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Abstract: In this paper we establish a connection between non-convex optimization methods for training deep neural
networks and nonlinear partial differential equations (PDEs). Relaxation techniques arising in statistical physics which
have already been used successfully in this context are reinterpreted as solutions of a viscous Hamilton-Jacobi PDE.
Using a stochastic control interpretation allows we prove that the modified algorithm performs better in expectation
that stochastic gradient descent. Well-known PDE regularity results allow us to analyze the geometry of the relaxed
energy landscape, confirming empirical evidence. The PDE is derived from a stochastic homogenization problem, which
arises in the implementation of the algorithm. The algorithms scale well in practice and can effectively tackle the high
dimensionality of modern neural networks.
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1. INTRODUCTION

1.1. Overview of the main results. Deep neural networks have achieved remarkable success in a number of applied
domains from visual recognition and speech, to natural language processing and robotics (LeCun et al., 2015). Despite
many attempts, an understanding of the roots of this success remains elusive. Neural networks are a parametric class of
functions whose parameters are found by minimizing a non-convex loss function, typically via stochastic gradient descent
(SGD), using a variety of regularization techniques. In this paper, we study a modification of the SGD algorithm which
leads to improvements in the training time and generalization error.

Baldassi et al. (2015) recently introduced the local entropy loss function, fγ (x), which is a modification of a given loss
function f (x), defined for x ∈ Rn. Chaudhari et al. (2016) showed that the local entropy function is effective in training
deep networks. Our first result, in Sec. 3, shows that fγ (x) is the solution of a nonlinear partial differential equation
(PDE). Define the viscous Hamilton-Jacobi PDE

∂u
∂ t

=−1
2
|∇u|2 + β−1

2
∆u, for 0 < t ≤ γ (viscous-HJ)

with u(x,0) = f (x). Here we write ∆u = ∑
n
i=1

∂ 2

∂x2
i
u, for the Laplacian. We show that

fγ (x) = u(x,γ)

Using standard semiconcavity estimates in Sec 6, the PDE interpretation immediately leads to regularity results for the
solutions that are consistent with empirical observations.

Algorithmically, our starting point is the continuous time stochastic gradient descent equation,

dx(t) =−∇ f (x(t)) dt +β
−1/2 dW (t) (SGD)
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f (x)

uviscous HJ(x, T)

unon-viscous HJ(x, T)

FIGURE 1. One dimensional loss function f (x) (black) and smoothing of f (x) by the viscous Hamilton-Jacobi equation
(red) and the non-viscous Hamilton Jacobi equation (blue). The initial density (light grey) is evolved using the Fokker-
Planck equation (26) which uses solutions of the respective PDEs. The terminal density obtained using SGD (dark
gray) remains concentrated in a local minimum. The function uviscous HJ(x,T ) (red) is convex, with the global minimum
close to that of f (x), consequently the terminal density (red) is concentrated near the minimum of f (x). The function
unon-viscous HJ(x,T ) (blue) is nonconvex, so the presence of gradients pointing away from the global minimum slows down
the evolution. Nevertheless, the corresponding terminal density (blue) is concentrated in a nearly optimal local minimum.
Note that unon-viscous HJ(x,T ) can be interpreted as a generalized convex envelope of f : it is given by the Hopf-Lax
formula (HL). Also note that both the value and location of some local extrema for non-viscous HJ are unchanged,
while the regions of convexity widen. On the other hand, local maxima located in smooth concave regions see their
concave regions shrink, value eventually decreases. This figure was produced by solving (26) using monotone finite
differences (Oberman, 2006).

for t ≥ 0 where W (t)∈Rn is the n-dimensional Wiener process and the coefficient β−1 is the variance of the gradient term
∇ f (x) (see Section 2.2 below). Chaudhari et al. (2016) compute the gradient of local entropy ∇ fγ (x) by first computing
the invariant measure, ρ(y), of the auxiliary stochastic differential equation (SDE)

dy(s) =−
(

γ
−1y(s)+∇ f (x(t)− y(s))

)
ds+β

−1/2 dW (s) (1)

then by updating x(t) by averaging against this invariant measure

dx(t) =−
∫

∇ f (x(t)− y)ρ(dy) (2)

The effectiveness of the algorithm may be partially explained by the fact that for small value of γ , that solutions of
Fokker-Planck equation associated with the SDE (1) converge exponentially quickly to the invariant measure ρ . Tools
from optimal transportation (Santambrogio, 2015) or functional inequalities (Bakry and Émery, 1985) imply that there
is a threshold parameter related to the semiconvexity of f (x) for which the auxiliary SGD converges exponentially. See
Sec. 2.3 and Remark 6. Beyond this threshold, the auxiliary problem can be slow to converge.

In Sec. 4 we prove using homogenization of SDEs (Pavliotis and Stuart, 2008) that (2) recovers the gradient of the
local entropy function, u(x,γ). In other words, in the limit of fast dynamics, (2) is equivalent to

dx(t) =−∇u(x(t),γ) dt (3)

where u(x,γ) is the solution of (viscous-HJ). Thus while smoothing the loss function using PDEs directly is not prac-
tical, due to the curse of dimensionality, the auxliary SDE (1) accomplishes smoothing of the loss function f (x) using
exponentially convergent local dynamics.

The Elastic-SGD algorithm (Zhang et al., 2015) is an influential algorithm which allowed training of Deep Neural
Networks to be accomplished in parallel. We also prove, in Sec. 4.3, that the Elastic-SGD algorithm (Zhang et al., 2015)
is equivalent to regularization by local entropy. The equivalence is a surprising result, since the former runs by computing
temporal averages on a single processor while the latter computes an average of coupled independent realizations of
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SGD over multiple processors. Once the homogenization framework is established for the local entropy algorithm, the
result follows naturally from ergodicity, which allows us to replace temporal averages in (1) by the corresponding spatial
averages used in Elastic-SGD.

Rather than fix one value of γ for the evolution, scope the variable. Scoping has the advantage of more smoothing
earlier in the algorithm, while recovering the true gradients (and minima) of the original loss function f (x) towards the
end. Scoping is equivalent to replacing (3) by

dx(t) =−∇u(x(t),T − t) dt

where T is a termination time for the algorithm. We still fix γ(t) in the inner loop represented by (1). Scoping, which
was previously considered to be an effective heuristic, is rigorously shown to be effective in Sec. 5. Additionally, scoping
corresponds to nonlinear forward-backward equations, which appear in Mean Field Games, see Remark 9.

It is unusual in stochastic nonconvex optimization to obtain a proof of the superiority of a particular algorithm com-
pared to standard stochastic gradient descent. We obtain such a result in Theorem 12 of Sec. 5 Sec. 5 where we prove (for
slightly modified dynamics) an improvement in the expected value of the loss function using the local entropy dynamics
as compared to that of SGD. This result is obtained using well-known techniques from stochastic control theory (Fleming
and Soner, 2006) and the comparison principle for viscosity solutions. Again, while these techniques are well-established
in nonlinear PDEs, we are not aware of their application in this context.

The effectiveness of the PDE regularization is illustrated Figure 1.

2. BACKGROUND

2.1. Deep neural networks. A deep network is a nested composition of linear functions of an input datum ξ ∈ Rd and
a nonlinear function σ at each level. The output of a neural network, denoted by y(x; ξ ), can be written as

y(x; ξ ) = σ
′
(

xp
σ

(
xp−2 . . .σ

(
x1

ξ

))
. . .
)

; (4)

where x1, . . . ,xp−1 ∈ Rd×d and xp ∈ Rd×K are the parameters or “weights” of the network. We will let x ∈ Rn denote
their concatenation after rearranging each one of them as a vector. The functions σ(·) are applied point-wise to each
element of their argument. For instance, in a network with rectified linear units (ReLUs), we have σ(z) = max(0,z) for
z ∈ Rd . Typically, the last non-linearity is set to σ ′(z) = 1{z ≥ 0}. A neural network is thus a function with n parameters
that produces an output y(x; ξ ) ∈ {1, . . . ,K} for each input ξ .

In supervised learning or “training” of a deep network for the task of image classification, given a finite sample of
inputs and outputs D = {ξ i,yi)}N

i=1 (dataset), one wishes to minimize the empirical loss1

f (x) :=
1
N

N

∑
i=1

fi(x); (5)

where fi(x) is a loss function that measures the discrepancy between the predictions y(x,ξ i) for the sample ξ i and the
true label yi. For instance, the zero-one loss is

fi(x) := 1{y(x; ξ i) 6= yi}

whereas for regression, the loss could be a quadratic penalty fi(x) := 1
2‖y(x; ξ i)− yi‖2

2. Regardless of the choice of the
loss function, the overall objective f (x) in deep learning is a non-convex function of its argument x.

In the sequel, we will dispense with the specifics of the loss function and consider training a deep network as a generic
non-convex optimization problem given by

x∗ = arg min
x

f (x) (6)

However, the particular relaxation and regularization schemes we describe are developed for, and tested on, classification
tasks using deep networks.

1The empirical loss is a sample approximation of the expected loss, Ex∼P f (x), which cannot be computed since the data distribution
P is unknown. The extent to which the empirical loss (or a regularized version thereof) approximates the expected loss relates to
generalization, i.e., the value of the loss function on (“test” or “validation”) data drawn from P but not part of the training set D.
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2.2. Stochastic gradient descent (SGD). First-order methods are the default choice for optimizing (6), since the dimen-
sionality of x is easily in the millions. Furthermore, typically, one cannot compute the entire gradient N−1

∑
N
i=1 ∇ fi(x) at

each iteration (update) because N can also be in the millions for modern datasets.2 Stochastic gradient descent (Robbins
and Monro, 1951) consists of performing partial computations of the form

xk+1 = xk−ηk ∇ fik (x
k−1) where ηk > 0, k ∈ N (7)

where ik is sampled uniformly at random from the set {1, . . . ,N}, at each iteration, starting from a random initial condition
x0. The stochastic nature of SGD arises from the approximation of the gradient using only a subset of data points. One
can also average the gradient over a set of randomly chosen samples, called a “mini-batch”. We denote the gradient on
such a mini-batch by ∇ fmb(x).

If each fi(x) is convex and the gradient ∇ fi(x) is uniformly Lipschitz, SGD converges at a rate

E
[

f (xk)
]
− f (x∗) = O(k−1/2);

this can be improved to O(k−1) using additional assumptions such as strong convexity (Nemirovski et al., 2009) or at
the cost of memory, e.g., SAG (Schmidt et al., 2013), SAGA (Defazio et al., 2014) among others. One can also obtain
convergence rates that scale as O(k−1/2) for non-convex loss functions if the stochastic gradient is unbiased with bounded
variance (Ghadimi and Lan, 2013).

2.3. SGD in continuous time. Developments in this paper hinge on interpreting SGD as a continuous-time stochastic
differential equation. As is customary (Ghadimi and Lan, 2013), we assume that the stochastic gradient ∇ fmb(xk−1)

in (7) is unbiased with respect to the full-gradient and has bounded variance, i.e., for all x ∈ Rn,

E [∇ fmb(x)] = ∇ f (x),

E
[
‖∇ fmb(x)−∇ f (x)‖2

]
≤ β

−1
mb ;

for some β
−1
mb ≥ 0 We use the notation to emphasize that the noise is coming from the minibatch gradients. In the case

where we compute full gradients, this coefficient is zero. For the sequel, we forget the source of the noise, and simply
write β−1. The discrete-time dynamics in (7) can then be modelled by the stochastic differential equation (SGD)

dx(t) =−∇ f (x(t)) dt +β
−1/2 dW (t).

The generator, L , corresponding to (SGD) is defined for smooth functions φ as

L φ =−∇ f ·∇ φ +
β−1

2
∆φ . (8)

The adjoint operator L ∗ is given by L ∗ρ = ∇ · (∇ f ρ)+ β−1

2 ∆ ρ . Given the function V (x) : X → R, define

u(x, t) = E
[
V (x(T ))

∣∣∣ x(t) = x
]

(9)

to be the expected value of V at the final time for the path (SGD) with initial data x(t) = x. By taking expectations in the
Itô formula, it can be established that u satisfies the backward Kolmogorov equation

∂u
∂ t

= L u, for t < s≤ T,

along with the terminal value u(x,T ) = V (x). Furthermore, ρ(x, t), the probability density of x(t) at time t, satisfies the
Fokker-Planck equation (Risken, 1984)

∂

∂ t
ρ(x, t) = ∇ ·

(
∇ f (x) ρ(x, t)

)
+

β−1

2
∆ρ(x, t) (FP)

along with the initial condition ρ(x,0) = ρ0(x), which represents the probability density of the initial distribution. With
mild assumptions on f (x), and even when f is non-convex, ρ(x, t) converges to the unique stationary solution of (FP) as
t→ ∞ (Pavliotis, 2014, Section 4.5). Elementary calculations show that the stationary solution is the Gibbs distribution

ρ
∞(x; β ) = Z(β )−1e−β f (x), (10)

2For example, the ImageNet dataset (Krizhevsky et al., 2012) has N = 1.25 million RGB images of size 224× 224 (i.e. d ≈ 105)
and K = 1000 distinct classes. A typical model, e.g. the Inception network (Szegedy et al., 2015) used for classification on this dataset
has about N = 10 million parameters and is trained by running (7) for k ≈ 105 updates; this takes roughly 100 hours with 8 graphics
processing units (GPUs).
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for a normalizing constant Z(β ). The notation for the parameter β > 0 comes from physics, where it corresponds to the
inverse temperature. From (10), as β → ∞, the Gibbs distribution ρ∞ concentrates on the global minimizers of f (x). In
practice, “momentum” is often used to accelerate convergence to the invariant distribution; this corresponds to running
the Langevin dynamics (Pavliotis, 2014, Chapter 6) given by

dx(t) = p(t) dt

d p(t) =−(∇ f (x(t))+ c p(t)) dt +
√

c β−1 dW (t).

In the overdamped limit c→∞ we recover (SGD) and in the underdamped limit c = 0 we recover Hamiltonian dynamics.
However, while momentum is used in practice, there are more theoretical results available for the overdamped limit.

The celebrated paper (Jordan et al., 1998) interpreted the Fokker-Planck equation as a gradient descent in the Wasser-
stein metric dW2 (Santambrogio, 2015) of the energy functional

J(ρ) =
∫

V (x) ρ dx+
β−1

2

∫
ρ logρ dx;

If V (x) is λ -convex function f (x), i.e., ∇2V (x)+ λ I, is positive definite for all x, then the solution ρ(x, t) converges
exponentially in the Wasserstein metric with rate λ to ρ∞ (Carrillo et al., 2006),

dW2 (ρ(x, t), ρ
∞)≤ dW2 (ρ(x,0), ρ

∞) e−λ t .

Let us note that a less explicit, but more general, criterion for speed of convergence in the weighted L2 norm is the
Bakry-Emery criterion (Bakry and Émery, 1985), which uses PDE-based estimates of the spectral gap of the potential
function.

2.4. Metastability and simulated annealing. Under mild assumptions for non-convex functions f (x), the Gibbs dis-
tribution ρ∞ is still the unique steady solution of (FP). However, convergence of ρ(x, t) can take an exponentially long
time. Such dynamics are said to exhibit metastability: there can be multiple quasi-stationary measures which are stable
on time scales of order one. Kramers’ formula (Kramers, 1940) for Brownian motion in a double-well potential is the
simplest example of such a phenomenon: if f (x) is a double-well with two local minima at locations x1,x2 ∈ R with a
saddle point x3 ∈ R connecting them, we have

Ex1 [τx2 ] ∝
1∣∣ f ′′(x3) f ′′(x1)

∣∣1/2
exp
(

β ( f (x3)− f (x1))
)

;

where τx2 is the time required to transition from x1 to x2 under the dynamics in (SGD). The one dimensional example can
be generalized to the higher dimensional case (Bovier and den Hollander, 2006). Observe that there are two terms that
contribute to the slow time scale: (i) the denominator involves the Hessian at a saddle point x3, and (ii) the exponential
dependence on the difference of the energies f (x1) and f (x2). In the higher dimensional case the first term can also go to
infinity if the spectral gap goes to zero.

Simulated annealing (Kushner, 1987; Chiang et al., 1987) is a popular technique which aims to evade metastability
and locate the global minimum of a general non-convex f (x). The key idea is to control the variance of the Wiener
process, in particular, decrease it exponentially slowly by setting β = β (t) = log (t + 1) in (7). There are theoretical
results that prove that simulated annealing converges to the global minimum (Geman and Hwang, 1986); however the
time required is still exponential.

2.5. SGD heuristics in deep learning. State-of-the-art results in deep learning leverage upon a number of heuristics.
Variance reduction of the stochastic gradients of Sec. 2.2 leads to improved theoretical convergence rates for convex loss
functions (Schmidt et al., 2013; Defazio et al., 2014) and is implemented in algorithms such as AdaGrad (Duchi et al.,
2011), Adam (Kingma and Ba, 2014) etc.

Adapting the step-size, i.e., changing ηk in (7) with time k, is common practice. But while classical convergence
analysis suggests step-size reduction of the form O(k−1) (Robbins and Monro, 1951; Schmidt et al., 2013), staircase-like
drops are more commonly used. Merely adapting the step-size is not equivalent to simulated annealing, which explicitly
modulates the diffusion term. This can be achieved by modulating the mini-batch size ik in (7). Note that as the mini-batch
size goes to N and the step-size ηk is O(N), the stochastic term in (7) vanishes (Li et al., 2015).
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2.6. Regularization of the loss function. A number of prototypical models of deep neural networks have been used in
the literature to analyze characteristics of the energy landscape. If one forgoes the nonlinearities, a deep network can be
seen as a generalization of principal component analysis (PCA), i.e., as a matrix factorization problem; this is explored
by Baldi and Hornik (1989); Haeffele and Vidal (2015); Soudry and Carmon (2016); Saxe et al. (2014), among others.
Based on empirical results such as Dauphin et al. (2014), authors in Bray and Dean (2007); Fyodorov and Williams
(2007); Choromanska et al. (2015) and Chaudhari and Soatto (2015) have modeled the energy landscape of deep neural
networks as a high-dimensional Gaussian random field. In spite of these analyses being drawn from vastly diverse areas of
machine learning, they suggest that, in general, the energy landscape of deep networks is highly non-convex and rugged.

Smoothing is an effective way to improve the performance of optimization algorithms on such a landscape and it
is our primary focus in this paper. This can be done by convolution with a kernel (Chen, 2012); for specific architec-
tures this can be done analytically (Mobahi, 2016) or by averaging the gradient over random, local perturbations of the
parameters (Gulcehre et al., 2016).

In the next section, we present a technique for smoothing that has shown good empirical performance. We compare
and contrast the above mentioned smoothing techniques in a unified mathematical framework in this paper.

3. PDE INTERPRETATION OF LOCAL ENTROPY

Local entropy is a modified loss function first introduced as a means for studying the energy landscape of the discrete
perceptron, i.e., a “shallow” neural network with one layer and discrete parameters, e.g., x ∈ {−1,1}n (Baldassi et al.,
2016b). An analysis of local entropy using the replica method (Mezard et al., 1987) predicts dense clusters of solutions
to the optimization problem (6). Parameters that lie within such clusters yield better error on samples outside the training
set D, i.e. they have improved generalization error (Baldassi et al., 2015).

Recent papers by Baldassi et al. (2016a) and Chaudhari et al. (2016) have suggested algorithmic methods to exploit the
above observations. The later extended the notion of local entropy to continuous variables by replacing the loss function
f (x) with

fγ (x) := u(x,γ) =− 1
β

log
(

Gβ−1γ ∗ exp(−β f (x))
)

; (11)

where Gγ (x) = (2πγ)−d/2 exp− |x|
2

2γ
is the heat kernel.

3.1. Derivation of the viscous Hamilton-Jacobi PDE. The Cole-Hopf transformation (Evans, 1998, Section 4.4.1) is
a classical tool used in PDEs. It relates solutions of the heat equation to those of the viscous Hamilton-Jacobi equation.
For the convenience of the reader, we restate it here.

Lemma 1. The local entropy function fγ (x) = u(x,γ) defined by (11) is the solution of the initial value problem for the
viscous Hamilton-Jacobi equation (viscous-HJ) with initial values u(x,0) = f (x). Moreover, the gradient is given by

∇u(x, t) =
∫
Rn

y− x
t

ρ
∞
1 (dy; x) =

∫
Rn

∇ f (x− y) ρ
∞
2 (dy; x) (12)

where ρ∞
i (y; x) are probability distributions given by

ρ
∞
1 (y; x) = Z−1

1 exp
(
−β f (y)− β

2t
|x− y|2

)
ρ

∞
2 (y;x) = Z−1

2 exp
(
−β f (x− y)− β

2t
|y|2
)

(13)

and Zi = Zi(x) are normalizing constants for i = 1,2.

Proof. Define u(x, t) =−β−1 logv(x, t). From (11), v = exp(−βu) solves the heat equation

vt = β
−1

∆v

with initial data v(x,0) = exp(−β f (x)). Taking partial derivatives gives

vt =−β v ut , ∇v =−β v ∇u, ∆v =−β v ∆u+β
2 v |∇u|2 .

Combining these expressions results in (viscous-HJ). Differentiating v(x, t) = exp(−βu(x, t)) using the convolution in
(11), gives up to positive constants which can be absorbed into the density,

∇u(x, t) =C ∇x

(
Gt ∗ e−β f (x)

)
=C ∇x

∫
Gt (x− y) e−β f (y) dy

=C ∇x

∫
Gt (y) e−β f (x−y) dy

Evaluating the last or second to last expression for the integral leads to the corresponding parts of (12) and (13).
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3.2. Hopf-Lax formula for the Hamilton-Jacobi equation and dynamics for the gradient. In addition to the con-
nection with (viscous-HJ) provided by Lemma 1, we can also explore the non-viscous Hamilton-Jacobi equation. The
Hamiliton-Jacobi equation corresponds to the limiting case of (viscous-HJ) as the viscosity term β−1→ 0.

There are several reasons for studying this equation. It has a simple, explicit formula for the gradient. In addition,
semi-concavity of the solution follows directly from the Hopf-Lax formula. Moreover, under certain convexity conditions,
the gradient of the solution can be computed as an exponentially convergent gradient flow. The deterministic dynamics
for the gradient are a special case of the stochastic dynamics for the viscous-HJ equation which are discussed in another
section. Let us therefore consider the Hamilton-Jacobi equation

ut =−
1
2
|∇u|2. (HJ)

In the following lemma, we apply the well-known Hopf-Lax formula (Evans, 1998) for the solution of the HJ equation.
It is also called the inf-convolution of the functions f (x) and 1

2t |x|
2 (Cannarsa and Sinestrari, 2004). It is closely related

to the proximal operator (Moreau, 1965; Rockafellar, 1976).

Lemma 2. Let u(x, t) be the viscosity solution of (HJ) with u(x,0) = f (x). Then

u(x, t) = inf
y

{
f (y)+

1
2t
|x− y|2

}
. (HL)

Define the proximal operator

proxt f (x) = arg min
y

{
f (y)+

1
2t
|x− y|2

}
(14)

If y∗ = proxt f (x) is a singleton, then ∇xu(x, t) exists, and

∇x u(x, t) =
x− y∗

t
= ∇ f (y∗), (15)

Proof. The Hopf-Lax formula for the solution of the HJ equation can be found in (Evans, 1998). Danskin’s theorem (Bert-
sekas et al., 2003, Prop. 4.5.1) allows us to pass a gradient through an infimum, by applying it at the argminimum. The
first equality is a direct application of Danskin’s Theorem to (HL). For the second equality, rewrite (HL) with z= (x−y)/t
and the drop the prime, to obtain,

u(x, t) = inf
z

{
f (x− tz)+

t
2
|z|2
}
.

Applying Danskin’s theorem to the last expresion gives

∇u(x, t) = ∇ f (x− tz∗) = ∇ f (y∗).

Next we give a lemma which shows that under an auxiliary convexity condition, we can find ∇(x, t) using exponentially
convergent gradient dynamics.

Lemma 3 (Dynamics for HJ). For a fixed x, define

h(x,y; t) = f (x− ty)+
t
2
|y|2 .

Suppose that t > 0 is chosen so that h(x,y; t) is λ -convex as a function of y (meaning that D2
y h(x,y, t)−λ I is positive

definite). The gradient p = ∇x u(x, t) is then the unique steady solution of the dynamics

y′(s) =−∇y h(x,y(s); t) =−t
(

y(s)−∇ f (x− ty(s))
)
. (16)

Moreover, the convergence to p is exponential, i.e.,

|y(s)− p| ≤ |y(0)− p| e−λ s.

Proof. Note that (16) is the gradient descent dynamics on h which is λ -convex by assumption. Thus by standard tech-
niques from ordinary differential equation (ODE) (see, for example (Santambrogio, 2015)) the dynamics are contraction,
and the convergence is exponential.
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3.3. The invariant measure for a quadratic function. Local entropy computes a non-linear average of the gradient in
the neighborhood of x by weighing the gradients according to the steady-state measure ρ∞(y; x).

It is useful to compute ∇ fγ (x) when f (x) is quadratic, since this gives an estimate of the quasi-stable invariant measure
near a local minimum of f . In this case, the invariant measure ρ∞(y; x) is a Gaussian distribution.

Lemma 4. Suppose f (x) is quadratic, with p = ∇ f (x) and Q = ∇2 f (x), then the invariant measure ρ∞
2 (y; x) of (13) is

a normal distribution with mean µ and covariance Σ given by

µ = x−Σ p and Σ = (Q+ γ I)−1 .

In particular, for γ > |Q|2, we have

µ = x−
(

γ
−1 I− γ

−2Q
)

p and Σ = γ
−1 I− γ

−2Q.

Proof. Without loss of generality, a quadratic f (x) centered at x = 0 can be written as

f (x) = f (0)+ p x+
1
2

x>Qx,

⇒ f (x)+
γ

2
x2 = f (0)−µ

>p+
1
2
(y−µ)> (Q+ γ I)(y−µ)

by completing the square. The distribution exp
(
− f (y)− 1

2γ
|y|2
)

is thus a normal distribution with mean µ = x−Σ p

and variance Σ = (Q+ γ I)−1 and an appropriate normalization constant. The approximation Σ = γ−1 I− γ−2Q which
avoids inverting the Hessian follows from the Neumann series for the matrix inverse; it converges for γ > |Q|2 and is
accurate up to O

(
γ−3).

4. DERIVATION OF LOCAL ENTROPY VIA HOMOGENIZATION OF SDES

This section introduces the technique of homogenization for stochastic differential equations and gives a mathematical
treatment to the result of Lemma 1 which was missing in Chaudhari et al. (2016). In addition to this, homogenization
allows us to rigorously show that an algorithm called Elastic-SGD (Zhang et al., 2015) that was heuristically connected
to a distributed version of local entropy in Baldassi et al. (2016a) is indeed equivalent to local entropy.

Homogenization is a technique used to analyze dynamical systems with multiple time-scales that have a few fast
variables that may be coupled with other variables which evolve slowly. Computing averages over the fast variables
allows us to obtain averaged equations for the slow variables in the limit that the times scales separate. We refer the
reader to Pavliotis and Stuart (2008, Chap. 10, 17) or E (2011) for details.

4.1. Background on homogenization. Consider the system of SDEs given by

dx(s) = h(x, y) ds

dy(s) =
1
ε

g(x, y) ds+
1√
εβ

dW (s);
(17)

where h,g are sufficiently smooth functions, W (s) ∈ Rn is the standard Wiener process and ε > 0 is the homogenization
parameter which introduces a fast time-scale for the dynamics of y(s). Let us define the generator for the second equation
to be

L0 = g(x,y) · ∇y +
β−1

2
∆y.

We can assume that, for fixed x, the fast-dynamics, y(s), has a unique invariant probability measure denoted by ρ∞(y; x)
and the operator L0 has a one-dimensional null-space characterized by

L0 1(y) = 0, L ∗
0 ρ

∞(y; x) = 0;

here 1(y) are all constant functions in y and L ∗
0 is the adjoint of L0. In that case, it follows that in the limit ε → 0, the

dynamics for x(s) in (17) converge to
dX(s) = h(X) ds

where the homogenized vector field for X is defined as the average agains the invariant measure. Moreover, by ergodicity,
in the limit, the spatial average is equal to a long term average over the dynamics independent of the initial value y(0).

h(X) =
∫

h(X ,y) ρ
∞(dy; X) = lim

T→∞

1
T

∫ T

0
h(x,y(s)) ds.
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4.2. Derivation of local entropy via homogenization of SDEs. Recall (12) of Lemma 1

∇ fγ (x) =−γ
−1
∫
Rn

(x− y) ρ
∞
1 (y; x) dy.

Hence, let us consider the following system of SDEs

dx(s) =−γ
−1 (x− y) ds

dy(s) =−1
ε

[
∇ f (y)+

1
γ
(y− x)

]
ds+

β−1/2
√

ε
dW (s).

(Entropy-SGD)

Write
H(x,y;γ) = f (y)+

1
2γ
|x− y|2 .

The Fokker-Planck equation for the density of y(s) is given by

ρt = L ∗
0 ρ = ∇y ·

(
∇y Hρ

)
+

β−1

2
∆y ρ; (18)

The invariant measure for this Fokker-Planck equation is thus

ρ
∞
1 (y; x) = Z−1 exp(−βH(x,y;γ))

which agrees with (13) in Lemma 1.

Theorem 5. As ε → 0, the system (Entropy-SGD) converges to the homogenized dynamics given by

dX(s) =−∇ fγ (X) ds.

Moreover, −∇ fγ (x) =−γ−1 (x−〈y〉) where

〈y〉=
∫

y ρ
∞
1 (dy; X) = lim

T→∞

1
T

∫ T

0
y(s) ds (19)

where y(s) is the solution of the second equation in (Entropy-SGD) for fixed x.

Proof. The result follows immediately from the convergence result in Sec. 4.1 for the system (17). The homogenized
vector field is

h(X) =−γ
−1
∫

(X− y) ρ
∞
1 (y; X)

which is equivalent to ∇ fγ (X) from Lemma 1.

By Lemma 1, the following dynamics also converge to the gradient descent dynamics for fγ .

dx(s) =−∇ f (x− y) ds

dy(s) =−1
ε

[
y
γ
−∇ f (x− y)

]
ds+

1√
ε

dW (s).
(Entropy-SGD-2)

Remark 6 (Exponentially fast convergence). Theorem 5 relies upon the existence of an ergodic, invariant measure
ρ∞

1 (y;x). Convergence to such a measure is exponentially fast if the underlying function, H(x,y;γ), is convex in y; in our
case, this happens if ∇2 f (x)+ γ−1I is positive definite for all x.

4.3. Elastic-SGD as local entropy. Elastic-SGD is an algorithm introduced by Zhang et al. (2015) for distributed train-
ing of deep neural networks and aims to minimize the communication overhead between a set of workers that together
optimize replicated copies of the original function f (x). For np > 0 distinct workers, Let y = (y1, . . . ,ynp), and let

ȳ =
1

np

np

∑
j=1

y j

be the average value. Define the modified loss function

min
x

1
np

np

∑
i=1

(
f (xi)+

1
2γ
|xi− x̄|2

)
. (20)

The formulation in (20) lends itself easily to a distributed optimization where worker i performs the following update,
which depends only on the average of the other workers

dyi(s) =−∇ f (yi(s))−
1
γ
(yi(s)− ȳ(s))+β

−1/2dWi(s) (21)
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This algorithm was later shown to be connected to the local entropy loss fγ (x) by Baldassi et al. (2016a) using arguments
from replica theory. The results from the previous section can be modified to prove that the dynamics above converges to
gradient descent of the local entropy. Consider the system

dx(s) =
1
γ
(x− ȳ) ds

along with (21). As in Sec. 4.2, define H(x,y;γ) = ∑
np
i=1 f (yi)+

1
2γ
|x− ȳ|2. The invariant measure for the y(s) dynamics

corresponding to the ε scaling of (21) is given by

ρ
∞(y; x) = Z−1 exp

(
−β H(x,y; γ)

)
,

and the homogenized vector field is

h(X) = γ
−1
(

X−〈ȳ〉
)

where 〈ȳ〉= ∫ ȳ ρ∞(dȳ; X). By ergodicity, we can replace the average over the invariant measure with a combination of
the temporal average and the average over the workers

〈ȳ〉= lim
T→∞

1
T

∫ T

0
ȳ(s) ds (22)

Thus the same argument as in Theorem 5 applies, and we can conclude that the dynamics also converge to gradient
descent for local entropy.

Remark 7 (Variational Interpretation of the distributed algorithm). An alternate approach to understanding the distributed
version of the algorithm, which we hope to study in the future, is modeling it as the gradient flow in the Wasserstein metric
of a non-local functional. This functional is obtained by including an additional term in the Fokker-Planck functional,

J(ρ) =
∫

fγ (x)ρ dx+
β−1

2

∫
ρ logρ dx+

1
2γ

∫ ∫
|x− y|2 ρ(x) ρ(y) dx dy;

see Santambrogio (2015).

4.4. Heat equation versus the viscous Hamilton-Jacobi equation. Lemma 1 showed that local entropy is the solution
to the viscous Hamilton-Jacobi equation (viscous-HJ). The homogenization dynamics in (Entropy-SGD) can thus be
interpreted as a way of smoothing of the original loss f (x) to aid optimization. Other partial differential equations could
also be used to achieve a similar effect. For instance, the following dynamics that corresponds to gradient descent on the
solution of the the heat equation:

dx(s) =−∇ f (x− y) ds

dy(s) =− 1
εγ

y ds+
1√
εβ

dW (s).
(HEAT)

Using a very similar analysis as above, the invariant distribution for the fast variables is ρ∞(dy; X) = Gβ−1γ (y). In other
words, the fast-dynamics for y is decoupled from x and y(s) converges to a Gaussian distribution with mean zero and
variance β−1γ I. The homogenized dynamics is given by

dX(s) =−∇ f (X)∗ Gβ−1γ ds =−∇v(X ,γ) (23)

where v(x,γ) is the solution of the heat equation vt =
β−1

2 ∆v with initial data v(x,0) = f (x). The dynamics corresponds
to a Gaussian averaging of the gradients.

Remark 8 (Comparison between local entropy and heat equation dynamics). The extra term in the y(s) dynamics
for (Entropy-SGD-2) with respect to (HEAT) is exactly the distinction between the smoothing performed by local en-
tropy and the smoothing performed by heat equation. The latter is common in the deep learning literature under different
forms, e.g., Gulcehre et al. (2016) and Mobahi (2016). The former version however has much better empirical perfor-
mance (cf. experiments in Sec. 8 and Chaudhari et al. (2016)) as well as improved convergence in theory (cf. Theorem 12).
Moreover, at a critical point, the gradient term vanishes, and the operators (HEAT) and (Entropy-SGD-2) coincide.
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5. STOCHASTIC CONTROL INTERPRETATION

The interpretation of the local entropy function fγ (x) as the solution of a viscous Hamiltonian-Jacobi equation pro-
vided by Lemma 1 allows us to interpret the gradient descent dynamics as an optimal control problem. While the inter-
pretation does not have immediate algorithmic implications, it allows us to prove that the expected value of a minimum
is improved by the local entropy dynamics compared to the stochastic gradient descent dynamics. Controlled stochastic
differential equations (Fleming and Soner, 2006; Fleming and Rishel, 2012) are generalizations of SDEs discussed earlier
in Sec. 2.3.

5.1. Stochastic control for a variant of local entropy. Consider the following controlled SDE

dx(s) =−∇ f (x(s)) ds−α(s) ds+β
−1/2 dW (s), for t ≤ s≤ T, (CSGD)

along with x(t) = x. For fixed controls α , the generator for (CSGD) is given by

Lα := (−∇ f −α) ·∇+
β−1

2
∆

Define the cost functional for a given solution x(·) of (CSGD) corresponding to the control α(·),

C (x(·), α(·)) = E
[
V (x(T ))+

1
2

∫ T

0
|α(s)|2 ds

]
. (24)

Here the terminal cost is a given function V : Rn → R and we use the prototypical quadratic running cost. Define the
value function

u(x, t) = min
α(·)

C (x(·), α(·)).

to be the minimum expected cost, over admissible controls, and over paths which start at x(t) = x. From the definition,
the value function satisfies

u(x,T ) =V (x).

The dynamic programming principle expresses the value function as the unique viscosity solution of a Hamilton-Jacobi-
Bellman (HJB) PDE (Fleming and Soner, 2006; Fleming and Rishel, 2012), ut = H(∇u, D2u) where the operator H is
defined by

H(p,Q) = min
α

{
Lα (p,Q)+

1
2
|α|2

}
:= min

α

{
(−∇ f −α) · p+ 1

2
|α|2 + β−1

2
tr Q
}

The minimum is achieved at α = p, which results in H(p,Q) = −∇ f · p− 1
2 |p|2 +

β−1

2 tr Q. The resulting PDE for the
value function is

−ut(x, t) =−∇ f (x) ·∇u(x, t)− 1
2
|∇u(x, t)|2 + β−1

2
∆u(x, t), for t ≤ s≤ T, (HJB)

along with the terminal values u(x,T ) =V (x). We make note that in this case, the optimal control is equal to the gradient
of the solution

α(x, t) = ∇u(x, t). (25)

Remark 9 (Forward-backward equations). Note that the PDE (HJB) is a terminal value problem in backwards time.
This equation is well-posed, and by relabelling time, we can obtain an initial value problem in forward time. The
corresponding forward equation for the evolution is of a density under the dynamics (CSGD), involving the gradient of
the value function. Together, these PDEs are the forward-backward system

−ut =−∇ f ·∇u− 1
2
|∇u|2 + β−1

2
∆u

ρt =−∇ ·
(

∇u ρ

)
+∆ρ,

(26)

for 0 ≤ s ≤ T along with the terminal and the initial data u(x,T ) =V (x), ρ(x,0) = ρ0(x).

Remark 10 (Stochastic control for (viscous-HJ)). We can also obtain a stochastic control interpretation for (viscous-HJ)
by dropping the ∇ f (x(s)) term in (CSGD). Then, by a similar argument, (HJB) results in (viscous-HJ). Thus we obtain
the interpretation of solutions of (viscous-HJ) as the value function of an optimal control problem, minimizing the cost
function (24) but with the modified dynamics. The reason for including the ∇ f term in (CSGD) is that it allows us to
prove the comparison principle in the next subsection.
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Remark 11 (Mean field games). More generally, we can consider stochastic control problems where the control and the
cost depend on the density of other players. In the case of “small” players, this can lead to mean field games (Lasry and
Lions, 2007; Huang et al., 2006). In the distributed setting is it natural to consider couplings (control and costs) which
depend on the density (or moments of the density). In this context, it may be possible to use mean field game theory to
prove an analogue of Theorem 12 and obtain an estimate of the improvement in the terminal reward.

5.2. Improvement in the value function. The optimal control interpretation above allows us to provide the following
theorem for the improvement in the value function obtained by the dynamics (CSGD) using the optimal control (25),
compared to stochastic gradient descent.

Theorem 12. Let xcsgd(s) and xsgd(s) be solutions of (CSGD) and (SGD), respectively, with the same initial data
xcsgd(0) = xsgd(0) = x0. Fix a time t ≥ 0 and a terminal function, V (x). Then

E
[
V (xcsgd(t))

]
≤ E

[
V (xsgd(t))

]
− 1

2
E
[∫ t

0

∣∣α(xcsgd(s),s)
∣∣2 ds

]
.

The optimal control is given by α(x, t) = ∇u(x, t), where u(x, t) is the solution of (HJB) along with terminal data
u(x,T ) =V (x).

Proof. Consider (SGD) and let L = −∇ f (x) ·∇+ 1
2 ∆ to be the generator, as in (8). The expected value function

v(x, t) = E [V (x(t))] is the solution of the PDE vt = L v. Let u(x, t) be the solution of (HJB). From the PDE (HJB), we
have

ut = L u− 1
2
|∇u|2 ≤ 0.

We also have u(x,T ) = v(x,T ) =V (x). Use the maximum principle (Evans, 1998) to conclude

u(x,s)≤ v(x,s), for all t ≤ s≤ T ; (27)

Use the definition to get
v(x, t) = E [V (x(t)) |x(t) = x] ;

the expectation is taken over the paths of (SGD). Similarly,

u(x, t) = E
[
V (x(t))+

1
2

∫ t

0
|α|2 ds

]
over paths of (CSGD) with x(t) = x. Here α(·) is the optimal control. The interpretation along with (27) gives the desired
result. Note that the second term on the right hand side in Theorem 12 above can also be written as

1
2
E
[∫ t

0

∣∣∇u(xcsgd(s),s)
∣∣2 ds

]
.

6. REGULARIZATION, WIDENING AND SEMI-CONCAVITY

The PDE approaches discussed in Sec. 3 result in a smoother loss function. We exploit the fact that our regularized
loss function is the solution of the viscous HJ equation. This PDE allows us to apply standard semi-concavity estimates
from PDE theory (Evans, 1998; Cannarsa and Sinestrari, 2004) and quantify the amount of smoothing. Note that these
estimates do not depend on the coefficient of viscosity so they apply to the HJ equation as well. Indeed, semi-concavity
estimates apply to solutions of PDEs in a more general setting which includes (viscous-HJ) and (HJ).

We begin with special examples which illustrate the widening of local minima. In particular, we study the limiting case
of the HJ equation, which has the property that local minima are preserved for short times. We then prove semiconcavity
and establish a more sensitive form of semiconcavity using the harmonic mean. Finally, we explore the relationship
between wider robust minima and the local entropy.

6.1. Widening for solutions of the Hamilton-Jacobi PDE. A function f (x) is semi-concave with a constant C if f (x)−
C
2 |x|

2 is concave, refer to Cannarsa and Sinestrari (2004). Semiconcavity is a way of measuring the width of a local
minimum: when a function is semiconcave with constant C, at a local minimum, no eigenvalue of the Hessian can be
larger than C. The semiconcavity estimates below establish that near high curvature local minima widen faster than flat
ones, when we evolve f by (viscous-HJ).

It is illustrating to consider the following example.
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Example 13. Let u(x, t) be the solution of (viscous-HJ) with u(x,0) = c |x|2 /2. Then

u(x, t) =
|x|2

2(t + c−1)
+

β−1n
2

log(t + c−1).

In particular, in the non-viscous case, u(x, t) = |x|2
2(t+c−1)

.

Proof. This follows from taking derivatives:

∇u(x, t) =
x

t + c−1 ,
|∇u|2

2
=

|x|2
2(t + c−1)2 , ∆u(x, t) =

n
t +1

, ut =−
|x|2

2(t + c−1)2 +
β−1n

2
1

t + c−1 .

In the previous example, the semiconcavity constant of u(x, t) is C(t) = 1/(c−1+ t) where c measures the curvature of
the initial data. This shows that for very large c, the improvement is very fast, for example c = 108 leads to C(t = .01)≈
10, etc. In the sequel, we show how this result applies in general for both the viscous and the non-viscous cases. In this
respect, for short times, solutions of (viscous-HJ) and (HJ) widen faster than solutions of the heat equation.

Example 14 (Slower rate for the heat equation). In this example we show that the heat equation can result in a very
slow improvement of the semiconcavity. Let v1(x) be the first eigenfunction of the heat equation, with corresponding
eigenvalue λ1, (for example v1(x) = sin(x)). In many cases λ1 is of order 1. Then, since v(x, t) = exp(−λ1t) v1(x) is a
solution of the heat equation, the seminconcavity constant for v(x, t) is C(t) = c0 exp(−λ1t), where c0 is the constant for
v1(x). For short time, C(t)≈ c0(1−λ1t) which corresponds to a much slower decrease in C(t).

Another illustrative example is to study the widening of convex regions for the non-viscous Hamilton-Jacobi equation
(HJ). As can be seen in Figure 1, solutions of the Hamilton-Jacobi have additional remarkable properties with respect to
local minima. In particular, for small values of t (which depend on the derivatives of the initial function) local minima
are preserved. To motivate these properties, consider the following examples. We begin with the Burgers equation.

Example 15 (Burgers equation in one dimension). There is a well-known connection between Hamilton-Jacobi equations
in one dimension and the Burgers equation (Evans, 1998) which is the prototypical one-dimensional conservation law.
Consider the solution u(x, t) of the non-viscous HJ equation (HJ) with initial value f (x) where x∈R. Let p(x, t)= ux(x, t).
Then p satisfies the Burgers equation

pt =−p px

We can solve Burgers equation using the method of characteristics, for a short time, depending on the regularity of f (x).
Set p(x, t) = ux(x, t). For short time, we can also use the fact that p(x, t) is the fixed point of (16), which leads to

p(x, t) = f ′(x− t p(x, t)) (28)

In particular, the solutions of this equation remain classical until the characteristics intersect, and this time, t∗, is deter-
mined by

t∗ f ′′(x− pt∗)+1 = 0 (29)

which recovers the convexity condition of Lemma 3.

Example 16 (Widening of convex regions in one dimension). In this example, we show that the widening of convex
regions for one dimensional displayed in Figure 1 occurs in general. Let x be a local minimum of the smooth function
f (x), and let 0≤ t < t∗, where the critical t∗ is defined by (29). Define the convexity interval as:

I(x, t) = the widest interval containing x where u(x, t) is convex

Let I(x,0) = [x0, x1], so that f ′′(x)≥ 0 on [x0, x1] and f ′′(x0) = f ′′(x1) = 0. Then I(x, t) contains I(x,0) for 0≤ t ≤ t∗.
Differentiating (28), and the solving for px(x, t) leads to

px = f ′′(x− t p) (1− t px)

⇒ px =
f ′′(x− t p)

1+ t f ′′(x− t p)
.

Since t ≤ t∗, the last equation implies that px has the same sign as f ′′(x− t p). Recall now that x1 is an inflection point
of f (x). Choose x such that x1 = x− t p(x, t), in other words, uxx(x, t) = 0. Note that x > x1, since p(x, t) > 0. Thus the
inflection point moves to the right of x1. Similarly the inflection point x0 moves to the left. So we have established that
the interval is larger.
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Remark 17. In the higher dimensional case, well-known properties of the inf-convolution can be used to establish the
following facts. If f (x) is convex, u(x, t) given by (HL) is also convex; thus, any minimizer of f also minimizes u(x, t).
Moreover, for bounded f (x), using the fact that |y∗(x)− x| = O(

√
t), one can obtain a local version of the same result,

viz., for short times t, a local minimum persists. Similar to the example in Figure 1, local minima in the solution vanish
for longer times.

6.2. Semiconcavity estimates. In this section we establish semiconcavity estimates. These are well known, and are
included for the convenience of the reader.

Lemma 18. Suppose u(x, t) is the solution of (viscous-HJ), and let β−1 ≥ 0. If

Ck = sup
x

uxkxk (x,0) and CLap = sup
x

∆u(x,0),

then

sup
x

uxkxk (x, t)≤
1

C−1
k + t

, and sup
x

∆u(x, t)≤ 1
C−1

Lap + t/n
.

Proof. 1. First consider the nonviscous case β−1 = 0. Define g(x,y)= f (y)+ 1
2t |x− y|2 to be a function of x parametrized

by y. Each g(x,y), considered as a function of x is semi-concave with constant 1/t. Then u(x, t), the solution of (HJ),
which is given by the Hopf-Lax formula (HL) is expressed as the infimum of such functions. Thus u(x, t) is also semi-
concave with the same constant, 1/t.

2. Next, consider the viscous case β−1 > 0. Let w = uxkxk , differentiating (viscous-HJ) twice gives

wt +∇u · ∇w+
n

∑
i=1

u2
xixk

=
β−1

2
∆w. (30)

Using u2
xkxk

= w2, we have

wt +∇u ·∇w− β−1

2
∆w≤−w2.

Note that w(x,0)≤Ck and the function

φ(x, t) =
1

C−1
k + t

is a spatially independent super-solution of the preceding equation with w(x,0) ≤ φ(x,0). By the comparison principle
applied to w and φ , we have

w(x, t) = uxkxk (x, t)≤
1

C−1
k + t

for all x and for all t ≥ 0, which gives the first result. Now set v = ∆u and sum (30) over all k to obtain

vt +∇u ·∇v+
n

∑
i, j=1

u2
xix j

=
β−1

2
∆v

Thus

vt +∇u ·∇v− β−1

2
∆v≤−1

n
v2

by the Cauchy-Schwartz inequality. Now apply the comparison principle to v′(x, t) =
(

C−1
Lap + t/n

)−1
to obtain the

second result.

6.3. Estimates on the Harmonic mean of the spectrum. Our semi-concavity estimates in Sec. 6.2 gave bounds on
supx uxkxk (x, t) and the Laplacian supx ∆u(x, t). In this section, we extend the above estimates to characterize the eigen-
value spectrum more precisely. Our approach is motivated by experimental evidence in Chaudhari et al. (2016, Figure 1)
and Sagun et al. (2016). The authors found that the Hessian of a typical deep network at a local minimum discovered by
SGD has a very large proportion of its eigenvalues that are close to zero. This trend was observed for a variety of neural
network architectures, datasets and dimensionality. For such a Hessian, instead of bounding the largest eigenvalue or the
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trace (which is also the Laplacian), we obtain estimates of the harmonic mean of the eigenvalues. This effectively dis-
counts large eigenvalues and we get an improved estimate of the ones close to zero, that dictate the width of a minimum.
The harmonic mean of a vector x ∈ Rn is

HM(x) =

(
1
n

n

∑
i=1

1
xi

)−1

.

The harmonic mean is more sensitive to small values as seen by

min
i

xi ≤ HM(x) ≤ nmin
i

xi.

which does not hold for the arithmetic mean. To give an example, the eigenspectrum of a typical network (Chaudhari
et al., 2016, Figure 1) has an arithmetic mean of 0.0029 while its harmonic mean is ≈ 10−10 which better reflects the
large proportion of almost-zero eigenvalues.

Lemma 19. If Λ is the vector of eigenvalues of the symmetric positive definite matrix A ∈ Rn×n and D = (a11, . . . ,ann)

is its diagonal vector,

HM(Λ)≤ HM(D).

Proof. Majorization is a partial order on vectors with non-negative components (Marshall et al., 1979, Chap. 3) and for
two vectors x,y ∈ Rn, we say that x is majorized by y and write x� y if x = Sy for some doubly stochastic matrix S. The
diagonal of a symmetric, positive semi-definite matrix is majorized by the vector of its eigenvalues (Schur, 1923). For
any Schur-concave function f (x), if x� y we have

f (y)≤ f (x)

from Marshall et al. (1979, Chap. 9). The harmonic mean is also a Schur-concave function which can be checked using
the Schur-Ostrowski criterion

(xi− x j)

(
∂ HM

∂xi
− ∂ HM

∂x j

)
≤ 0 for all x ∈ Rn

+

and we therefore have

HM(Λ)≤ HM(D).

Lemma 20. If u(x, t) is a solution of (viscous-HJ) and C ∈ Rn is such that supx uxkxk (x, t) ≤Ck for all k ≤ n, then at a
local minimum x∗ of u(x, t),

HM(Λ)≤ 1
t +HM(C)−1

where Λ is the vector of eigenvalues of ∇2u(x∗, t).

Proof. For a local minimum x∗, we have HM(L) ≤ HM(D) from the previous lemma; here D is the diagonal of the
Hessian ∇2u(xmin, t). From Lemma 18 we have

uxkxk (x
∗, t)≤Ck(t) =

1
t +C−1

k

.

The result follows by observing that

HM(C(t)) =
n

∑
n
i=1 Ck(t)−1 =

1
t +HM(C)−1 .

7. ALGORITHMIC DETAILS

In this section, we compare and contrast the various algorithms in this paper and provide implementation details that
are used for the empirical validation are provided in Sec. 8.
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7.1. Discretization of (Entropy-SGD). The time derivative in the equation for y(s) in (Entropy-SGD) is discretized using
the Euler-Maruyama method with time step (learning rate) ηy as

yk+1 = yk−ηy

[
∇ f (yk)+

yk− xk

γ

]
+
√

ηy β−1 ε
k (31)

where εk are zero-mean, unit variance Gaussian random variables.
In practice, we do not have access to the full gradient ∇ f (x) for a deep network and instead, only have the gradient

over a mini-batch ∇ fmb(x) (cf. Sec. 2.2). In this case, there are two potential sources of noise: the coefficient β
−1
mb arising

from the mini-batch gradient, and any amount of extrinsic noise, with coefficient β−1
ex . Combining these two sources

leads to the equation

yk+1 = yk−ηy

[
∇ fmb(y

k)+
yk− xk

γ

]
+

√
ηy β

−1
ex ε

k. (32)

which corresponds to (31) with

β
−1/2 = β

−1/2
mb +β

−1/2
ex

We initialize yk = xk if k/L is an integer. The number of time steps taken for the y variable is set to be L. This corresponds
to ε = 1/L in (17) and to T = 1 in (19). This results in a discretization of the equation for x in (Entropy-SGD) given by

xk+1 =

xk−η γ−1
(

xk−〈y〉k
)

if k/L is an integer,

xk otherwise;
(33)

Since we may be far from the limit ε → 0, T → ∞, instead of using the linear averaging for 〈y〉 in (19), we will use a
forward looking average. Such an averaging gives more weight to the later steps which is beneficial for large values of γ

when the invariant measure ρ∞(y; x) in (19) does not converge quickly. The two algorithms we describe will differ in the
choices of L and β−1

ex and the definition of 〈y〉. For Entropy-SGD, we set L = 20, β−1
ex = 108, and set 〈y〉 to be

〈y〉k+1 = α 〈y〉k +(1−α) yk+1;

〈y〉k is re-initialized to xk if k/L is an integer. The parameter α is used to perform an exponential averaging of the iterates
yk. We set α = 0.75 for experiments in Sec. 8 using Entropy-SGD. This is equivalent to the original implementation
of Chaudhari et al. (2016).

The step-size for the yk dynamics is fixed to ηy = 0.1. It is a common practice to perform step-size annealing while
optimizing deep networks (cf. Sec. 2.5), i.e., we set η = 0.1 and reduce it by a factor of 5 after every 3 epochs (iterations
on the entire dataset).

7.2. Non-viscous Hamilton-Jacobi (HJ). For the other algorithm which we denote as HJ, we set L = 5 and β−1
ex = 0,

and set 〈y〉k = yk in (32) and (33), i.e., no averaging is performed and we simply take the last iterate of the yk updates.

Remark 21. We can also construct an equivalent system of updates for HJ by discretizing (Entropy-SGD-2) and again
setting β−1

ex = 0; this exploits the two different ways of computing the gradient in Lemma 1 and gives

yk+1 =
(

1− γ
−1

ηy

)
yk +ηy ∇ fmb(x

k− yk)

xk+1 =

{
xk−η ∇ fmb(xk− yk) if k/L is an integer,

xk else;

(34)

and we initialize yk = 0 if k/L is an integer.

7.3. Heat equation: We perform the update corresponding to (23)

xk+1 = xk− η

L

[
L

∑
i=1

∇ fmb(x
k + ε

i)

]
(35)

where ε i are Gaussian random variables with zero mean and variance γ I. Note that we have implemented the convolution
in (23) as an average over Gaussian perturbations of the parameters x. We again set L = 20 for our experiments in Sec. 8.
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7.4. Momentum. Momentum is a popular technique for accelerating the convergence of SGD (Nesterov, 1983). We
employ this in our experiments by maintaining an auxiliary variable zk which intuitively corresponds to the velocity of
xk. The xk update in (33) is modified to be

xk+1 = zk−η ∇ fmb(x)(z
k−µ

k)

zk+1 = xk +δ

(
xk− xk−L

)
if k/L is an integer; xk and zk are left unchanged otherwise. The other updates for xk in (34) and (35) are modified
similarly. The momentum parameter δ = 0.9 is fixed for all experiments.

7.5. Tuning γ . Theorem 12 gives a rigorous justification to the technique of ‘scoping” where we set γ to a large value
and reduce it as training progresses, indeed, as Figure 1 shows, a larger γ leads to a smoother loss. Scoping reduces the
smoothing effect and as γ → 0, we have fγ (x)→ f (x). For the updates in Sec. 7.1, 7.2 and 7.3, we update γ every time
k/L is an integer using

γ = γ0 (1− γ1)
k/L;

we pick γ0 ∈ [10−4, 10−1] so as to obtain the best validation error while γ1 is fixed to 10−3 for all experiments. We have
obtained similar results by normalizing γ0 by the dimensionality of x, i.e., if we set γ0 := γ0/n this parameter becomes
insensitive to different datasets and neural networks.

8. EMPIRICAL VALIDATION

FIGURE 2. MNIST

FIGURE 3. CIFAR-10

We now discuss experimental results on deep neural networks that demonstrate that the
PDE methods considered in this article achieve good regularization, aid optimization and lead
to improved classification on modern datasets.

8.1. Setup for deep networks. In machine learning, one typically splits the data into three
sets: (i) the training set D, used to compute the optimization objective (empirical loss f ), (ii)
the validation set, used to tune parameters of the optimization process which are not a part
of the function f , e.g., mini-batch size, step-size, number of iterations etc., and, (iii) a test
set, used to quantify generalization as measured by the empirical loss on previously-unseen
(sequestered) data. However, for the benchmark datasets considered here, it is customary in
the literature to not use a separate test set. Instead, one typically reports test error on the
validation set itself; for the sake of enabling direct comparison of numerical values, we follow
the same practice here.

We use two standard computer vision datasets for the task of image classification in our
experiments. The MNIST dataset (LeCun et al., 1998) contains 70,000 gray-scale images
of size 28× 28, each image portraying a hand-written digit between 0 to 9. This dataset
is split into 60,000 training images and 10,000 images in the validation set. The CIFAR-
10 dataset (Krizhevsky, 2009) contains 60,000 RGB images of size 32× 32 of 10 objects
(aeroplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck). The images are split
as 50,000 training images and 10,000 validation images. Figure 2 and Figure 3 show a few
example images from these datasets.

8.1.1. Pre-processing. We do not perform any pre-processing for the MNIST dataset. For CIFAR-10, we perform a
global contrast normalization (Coates et al., 2010) followed by a ZCA whitening transform (sometimes also called the
“Mahalanobis transformation”) (Krizhevsky, 2009). We use ZCA as opposed to principal component analysis (PCA) for
data whitening because the former preserves visual characteristics of natural images unlike the latter; this is beneficial
for convolutional neural networks. We do not perform any data augmentation, i.e., transformation of input images by
mirror-flips, translations, or other transformations.
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8.1.2. Loss function. We defined the zero-one loss fi(x) for a binary classification problem in Sec. 2.1. For classification
tasks with K classes, it is common practice to construct a network with K distinct outputs. The output y(x; ξ i) is thus
a vector of length K that is further normalized to sum up to 1 using the softmax operation defined in Sec. 8.2. The
cross-entropy loss typically used for optimizing deep networks is defined as:

fi(x) :=−
K

∑
k=1

1{yi=k} logy(x; ξ
i)k.

We use the cross-entropy loss for all our experiments.

8.1.3. Training procedure. We run the following algorithms for each neural network, their algorithmic details are given
in Sec. 7. The ordering below corresponds to the ordering in the figures.

• Entropy-SGD: the algorithm of Chaudhari et al. (2016) described in Sec. 7.1,
• HEAT: smoothing by the heat equation described in Sec. 7.3,
• HJ: updates for the non-viscous Hamilton-Jacobi equation described in Sec. 7.2,
• SGD: stochastic gradient descent given by (7),

All the above algorithms are stochastic in nature; in particular, they sample a mini-batch of images randomly from the
training set at each iteration before computing the gradient. A significant difference between Entropy-SGD and HJ is
that the former adds additional noise, while the latter only uses the intrinsic noise from the mini-batch gradients. We
therefore report and plot the mean and standard deviation across 6 distinct random seeds for each experiment. The mini-
batch size (|it | in (7)) is fixed at 128. An “epoch” is defined to be one pass over the entire dataset, for instance, it consists
of d60,000/128e= 469 iterations of (7) for MNIST with each mini-batch consisting of 128 different images.

We use SGD as a baseline for comparing the performance of the above algorithms in all our experiments.

Remark 22 (Number of gradient evaluations). A deep network evaluates the average gradient over an entire mini-batch
of 128 images in one single back-propagation operation (Rumelhart et al., 1988). We define the number of back-props per
weight update by L. SGD uses one back-prop per update (i.e., L = 1) while we use L = 20 back-props for Entropy-SGD
(cf. Sec. 7.1) and the heat equation (cf. Sec. 7.3) and L = 5 back-props for the non-viscous HJ equation (cf. Sec. 7.2). For
each of the algorithms, we plot the training loss or the validation error against the number of “effective epochs”, i.e., the
number of epochs is multiplied by L which gives us a uniform scale to measure the computational efficiency of various
algorithms. This is a direct measure of the wall-clock time and is agnostic to the underlying hardware and software
implementation.

8.2. MNIST.

8.2.1. Fully-connected network. Consider a “fully-connected” network on MNIST

mnistfc : input784→ drop0.2→ fc1024→ drop0.2︸ ︷︷ ︸
×2

→ fc10→ softmax.

The input layer reshapes each MNIST image as a vector of size 784. The notation fcd denotes a “fully connected” dense
matrix xk in (4) with d output dimensions, followed by the ReLU nonlinearity (cf. Sec. 2.1) and an operation known as
batch normalization (Ioffe and Szegedy, 2015) which whitens the output of each layer by subtracting the mean across a
mini-batch and dividing by the standard deviation. The notation dropp denotes the dropout layer (Srivastava et al., 2014)
which randomly sets a fraction p of the weights to zero at each iteration; this is a popular regularization technique in
deep learning, see Kingma et al. (2015); Achille and Soatto (2016) for a Bayesian perspective. For 10 classes in the
classification problem, we create an output vector of length 10 in the last fc layer followed by softmax which picks the
largest element of this vector, which is interpreted as the output (or “prediction”) by this network. The mnistfc network
has n = 1.86 million parameters.

As Figure 4a and Table 1 show, the final validation error for all algorithms is quite similar. The convergence rate
varies, in particular, Entropy-SGD converges fastest in this case. Note that mnistfc is a small network and the difference
in the performance of the above algorithms, e.g., 1.08 % for Entropy-SGD versus 1.17 % for HJ, is minor.
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8.2.2. LeNet. Our second network for MNIST is a convolutional neural network (CNN) denoted as follows:

LeNet : input28×28 → conv20,5,3→ drop0.25→ conv50,5,2→ drop0.25→ fc500→ drop0.25→ fc10→ softmax.

The notation convc,k,m denotes a 2D convolutional layer with c output channels, each of which is the sum of a channel-
wise convolution operation on the input using a learnable kernel of size k× k. It further adds ReLU nonlinearity, batch
normalization and an operation known as max-pooling which down-samples the image by picking the maximum over a
patch of size m×m. Convolutional networks typically perform much better than fully-connected ones on image classifi-
cation task despite having fewer parameters, LeNet has only n = 131,220 parameters.

20 50 100 150 200
Epochs × L

1.0

1.1

1.2

1.3

1.4

1.5

%
Er

ro
r

1.08%

Entropy-SGD
HEAT
HJ
SGD

(A) mnistfc: Validation error
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(B) LeNet: Validation error

FIGURE 4. mnistfc and LeNet on MNIST (best seen in color)

The results for LeNet are described in Figure 4b and Table 1. This is a convolutional neural network and performs
better than mnistfc on the same dataset. The final validation error is very similar for all algorithms at 0.50 % with the
exception of the heat equation which only reaches 0.59 %. We can also see that the other algorithms converge quickly, in
about half the number of effective epochs as that of mnistfc.

8.3. CIFAR. The CIFAR-10 dataset is more complex than MNIST and fully-connected networks typically perform
poorly. We will hence employ a convolutional network for this dataset. We use the All-CNN-C architecture introduced
by Springenberg et al. (2014) and add batch-normalization:

All-CNN : input3×32×32 → drop0.2→ block96,3→ block192,3→ conv192,3︸ ︷︷ ︸
×2

→ conv10→mean-pool10→ softmax.

where
blockd,3 : convd,3,1→ convd,3,1 → conv∗d,3,1→ drop0.5.

The final convolutional layer in the above block denoted by conv∗ is different from others; while they perform convolution
at every pixel otherwise known as a “stride” of 1 pixel, conv∗ on the other hand uses a stride of 2; this results in the image
being downsampled by a factor of two. Note that convc,k,m with m= 1 does not result in any downsampling. Max-pooling
usually results in a drastic reduction of the image size and by replacing it with a strided convolution, All-CNN achieves
improved performance with much fewer parameters than many other networks on CIFAR-10. The final layer denoted as
mean-pool takes an input of size 10×8×8 and computes the spatial average to obtain an output vector of size 10. This
network has n = 1.67 million parameters.

Figure 5a and 5b show the training loss and validation error for the All-CNN network on the CIFAR-10 dataset. The
Hamilton-Jacobi equation (HJ) obtains a validation error of 7.89 % in 145 epochs and thus performs best among the
algorithms tested here; it also has the lowest training cross-entropy loss of 0.046. Note that both HJ and Entropy-SGD
converge faster than SGD. The heat equation performs again poorly on this dataset and has a much higher validation error
than others (9.04%). This is consistent with our discussion in Sec. 4.4 which suggests that the viscous or non-viscous HJ
equations result in better smoothing than the heat equation.
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FIGURE 5. Training loss and validation error on CIFAR-10 (best seen in color)

Model Entropy-SGD HEAT HJ SGD

mnistfc 1.08±0.02 @ 120 1.13±0.02 @ 200 1.17±0.04 @ 200 1.10±0.01 @ 194

LeNet 0.5±0.01 @ 80 0.59±0.02 @ 75 0.5±0.01 @ 70 0.5±0.02 @ 67

All-CNN 7.96±0.05 @ 160 9.04±0.04 @ 150 7.89±0.07 @ 145 7.94±0.06 @ 195

TABLE 1. Summary of experimental results: Validation error (%) @ Effective epochs

9. DISCUSSION

Our results apply nonlinear PDEs, stochastic optimal control, and stochastic homogenization to the analysis of two
recent and effective algorithms for the optimization of neural networks. Our analysis also contributes to devising improved
algorithms.

We replaced the standard stochastic gradient descent (SGD) algorithm for the function f (x), with SGD on the two
variable function H(x,y;γ) = f (y) + γ−1|x− y|2/2, along with a small parameter ε (Entropy-SGD). Using the new
system, in the limit ε → 0, we can provably, and quantitatively, improve the expected value of the original loss function.
The effectiveness of our algorithm comes from the connection, via homogenization, of system of SDEs to the gradient of
the function u(x, t) which is the solution of the (viscous-HJ) PDE with initial data f (x). The function H is more convex
in y that the original function f . The convexity of H in y is related to the exponentially fast convergence of the dynamics,
a connection explained by the celebrated gradient flow interpretation of Fokker-Planck equation Jordan et al. (1998).
Ergodicity of the dynamics for (Entropy-SGD) makes clear that the local entropy SGD is equivalent to the influential
distributed algorithm, Elastic-SGD Zhang et al. (2015). These insights may lead to improved distributed algorithms,
which are presently of great interest.

On a practical level, the large number of hyper-parameters involved in training deep neural networks is very costly,
in terms of both human effort and computer time. Our analysis lead to better understanding of the parameters involved
in the algorithms, and provides an insight into the choice of hyper-parameters for these methods. In particular (i) the
parameter γ is now understood as the time t, in the PDE (viscous-HJ) (ii) scoping of γ , which was seen as a heuristic,
is now rigorously justified, (iii) we set the extrinsic noise parameter β−1

ex to zero, resulting in a simpler, more effective
algorithm, and (iv) we now understand that below a critical value of γ (which is determined by the requirement that H be
convex in y), the convergence of the dynamics in (Entropy-SGD) to the invariant measure is exponentially fast.

Conceptually, while simulated annealing and related methods work by modulating the level of noise in the dynamics,
our algorithm works by modulating the smoothness of the underlying loss function. Moreover, while most algorithms
used in deep learning derive their motivation from the literature on convex optimization, the algorithms we have presented
here are specialized to non-convex loss functions and have been shown to perform well on these problems both in theory
and in practice.
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Huang, M., Malhamé, R. P., Caines, P. E., et al. (2006). Large population stochastic dynamic games: closed-loop McKean-Vlasov

systems and the Nash certainty equivalence principle. Communications in Information & Systems, 6(3):221–252.
Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift.

arXiv:1502.03167.



22 CHAUDHARI, OBERMAN, OSHER, SOATTO, AND CARLIER

Jordan, R., Kinderlehrer, D., and Otto, F. (1998). The variational formulation of the Fokker–Planck equation. SIAM journal on mathe-
matical analysis, 29(1):1–17.

Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv:1412.6980.
Kingma, D. P., Salimans, T., and Welling, M. (2015). Variational dropout and the local reparameterization trick. In NIPS.
Kramers, H. A. (1940). Brownian motion in a field of force and the diffusion model of chemical reactions. Physica, 7(4):284–304.
Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. Master’s thesis, Computer Science, University of Toronto.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In NIPS.
Kushner, H. (1987). Asymptotic global behavior for stochastic approximation and diffusions with slowly decreasing noise effects: global

minimization via Monte Carlo. SIAM Journal on Applied Mathematics, 47(1):169–185.
Lasry, J.-M. and Lions, P.-L. (2007). Mean field games. Japanese Journal of Mathematics, 2(1):229–260.
LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553):436–444.
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the

IEEE, 86(11):2278–2324.
Li, Q., Tai, C., et al. (2015). Dynamics of stochastic gradient algorithms. arXiv:1511.06251.
Marshall, A. W., Olkin, I., and Arnold, B. C. (1979). Inequalities: theory of majorization and its applications, volume 143. Springer.
Mezard, M., Parisi, G., and Virasoo, M. A. (1987). Spin glass theory and beyond.
Mobahi, H. (2016). Training Recurrent Neural Networks by Diffusion. arXiv:1601.04114.
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