

mc−1
∑

k=1

(

||ûj+k||2Ru
+ ||∆ûj+k||2R∆u

)

]

, (15)

subject to the discrete-time system model

x̂k+1 = F̂(x̂k,uk), (16)

the input constraints,

∆umin ≤ ∆uk ≤ ∆umax, (17a)

umin ≤uk ≤ umax, (17b)

and possibly additional equality or inequality constraints
on the state and input. The cost function J penalizes de-
viations of the predicted state x̂k along the trajectory and
also includes a terminal cost at x̂mp

. Expenditures of the
input uk and input rate ∆uk = uk − uk−1 are also penal-
ized. Each term is computed as the weighted norm of a
vector, i.e., ||x||2Q := xTQx. The weight matrices Q ≥ 0,
Qmp

≥ 0, Ru > 0 and R∆u > 0 are positive definite and
positive semi-definite, respectively. Note that the model
prediction x̂k, which is forecast, may differ from the true
measured state xk.

MPC is one of the most powerful model-based con-
trol techniques due to the flexibility in the formulation of
the objective functional, the ability to add constraints, and
extensions to nonlinear systems. The most challenging
aspect of MPC involves the identification of a dynami-
cal model that accurately and efficiently represents the
system behavior when control is applied. If the model is
linear, minimization of a quadratic cost functional subject
to linear constraints results in a tractable convex problem.
Nonlinear models may yield significant improvements;
however, they render MPC a nonlinear program, which
can be expensive to solve, making it particularly challeng-
ing for real-time control. Fortunately, improvements in
computing power and advanced algorithms are increas-
ingly enabling nonlinear MPC for real-time applications.

5



150 200 250 300

PSfrag replacements

Training Prediction Control

DMDc

150 200 250 300

PSfrag replacements
SINDYc

PSfrag replacements

Time
300200

100

100

0

0

P
o

p
u

la
ti

o
n

S
iz

e

(a)

NN

❄

M
o

d
el

co
m

p
lex

ity

PSfrag replacements

Time
300

200

100

0
Population Size

Predator Prey Control

×

PSfrag replacements

Time

300200

100

0
Population Size

Predator
Prey

Control

C
o

st

Time

0

1000

2000

250

DMDc
SINDYc
NN

0

2

4

4

6
10

(b)

Execution time

0.39 s

  19 mins

0.31 s

PSfrag replacements

Time
300

200

100

0
Population Size

Predator
Prey

Control
Cost
Time

0

1000

2000

250
DMDc

SINDYc

NN

0

2

4

6

10

Fig. 5. Prediction and control performance for the Lotka-Volterra
system: (a) time series of states and input during training, vali-
dation, and control stage, and (b) cumulative cost and execution
time of the MPC optimization procedure.

3 Example: Lotka-Volterra model

We demonstrate the SINDY-MPC architecture on the
Lotka-Volterra system, a two-dimensional, weakly nonlin-
ear dynamical system, describing the interaction between
two competing populations. These dynamics may repre-
sent two species in biological systems, the dynamic com-
petition in stock markets [26], and they can be modified to
study the spread of infectious disease [53].

We consider the system

ẋ1 = ax1 − bx1x2 (18a)

ẋ2 = −cx2 + dx1x2 + u (18b)

where x1 and x2 are the prey and predator populations,
respectively. The constant parameters a = 0.5, b = 0.025,
c = 0.5, and d = 0.005 represent the growth/death rates,
the effect of predation on the prey population, and the
growth of predators based on the size of the prey popu-
lation. The unforced system exhibits a limit cycle behav-

PSfrag replacements

DMDc SINDYc NN

Mean squared error
Average rel. error

η

0
500

1000

0.01  0.1  0.2  0.3  0.4  0.5

PSfrag replacements

DMDc
SINDYc

NN

M
ea

n
sq

u
ar

ed
er

ro
r

Average rel. error

η

0

500

1000

(a)

0.01  0.1  0.2  0.3  0.4  0.5

PSfrag replacements

DMDc
SINDYc

NN
Mean squared error

A
v

er
ag

e
re

l.
er

ro
r

η

0

500
1000

1

0.1
0.2
0.3
0.4

0.5

(b)
0.01 0.1 0.2 0.3 0.4 0.5

Fig. 6. Prediction performance of the models in dependency
on measurement noise for the Lotka-Volterra system: (a) mean
squared error and (b) average relative error. Statistics are shown
for 50 noise realizations each. Above the shaded region, models
in most realizations do not have any predictive power.

ior, where the predator lags the prey, and a critical point
xcrit = (g/d a/b)T , where the population sizes of both
species are in balance. The control objective is to stabilize
this fixed point. In all examples, the timestep of the system
and the models are equal to ∆t = 0.1, the weight matri-
ces are Q = ( 1 0

0 1 ) and Ru = R∆u = 0.5, and the actuation
input is limited to u ∈ [−20, 20]. The control and predic-
tion horizons are mp = mc = 10. We apply an additional
constraint on u, so that x2 does not decrease below 10, to
enforce a minimum population size required for recovery.

To assess the performance and capabilities of the
SINDY-MPC architecture, SINDYc is compared with two
representative data-driven models: dynamic mode de-
composition with control (DMDc) and a multilayer neu-
ral network (NN), which can represent any continuous
function under mild conditions [20]. The results are dis-
played in Fig. 5. The first 100 time units are used to train
the models using a phase-shifted sum of sinusoids, a so-
called Schroeder sweep [? ], after which the predictive
capabilities of these models are validated using sinusoidal
forcing with u(t) = (2 sin(t) sin(t/10))2 on the next 100
time units. Different actuation inputs are used during
the training and validation stages to assess the models’
ability to generalize. Thereafter, MPC is applied for the
last 100 time units using a prediction and control hori-
zon of mp = mc = 5. SINDYc shows the best prediction
and control performance, followed by the neural network

6



PSfrag replacements

0
0

50

50

100

100

Prey
Predator

DMDc
SINDYc

NN

P
o

p
u

la
ti

o
n

S
iz

e

Avg. Rel. Error
(a)

PSfrag replacements

0
50

100
Prey

Predator

DMDc SINDYc NN

Population Size

Avg. Rel. Error

PSfrag replacements

0

0 50 100

Prey

Predator
DMDc

SINDYc
NN

Population Size

A
v

g
.R

el
.E

rr
o

r

10

10

10

10

1

-1

-2
-3(b)

PSfrag replacements

0

0 50 100

Prey

Predator
DMDc

SINDYc
NN

Population Size

Avg. Rel. Error

10

10

10

10

1 -1

-2

-3

Time

T
ra

in
in

g
T

im
e

[s
]

(c)

✲
Training length

Fig. 7. Crossvalidated prediction error for increasing length of
the training data: (a) time series of the training data, (b) average
relative error, and (c) training time in seconds.

and then by DMDc. The neural network has 1 hidden
layer with 10 neurons, which is the best trade-off between
model complexity and accuracy; increasing the number
of neurons or layers has little impact on the prediction
performance. It is first trained as a feedforward network
and then closed. While the neural network exhibits a sim-
ilar control performance, execution time of SINDYc is
37 times faster, which is particularly critical in real-time
applications.

In practice, measurements are generally affected by
noise. We examine the robustness of these models for in-
creasing noise corruption of the state measurements, i.e.
y = x + n where n ∈ N (0, σ2) with standard deviation σ.
Crossvalidated prediction performance for different noise
magnitudes η = σ/max(std(xi)) ∈ (0.01, 0.5), where std
denotes standard deviation, is displayed in Fig. 6. As ex-
pected, the performance of all models decreases with in-
creasing noise magnitude. SINDYc generally outperforms
DMDc and neural network models, exhibiting a slower
decline in performance for low and moderate noise levels.
Sparse regression is known to improve robustness to noise
and prevent overfitting. The large fluctuation in the neu-
ral network performance are due to its strong dependency
on the initial network weights.

The amount of data required to train an accurate
model is particularly crucial in real-time applications,

PSfrag replacements

DMDc SINDYc NN

10
4

5 · 10
3

10
3

10
1

2

3

4

5

6

7
Cost JT=20

Length of Training Data

PSfrag replacements

DMDc
SINDYc

NN
10

4

5 · 10
3

10
3

10

10

10

10

101010
1 2 3

4

5

6

7

C
o

st
J
T
=
2
0

Length of Training Data

(a)

η = 0

PSfrag replacements

DMDc
SINDYc

NN
10

4

5 · 10
3

10
3

10
1

2

3

4

5

6

7
Cost JT=20

Length of Training Data

10

100

80

20
Predator

P
re

y

PSfrag replacements

DMDc
SINDYc

NN
10

4

5 · 10
3

10
3

10
1

2

3

4

5

6

7
Cost JT=20

Length of Training Data

10

100
80

20

P
re

d
at

o
r

Prey

PSfrag replacements

DMDc
SINDYc

NN
10

4

5 · 10
3

10
3

10
1

2

3

4

5

6

7
Cost JT=20

Length of Training Data

10
100
80
20

Predator

Prey

200 205 210 215 220
7 ·10

3

8 ·10
3

9 ·10
3

Time

C
o

st

(b)

JT=20

Fig. 8. Control performance for increasing length of the train-
ing data: (a) terminal cumulative cost over 20 time units, and (b)
time series of states and cost of the best model for each model
type (mDMDc

train = 20, mSINDY c

train = 85, mNN

train = 10
3). From

mtrain = 14 onwards, SINDYc yields comparably well perform-
ing models, outperforming all other models. Outside the shaded
region, models perform significantly worse or even diverge.

where abrupt changes or actuation may render the model
invalid and rapid model updates are necessary. Figure 7
shows the average relative error of the prediction on the
100 time units used for validation, and the time to train a
model in seconds for increasing lengths of training data
without noise. In the low-data limit, a highly predictive
SINDYc model can be learned, discovering the true gov-
erning equations within machine precision. Significantly
larger amounts of data are required to train an accurate
neural network model, although with enough data it out-
performs DMDc. DMDc models may be useful in the
extremely low-data limit, before enough data is avail-
able to characterize a SINDYc model. The training times
of SINDYc and DMDc models increase slightly with the
amount of data, although they require about two orders
of magnitude less time than neural network models.

The effect of the training length on the control perfor-
mance is shown in Fig. 8. Here, the control performance
is evaluated over 20 time units. For small amounts of
data, the sparsity-promoting parameter λ in SINDYc is
reduced by a factor of 10 until a non-zero entry appears.
In the extremely low-data limit, DMDc models perform

7



PSfrag replacements

DMDc SINDYc NN

10
4

5 · 10
3

10
3

10
1

2

3

4

5

6

7
Cost JT=20

Length of Training Data

PSfrag replacements

DMDc
SINDYc

NN
10

4

5 · 10
3

10
3

10

10

10

10

101010
1 2 3

4

5

6

7

C
o

st
J
T
=
2
0

Length of Training Data

(a)

η = 0.05

PSfrag replacements

DMDc
SINDYc

NN
10

4

5 · 10
3

10
3

10
1

2

3

4

5

6

7
Cost JT=20

Length of Training Data

10

100

80

20
Predator

P
re

y

PSfrag replacements

DMDc
SINDYc

NN
10

4

5 · 10
3

10
3

10
1

2

3

4

5

6

7
Cost JT=20

Length of Training Data

10

100
80

20

P
re

d
at

o
r

Prey

PSfrag replacements

DMDc
SINDYc

NN
10

4

5 · 10
3

10
3

10
1

2

3

4

5

6

7
Cost JT=20

Length of Training Data

10
100
80
20

Predator

Prey

200 205 210 215 220
7 ·10

3

8 ·10
3

9 ·10
3

Time

C
o

st

(b)

JT=20

Fig. 9. Control performance for increasing length of noise–
corrupted training data with η = 0.5: (a) terminal cumula-
tive cost over 20 time units, and (b) time series of states and
cost of the best model for each model type (mDMDc

train = 12,

mSINDY c

train = 1250, mNN

train = 65). From Mtrain = 200 on-
wards, SINDYc yields comparable models, outperforming all
other models.

well. SINDYc models require slightly more data than
DMDc, but result in the best overall performance. An
order of magnitude more data is required to train com-
parably performing neural network models. SINDYc’s
intrinsic robustness to overfitting renders all models from
mtrain = 14 on as having the best control performance
compared with the overall best performing DMDc and
neural network models. In contrast, DMDc shows a slight
decrease in performance due to overfitting and the neu-
ral network’s dependency on the initial network weights
detrimentally affects its performance. It is interesting to
note that the control performance is generally less sen-
sitive than the long-term prediction performance shown
in Fig. 7. Even a model with moderately low predictive
accuracy may perform well in MPC.

In Fig. 9 we show the same analysis but with noise-
corrupted training data. We assume no noise corruption
during the control stage. For each training length, the best
model out of 50 noise realizations was tested for control.
DMDc and SINDYc models both require slightly more
data to achieve a similar performance as without noise.
Note that neural network models perform significantly

5 10 15 25

PSfrag replacements
Training Prediction Control

DMDc

5 10 15 25

PSfrag replacements
SINDYc

PSfrag replacements

Time

-40

-20

0

0

20

40

5 10 15

20

20 25

x
i

(a)

NN

❄

M
o

d
el

co
m

p
lex

ity

PSfrag replacements

Time
-40
-20

0
20
40

5
10
15
20
25
xi

x1 x2 x3 Control

×

PSfrag replacements

Time
-40
-20

0
20
40

5

10

15

20

25
xi

x1

x2

x3

Control

C
o

st

Time

0

1

2

3
4

21 22 23 24 25

DMDc
SINDYc
NN

(b)

Execution time

 (in mins)

1.6

1.9

35

PSfrag replacements

Time
-40
-20

0
20
40
5

10
15
20
25
xi

x1

x2

x3

Control
Cost
Time

0
1
2
3
4

21
22
23
24
25

DMDc

SINDYc

NN

Fig. 10. Prediction and control performance for the chaotic
Lorenz system: (a) time series of the states and input (shifted to
−25 and scaled by 10 to improve readability) during training,
validation, and control stage, and (b) cumulative cost and execu-
tion time of the MPC optimization.

worse when trained on noise-corrupted data.

4 Lorenz system

In this section, we demonstrate the SINDY-MPC archi-
tecture on the chaotic Lorenz system, a prototypical exam-
ple of chaos in dynamical systems. The Lorenz system rep-
resents the Rayleigh-Bénard convection in fluid dynamics
as proposed by Lorenz [29], but has also been associated
with lasers, dynamos, and chemical reaction systems [? ].
The Lorenz dynamics are given by

ẋ1 = σ(x2 − x1) + u (19a)

ẋ2 = x1(ρ− x3)− x2 (19b)

ẋ3 = x1x2 − βx3 (19c)

with system parameters σ = 10, β = 8/3, ρ = 28, and
control input u affecting only the first state. A typical tra-
jectory oscillates alternately around the two weakly unsta-

8



PSfrag replacements

SINDYc NN

Mean squared error
Average rel. error

0
5

10

0.01  0.1  0.2  0.3  0.4  0.5
-3

-1

1
PSfrag replacements

SINDYc
NN

Mean squared error
Average rel. error

0
5

10

10

10

η

P
re

d
ic

ti
o

n
h

o
ri

z
o

n

(a)

0.01 0.1 0.2 0.3 0.4 0.5

-50

50

PSfrag replacements

η = 0.01

-50

50

PSfrag replacements

η = 0.1

-50

50

PSfrag replacements

η = 0.25

S
IN

D
Y

c

-50

50
PSfrag replacements

Time
30 40

(b)

x1

x2

x3

✲

Increasing noise

-50

50

PSfrag replacements

Time
30

40

-50

50

PSfrag replacements

Time
30

40 N
N

Fig. 11. Crossvalidated prediction performance with increasing measurement noise for the Lorenz system: (a) prediction horizon in
time units, and (b) time series with 50 (median as thick colored line) and 25–75 (colored shaded region) percentiles. Statistics are
shown for 50 noise realizations each.

ble fixed points (±
√
72,±

√
72, 27)T . The chaotic motion of

the system implies a strong sensitivity to initial conditions,
i.e. small uncertainties in the state will grow exponentially
with time. This represents a particularly challenging prob-
lem for model identification and subsequent control, as an
uncertainty in the measurement of the state will lead in-
evitably to a completely different behavior of the forecast
in the long run, despite having the true model. Discov-
ering the model from (possibly noisy) measurements ren-
ders this issue more severe as model uncertainties also af-
fect the forecast accuracy.

The control objective is to stabilize one of these
fixed points. In all examples, the timestep of the sys-
tem is ∆tsys = 0.001 and the timestep of the model is
∆tmodel = 0.01. The next control input from SINDY-MPC
is determined every 10 system timesteps over which the
control is kept constant. In general, the timestep of the
model is chosen to maximize the control horizon and
minimize the length of the sequence of control inputs to
be optimized, while assuring the model is as predictive
as possible for the given timestep. The weight matrices

are Q = (
1 0 0
0 1 0
0 0 1

), Ru = R∆u = 0.001, and the actuation

input is limited to u ∈ [−50, 50]. The control and predic-
tion horizon is mp = mc = 10 and the sparsity-promoting
parameter in SINDYc is λ = 0.1, unless otherwise noted.
For all models we assume access to full-state information.

We compare the prediction and control performance
of the SINDYc model with DMDc and a neural network
(NN) model. DMDc is used to model the deviation from
the goal state by constructing the regression model based
on data from which the goal state has been subtracted.
A less naïve approach would partition the trajectory into
two bins, e.g. based on negative and positive values of x1,
and estimate two models for each goal state separately.
The neural network consists of 1 hidden layer with 10
neurons and employs hyperbolic tangent sigmoid acti-
vation functions. The training of the neural network is
performed using the Levenberg-Marquardt algorithm. If
the data is corrupted by noise, a Bayesian regularization

is employed, which requires more training time but yields
more robust models.

Cross-validated prediction and control performance
for the Lorenz system are displayed in Fig. 10. The first
10 time units are used to train with a Schroeder sweep,
after which the models are validated on the next 10 time
units using a sinusoidally-based high-frequency forcing,
u(t) = (5 sin(30t))3. MPC is then applied for the last 5 time
units. SINDYc exhibits the best prediction and control per-
formance. The neural network shows comparable perfor-
mance, although the prediction horizon is much shorter
but still sufficient for MPC. Surprisingly, DMDc is able to
stabilize the fixed point, despite poor predictions based on
a linear model. As DMDc shows negligible predictive ca-
pability, we will not present more DMDc results, but in-
stead focus on the comparison between SINDYc and the
neural network. As in the previous example, while the
neural network exhibits similar control performance, the
control execution of SINDYc is 21 times faster.

Figure 11 examines the crossvalidated prediction per-
formance of SINDYc and neural network models based
on noisy state measurements for increasing noise magni-
tude η = σ/max(std(xi)) ∈ (0.01, 0.5). The performance
of both models decreases with increasing noise level,
although SINDY generally outperforms the neural net-
work. Unlike the Lotka-Volterra model, the average rela-
tive error is misleading in this case. With increasing noise
magnitude the neural network converges to a fixed point,
having no predictive power, while SINDY still exhibits
the correct statistics beyond the prediction horizon; how-
ever phase drift leads to a larger average relative error.
This can be observed in Fig. 11(b), which shows the me-
dian (thick colored line) and the 25–75 percentile region
(colored shaded area) of the prediction for three different
noise levels. Thus, a better metric for prediction perfor-
mance is the prediction horizon itself (see Fig. 11(a)). The
prediction horizon, measured in time units, is estimated
as the time instant when the error ball is larger than a
radius of ε = 3, i.e. a model is considered predictive if

9



Property / Model DMDc SINDYc NN

Training with strong strong weak

limited data Very few samples are sufficient. Well suited for low and
medium amount of data.

Requires long time series to
learn predictive models.

High-dimensionality strong fair strong

Can handle high-dim. data
in combination with SVD.

Limited by the library size.

Nonlinearities weak/fair strong strong

Linear and weakly nonlinear,
however with performance loss.

Suitable for strongly non-
linear systems.

Suitable for strongly non-
linear systems.

Prediction performance fair strong strong

Control performance fair strong strong

Noise robustness weak strong fair

High sensitivity w.r.t. noise. Intrinsic robustness due
to sparse regression.

Can handle low noise levels.

Parameter robustness strong strong weak

High sensitivity w.r.t. initial
weights of the network.

Training time strong strong weak

Execution time strong strong weak

Fast optimization routines
exist for linear systems.

Table 1
Capabilities and challenges of DMDc, SINDYc and NN models. The model with the strongest performance is underlined.

√

∑3
i=1(xi − x̂i)2 < ε. This corresponds to roughly 10%

error per state variable, considering that the order of mag-
nitude of each state is approximately O(101); this error
radius correlates well with the visible divergence of the
true and predicted state in Fig. 11(b). For low and moder-
ate noise levels, SINDYc robustly predicts the state with
high accuracy. Note that even for η = 0.25, the 1-period
prediction would be sufficiently long for a successful sta-
bilization with MPC as we consider a comparably short
prediction horizon of Tp = 0.1.

The effect of the amount of training data on the pre-
diction and control performance is examined in Figs. 12
and 13 , respectively. In Fig. 12, we show the average
relative error evaluated on the prediction over the next
10 time units, the prediction horizon, and the required
training time in seconds for increasing length of noise-
free training data. For a relatively small amount of data,
SINDYc rapidly outperforms the neural network model
with a prediction horizon of 2.5 time units and a signif-
icantly smaller error. For a sufficiently large amount of
data, SINDYc and the neural network result in compara-
ble predictions. However, SINDYc yields highly predic-
tive models that can be rapidly trained in the low and

moderate data regimes. Models trained on weakly noise-
corrupted measurements, η = 0.05, are tested in MPC.
For each length of training data, 50 noise realizations are
performed and the most predictive model is selected for
evaluation in MPC (Fig. 13). Outside the shaded regions,
models are generally not predictive or might even di-
verge. In the noise-corrupted case, it is clear that SINDYc
models generally have better control performance than
neural network models. For a sufficiently large amount
of training data, neural networks can have comparable
performance to SINDYc models, although they show a
sensitive dependence on the initial choice of the network
weights. The control results of the neural network are sig-
nificantly better here than for the Lotka-Volterra model
due to the intrinsic system properties. In chaotic systems,
a long enough trajectory will come arbitrarily close to
every point on the attractor; thus, measurements of the
Lorenz system are in some sense richer than those of the
Lotka-Volterra system. A surprising result is that a nearly
optimal SINDYc model can be trained on just 8 noisy
measurements (compare Fig. 13).

10



5 10

PSfrag replacements

0

0

20

40

60

−20

x1

x2

x3x
i

DMDc
SINDYc

NN
Population Size

Avg. Rel. Error

(a)

5

PSfrag replacements

0

20

40

60

−20

x1

x2

x3

xi

DMDc
SINDYc

NN
Population Size

A
v

g
.R

el
.E

rr
o

r

10

10

10

10

10

0

0

2

4

6

(b)

PSfrag replacements

0

20

40

60

−20

x1

x2

x3

xi

DMDc

SINDYc NN

Population Size

Avg. Rel. Error

10

0

2

4

6

5

PSfrag replacements

0

20

40

60

−20

x1

x2

x3

xi

DMDc
SINDYc

NN
Population Size

Avg. Rel. Error

10

10

10

10

10

0

0

2

4

6

P
re

d
ic

ti
o

n
h

o
ri

zo
n 1

−1

−2
(c)

PSfrag replacements

0

20

40

60

−20

x1

x2

x3

xi

DMDc
SINDYc

NN
Population Size

Avg. Rel. Error

10

0

2

4

6

Prediction horizon

1

−1

−2

5

10

10

10

100

1

−1

−3

Time

T
ra

in
in

g
T

im
e

[s
]

(d)

✲
Training length

Fig. 12. Crossvalidated prediction performance for increasing
length of training data (without noise): (a) time series of the
training data, (b) average relative error, (c) prediction horizon,
and (d) training time in seconds.

5 Discussion and Conclusions

In conclusion, we have demonstrated the effective
integration of data-driven sparse model discovery for
model predictive control in the low-data limit. The sparse
identification of nonlinear dynamics (SINDY) algorithm
has been extended to discover nonlinear models with
actuation and control, resulting in interpretable and par-
simonious models. Moreover, because SINDY only iden-
tifies the few active terms in the dynamics, it requires
less data than many other leading machine learning tech-
niques, such as neural networks, and prevents overfitting.
When integrated with model predictive control, SINDY
provides computationally tractable and accurate mod-
els that can be trained on very little data. The resulting
SINDY-MPC framework is capable of controlling strongly
nonlinear systems, purely from measurement data, and
the model identification is fast enough to discover models
in real-time, even in response to abrupt changes to the
model. The SINDY-MPC approach is compared with MPC
based on data-driven linear models and neural network

PSfrag replacements

SINDYc NN

10
5

1

2

3
Cost JT=3

Length of Training Data

PSfrag replacements

SINDYc
NN 10

101010

5

1 2 3

C
o

st
J
T
=
3

Length of Training Data

(a)

η = 0.05

PSfrag replacements

SINDYc
NN

10
5

1

2

3
Cost JT=3

Length of Training Data

0
-5

-10

x
1

x2

x3

PSfrag replacements

SINDYc
NN

10
5

1

2

3
Cost JT=3

Length of Training Data

0

-5

-10

x1

x
2x3

-20

PSfrag replacements

SINDYc
NN

10
5

1

2

3
Cost JT=3

Length of Training Data

0

-5
-10

x1

x2

x
3

-20
20

20

40

×

PSfrag replacements

SINDYc
NN

10

5

1

2

3
Cost JT=3

Length of Training Data

0
-5

-10

x1

x2

x3

-20
20
40

1

2

3

4

20 21 22 23

7 ·10
3

8 ·10
3

9 ·10
3

Time

C
o

st

(b)

JT=3

Fig. 13. Control performance for increasing length of noise-cor-
rupted training data: (a) terminal cumulative cost over 3 time
units, and (b) time series of states and cost of the best model for
each model type (mSINDY c

train = 38, mNN
train = 40). Note that from

mtrain = 400 onwards, SINDY identifies the best performing
models.

models on two nonlinear dynamical systems.
The relative strengths and weaknesses of each method

are summarized in Tab. 1. By nearly every metric, linear
DMDc models and nonlinear SINDYc models outper-
form neural network models (NN). In fact, DMDc may be
seen as the limit of SINDYc when the library of candidate
terms is restricted to linear terms. SINDY-MPC provides
the highest performance control and requires significantly
less training data and execution time compared with NN.
However, for very low amounts of training data, DMDc
provides a useful model until the SINDYc algorithm has
enough data to characterize the dynamics. Thus, we advo-
cate the SINDY-MPC framework for effective and efficient
nonlinear control, with DMDc as a stopgap after abrupt
changes until a new SINDYc model can be identified.

This work motivates a number of future extensions
and investigations. Although the preliminary application
of SINDYc for MPC is encouraging, this study does not
leverage many of the powerful new techniques in sparse

11



Training of a SINDYc model

Data of unknown system

Learning governing equations using sparse regression

Physical constraints

Model structure

Model selection

Identified system

Model complexity

M
o
d
el

 e
rr

or

1) Measurements

Coordinates / Features

y = x

y = [y(k), . . . , y(k − p)]T

ẏ = f(y,u)

f =
fN

fD

 e.g.: Energy conservation

e.g.: rational functions 

using, e.g., information criteria

such as AIC or BIC

x(t), u(t)

2) Time delay coordinates 

3) POD 

4) Koopman intrinsic 

    observables 

ẏ = f(y,u)

s.t. E(y) = const.[7]

[24]

[22]

[28]

[31]

[32]

Fig. 14. Illustration of the modular nature of the SINDY with control framework and its ability to handle high-dimensional systems,
limited measurements, known physical constraints, and model selection via information criteria.

model identification. Figure 14 provides a schematic of
the modularity and demonstrated extensions that are pos-
sible within the SINDy framework. In realistic applica-
tions, the system may be extremely high-dimensional, and
the SINDy library does not scale well with the size of the
data. Fortunately, many high-dimensional systems evolve
on a low-dimensional attractor, and it is often possible to
identify a model on this attractor, for example by iden-
tifying a SINDy model on low-dimensional coordinates
identified through a singular value decomposition [9] or
manifold learning. In other applications, full-state mea-
surements are unavailable, and the system must be char-
acterized by limited measurements. It has recently been
shown that delay coordinates provide a useful embedding
to identify simple models of chaotic systems [7], building
on the celebrated Takens embedding theorem [49]. Delay
coordinates also define intrinsic coordinates for the Koop-
man operator [7], which provides a simple linear embed-
ding of nonlinear systems [34, 11]. Koopman models have
recently been used for MPC [23] and have been identi-
fied using SINDy regression [22] and subsequently used
for optimal control [22]. Similar methods could be used to
optimize sensors and exploit partial measurements within
the SINDY-MPC framework. All of these innovations sug-
gest a shift from the perspective of big data to the control-
oriented perspective of smart data.

Figure 14 also demonstrates innovations to the SINDy
regression to include physical constraints, known model
structure, and model selection, which may all benefit the
goal of real-time identification and control. Known sym-
metries, conservation laws, and constraints may be read-
ily included in both the SINDYc and DMDc modeling
frameworks [28], as they are both based on least-squares
regression, possibly with sequential thresholding. It is
thus possible to use a constrained least-squares algorithm,
for example to enforce energy conserving constraints in a
fluid system, which manifest as anti-symmetric quadratic
terms [28]. Enforcing constraints has the potential to fur-
ther reduce the amount of data required to identify mod-
els, as there are less free parameters to estimate, and the
resulting systems have been shown to have improved sta-
bility in some cases. It is also possible to extend the SINDy

algorithm to identify models in libraries that encode richer
dynamics, such as rational function nonlinearities [31].
Finally, incorporating information criteria provides an
objective metric for model selection among various candi-
date SINDy models with a range of complexity.

The SINDY-MPC framework has significant potential
for the real-time control of strongly nonlinear systems.
Moreover, the rapid training and execution times indi-
cate that SINDy models may be useful for rapid model
identification in response to abrupt model changes, and
this warrants further investigation. The ability to identify
accurate and efficient models with small amounts of train-
ing data may be a key enabler of recovery in time-critical
scenarios, such as model changes that lead to instabil-
ity. In addition, for broad applicability and adoption, the
SINDy modeling framework must be further investigated
to characterize the effect of noise, derive error estimates,
and provide conditions and guarantees of convergence.
These future theoretical and analytical extensions are nec-
essary to certify the model-based control performance.

Acknowledgements

EK gratefully acknowledges support by the “Wash-
ington Research Foundation Fund for Innovation in Data-
Intensive Discovery" and a Data Science Environments
project award from the Gordon and Betty Moore Founda-
tion (Award #2013-10-29) and the Alfred P. Sloan Foun-
dation (Award #3835) to the University of Washington
eScience Institute. SLB acknowledges support from the
Army Research Office through the Young Investigator
Program (W911NF-17-1-0422) and a MURI (W911NF-17-
1-0306). The authors gratefully acknowledge many valu-
able discussions with Josh Proctor about sparse model
identification and model identification for control.

References
[1] Eleni Aggelogiannaki and Haralambos Sarimveis. Nonlin-

ear model predictive control for distributed parameter sys-
tems using data driven artificial neural network models.
Computers & Chemical Engineering, 32(6):1225–1237, 2008.

[2] Hirotugu Akaike. Fitting autoregressive models for pre-
diction. Annals of the institute of Statistical Mathematics,
21(1):243–247, 1969.

[3] Stephen A Billings. Nonlinear system identification: NAR-

12



MAX methods in the time, frequency, and spatio-temporal do-
mains. John Wiley &amp; Sons, 2013.

[4] Josh Bongard and Hod Lipson. Automated reverse engi-
neering of nonlinear dynamical systems. Proceedings of the
National Academy of Sciences, 104(24):9943–9948, 2007.

[5] Stephen Boyd, Leon O Chua, and Charles A Desoer. Ana-
lytical foundations of volterra series. IMA Journal of Mathe-
matical Control and Information, 1(3):243–282, 1984.

[6] Roger W Brockett. Volterra series and geometric control
theory. Automatica, 12(2):167–176, 1976.

[7] S. L. Brunton, B. W. Brunton, J. L. Proctor, E. Kaiser, and
J. N. Kutz. Chaos as an intermittently forced linear system.
Nature Communications, 8(19):1–9, 2017.

[8] S. L. Brunton and B. R. Noack. Closed-loop turbulence con-
trol: Progress and challenges. Applied Mechanics Reviews,
67:050801–1–050801–48, 2015.

[9] S. L. Brunton, J. L. Proctor, and J. N. Kutz. Discovering
governing equations from data by sparse identification of
nonlinear dynamical systems. Proceedings of the National
Academy of Sciences, 113(15):3932–3937, 2016.

[10] S. L. Brunton, J. L. Proctor, and J. N. Kutz. Sparse identifi-
cation of nonlinear dynamics with control (SINDYc). IFAC
NOLCOS, 49(18):710–715, 2016.

[11] Marko Budišić, Ryan Mohr, and Igor Mezić. Applied Koop-
manism a). Chaos, 22(4):047510, 2012.

[12] Eduardo F Camacho and Carlos Bordons Alba. Model pre-
dictive control. Springer Science & Business Media, 2013.

[13] Rick Chartrand. Numerical differentiation of noisy, nons-
mooth data. ISRN Applied Mathematics, 2011, 2011.

[14] Andreas Draeger, Sebastian Engell, and Horst Ranke.
Model predictive control using neural networks. IEEE Con-
trol Systems Magazine, 15(5):61–66, 1995.

[15] Geir. E. Dullerud and Fernando Paganini. A course in robust
control theory: A convex approach. Texts in Applied Mathe-
matics. Springer, Berlin, Heidelberg, 2000.

[16] Utku Eren, Anna Prach, Başaran Bahadır Koçer, Saša V.
Raković, Erdal Kayacan, and Behçet Açıkmeşe. Model
predictive control in aerospace systems: Current state and
opportunities. Journal of Guidance, Control, and Dynamics,
40(7):1541–1566, 2017.

[17] Carlos E Garcia, David M Prett, and Manfred Morari.
Model predictive control: theory and practice — a survey.
Automatica, 25(3):335–348, 1989.

[18] Jorge L Garriga and Masoud Soroush. Model predictive
control tuning methods: A review. Industrial & Engineering
Chemistry Research, 49(8):3505–3515, 2010.

[19] P. J. Holmes, J. L. Lumley, G. Berkooz, and C. W. Rowley.
Turbulence, coherent structures, dynamical systems and symme-
try. Cambridge Monographs in Mechanics. Cambridge Uni-
versity Press, Cambridge, England, 2nd edition, 2012.

[20] Kurt Hornik, Maxwell Stinchcombe, and Halbert White.
Multilayer feedforward networks are universal approxima-
tors. Neural networks, 2(5):359–366, 1989.

[21] J. N. Juang and R. S. Pappa. An eigensystem realization al-
gorithm for modal parameter identification and model re-
duction. Journal of Guidance, Control, and Dynamics, 8(5):620–
627, 1985.

[22] E. Kaiser, J. N. Kutz, and S. L. Brunton. Data-driven discov-
ery of Koopman eigenfunctions for control. arXiv preprint
arXiv:1707.01146, 2017.

[23] Milan Korda and Igor Mezić. Linear predictors for non-
linear dynamical systems: Koopman operator meets model
predictive control. arXiv preprint arXiv:1611.03537, 11 2016.

[24] J. N. Kutz, S. L. Brunton, B. W. Brunton, and J. L. Proctor.
Dynamic Mode Decomposition: Data-Driven Modeling of Com-
plex Systems. SIAM, 2016.

[25] Jay H Lee. Model predictive control: Review of the three
decades of development. International Journal of Control, Au-
tomation and Systems, 9(3):415–424, 2011.

[26] S.J. Lee, D.J. Lee, and H.S. Oh. Technological forecasting at

the Korean stock market: a dynamic competition analysis
using Lotka-Volterra model. Technol. Forecast. Soc. Chang,
72:1044–1057, 2005.

[27] Richard Lippmann. An introduction to computing with
neural nets. IEEE Assp magazine, 4(2):4–22, 1987.

[28] J.-C. Loiseau and S. L. Brunton. Constrained sparse
Galerkin regression. To appear in Journal of Fluid Mechanics
(arXiv preprint arXiv:1611.03271), 2017.

[29] Edward N Lorenz. Deterministic nonperiodic flow. J. At-
mos. Sciences, 20(2):130–141, 1963.

[30] Bryon R Maner, F. J. Doyle, Babatunde A Ogunnaike, and
Ronald K Pearson. A nonlinear model predictive control
scheme using second order Volterra models. In American
Control Conference, 1994, volume 3, pages 3253–3257, 1994.

[31] N. M. Mangan, S. L. Brunton, J. L. Proctor, and J. N. Kutz.
Inferring biological networks by sparse identification of
nonlinear dynamics. IEEE Transactions on Molecular, Biolog-
ical, and Multi-Scale Communications, 2(1):52–63, 2016.

[32] N. M. Mangan, J. N. Kutz, S. L. Brunton, and J. L. Proctor.
Model selection for dynamical systems via sparse regres-
sion and information criteria. Proceedings of the Royal Society
A, 473(2204):1–16, 2017.

[33] D. Q. Mayne. Model predictive control: Recent develop-
ments and future promise. Automatica, 50(12):2967–2986,
2014.

[34] Igor Mezić. Spectral properties of dynamical systems,
model reduction and decompositions. Nonlinear Dynamics,
41(1-3):309–325, 2005.

[35] Manfred Morari and Jay H Lee. Model predictive control:
past, present and future. Computers & Chemical Engineering,
23(4):667–682, 1999.

[36] Hui Peng, Jun Wu, Garba Inoussa, Qiulian Deng, and
Kazushi Nakano. Nonlinear system modeling and pre-
dictive control using the RBF nets-based quasi-linear ARX
model. Control Engineering Practice, 17(1):59–66, 2009.

[37] Joshua L Proctor, Steven L Brunton, and J Nathan Kutz. Dy-
namic mode decomposition with control. SIAM Journal on
Applied Dynamical Systems, 15(1):142–161, 2016.

[38] S. J. Qin and T. A. Badgwell. An overview of industrial
model predictive control technology. In AIChE Symposium
Series, volume 93, pages 232–256, 1997.

[39] S Joe Qin and Thomas A Badgwell. A survey of indus-
trial model predictive control technology. Control engineer-
ing practice, 11(7):733–764, 2003.

[40] James B Rawlings. Tutorial overview of model predictive
control. IEEE Control Systems, 20(3):38–52, 2000.

[41] C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, and D.S.
Henningson. Spectral analysis of nonlinear flows. J. Fluid
Mech., 645:115–127, 2009.

[42] Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlin-
ear total variation based noise removal algorithms. Physica
D, 60(1):259–268, 1992.

[43] S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz. Data-
driven discovery of partial differential equations. Science
Advances, 3(e1602614), 2017.

[44] H. Schaeffer and S. G. McCalla. Sparse model selection via
integral terms. Physical Review E, 96(2):023302, 2017.

[45] Hayden Schaeffer. Learning partial differential equations
via data discovery and sparse optimization. In Proc. R. Soc.
A, volume 473, page 20160446. The Royal Society, 2017.

[46] P. J. Schmid. Dynamic mode decomposition of numerical
and experimental data. Journal of Fluid Mechanics, 656:5–28,
August 2010.

[47] Michael Schmidt and Hod Lipson. Distilling free-form nat-
ural laws from experimental data. Science, 324(5923):81–85,
2009.

[48] S. Skogestad and I. Postlethwaite. Multivariable feedback con-
trol: analysis and design. John Wiley & Sons, Inc., Hoboken,
New Jersey, 2 edition, 2005.

[49] F Takens. Detecting strange attractors in turbulence. Lecture

13



Notes in Mathematics, 898:366–381, 1981.
[50] R. Tibshirani. Regression shrinkage and selection via the

lasso. J. of the Royal Statistical Society B, pages 267–288, 1996.
[51] Giang Tran and Rachel Ward. Exact recovery of chaotic

systems from highly corrupted data. arXiv preprint
arXiv:1607.01067, 2016.

[52] J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton,
and J. N. Kutz. On dynamic mode decomposition: the-
ory and applications. Journal of Computational Dynamics,
1(2):391–421, 2014.

[53] E. Venturino. The influence of diseases on Lotka-Volterra
systems. Rocky Mt. J. Math., 24(1):381 – 402, 1994.

[54] Tong Wang, Huijun Gao, and Jianbin Qiu. A combined
adaptive neural network and nonlinear model predictive
control for multirate networked industrial process control.
IEEE Transactions on Neural Networks and Learning Systems,
27(2):416–425, 2016.

[55] Matthew O Williams, Ioannis G Kevrekidis, and
Clarence W Rowley. A data-driven approximation of the
Koopman operator: extending dynamic mode decomposi-
tion. J. Nonlin. Sci., 25(6):1307–1346, 2015.

[56] T. Zhang, G. Kahn, S. Levine, and P. Abbeel. Learning deep
control policies for autonomous aerial vehicles with MPC-
guided policy search. In IEEE International Conference on
Robotics and Automation (ICRA), pages 528–535. IEEE, 2016.

14


	1 Introduction
	2 SINDY-MPC framework
	2.1 Sparse identification of nonlinear dynamics with control
	2.2 Model predictive control

	3 Example: Lotka-Volterra model
	4 Lorenz system
	5 Discussion and Conclusions

