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Abstract— This paper presents a new method to optimally com- 4 ‘
bine motion measurements provided by proprioceptive sensors, Q.
with relative-state estimates inferred from feature-based match- sl S |
ing. Two key challenges arise in suclpose tracking problems: (i) s )
the displacement estimates relate the state of the robot dtwvo "High level"
different time instants, and (ii) the same exteroceptive masure- il / corner features i
ments are often used for computing consecutive displacemen "B
estimates, a process which leads to correlations in the ems. 1 ]

We present a novelStochastic Cloning-Kalman Filtering (SC-KF)
estimation algorithm that successfully addresses these altenges,
while still allowing for efficient calculations of the filter gains
and covariances. The proposed algorithm is not intended to Ll @\
compete with Simultaneous Localization and Mapping (SLAM) - .
approaches. Instead it can be merged with any EKF-based SLAM A

algorithm to increase its precision. In this respect, the SEKF -2r ’ \
provides a robust framework for leveraging additional motion "Low level"
information extracted from dense point features that most 8AM -3t point features
algorithms do not treat as landmarks. Extensive experimental ‘ ‘ ‘ ‘ ‘ ‘ ‘ s
and simulation results are presented to verify the validityof the 2 0 ! 2 3 4 5 6
method and to demonstrate that its performance is superior @ x (m)

that of alternative position tracking approaches.

y (m)

Fig. 1. Example of a planar laser scan and types of featurseraéd. An
Index Terms— Stochastic Cloning, robot localization, relative- algorithm has been employed to detect corners (intersectbline segments)

pose measurements, displacement estimates, state augnaion in a laser scan. The extracted corner features can be useokeffarming
’ ’ " SLAM, while all the remaining, “low-level”, feature pointgan be utilized

in the SC-KF framework to improve the pose tracking accuracy
I. INTRODUCTION

Accurate localization is a prerequisite for a robot to meamatching of sonar returns [5]. The inferreelative-state
ingfully interact with its environment.The most commonly measurements that are derived from these measurements can
available sensors for acquiring localization informatiare pe integrated over time to provide pose estimates [3], or
proprioceptivesensors, such as wheel encoders, gyroscopgsmbined with proprioceptive sensory input in order to higne
and accelerometers, that provide information about theti®b from both available sources of positioning information, [9]
motion. In Dead Reckoning (DR) [1],a robot's pose can bg o). This paper focuses on how to optimally implement the
tracked from a starting point by integrating proprioceptiviatter approach using an Extended Kalman Filter (EKF) [11].
measurements over timdhe limitation of DR is, however, This paper does not consider the case in which the feature
that since no external reference signals are employed fgeasurements are used for SLAM. However, as discussed in
correction, estimation errors accumulate over time, arel thection VI, our approach is complementary to SLAM, and can
pose estimates drift from their real values. In order to iovpr pe employed to increase its accuracy (cf. Fig. 1).
localizaton accuracy most algorithms fuse the proprioceptive Ty challenges arise when fusing relative-poseeasure-
measurements with data froexteroceptivesensors, such aSments with proprioceptive measurementsthin an EKF.
cameras [2], [3], laser range finders [4] sonars [5], etc.  Firstly, each displacement measurement relates the mobot’

When an exteroceptive sensor provides information aboyhte at twodifferent time instants (i.e., the current time
the position of features with respect to the robot at twoethff ang previous time when exteroceptive measurements were
ent time instants, it is possible (under necessary obsityab recorded). However, the basic theory underlying the EKF
assumptions) to create @mferred measurement of the robot'srequires that the measurements used for the state update be
displacementExamples of algorithms that use exteroceptivigdependenof any previous filter statesThus, the “standard”
data to infer motion include laser scan matching [4], [6formulation of the EKF, in which the filter's state comprises

[7], vision-based motion estimation techniques usingester only the currentstate of the robot, is clearly not adequate for
scopic [2], [3], and monocular [8] image sequences, and
IThroughout this paper, the terms “displacement measurgmand
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treating relative-state measurements. significant errors when the rate of the displacement mea-
A second challenge arises from the fact that when extedrements is low. A different solution, proposed in [10], is
roceptive measurements are used to infer displacemert, canuse the previous robot position estimates for converting
secutive relative-state measurements will oftercbeelated the relative pose measurementsatosolute position pseudo-
To understand the source of such correlations, consider, foeasurement$lowever, since these pseudo-absolute measure-
example, the scenario in which a camera is employed neents are correlated with the state, their covariance ratri
measure the pixel coordinates of the projections of the saim&s to be artificially inflated to guarantee consistencys thu
landmarks at time-steps — 1, k£ and k£ + 1. The errors resulting in suboptimal estimation (cf. Section VII-A).

in the measurements at time stépaffect the displacement Contraryto the precedingad-hoc methodsfor processing
estimates for both time intervalé: — 1,%] and [k,k + 1], displacement measurements, severdsting approachesm-
thereby rendering them correlatétbwever, assuming that thep|oy these measurements mmvideconstraints between con-
measurements are uncorrelated (as is customarily dongI2], secutive robot poses. Algorithms thatly use displacement
[10]), violates a basic assumption of EKF theory, leading i@easurements for propagating the robot's state estimate ar
sub-optimal or incorrect estimates for the robot's statd agften described as sensor-based odometry methods [2]n[4].
covariance. This fact has been generally overlooked in thghese algorithms, only the last two robot poses (the current
literature, and to the best of our knowledge, no prior worknd previous one) are ever considered. While our stochastic
exists that directly addresses this issue. cloning approach (which was first introduced in [9]) also
In this paper we propose a direct approach to the proble@lies only upon the last two robot poses, tracking is acdev
of combining relative-pose measurements with propriaeept by optimally fusingthe displacement measurements with pro-
measurements order to improve the accuracy of DR. Ourprioceptive information. Therefore, our method can be seen
methodologyaugmentshe state vector of the Kalman filter inan “enhanced” form of odometryOn the other hand, several
order to address the two aforementioned challenges. Iitpargxisting approaches maintain a state vector comprised of a
ular, to properly account for the dependencies of the rsbohijstoryof robot poses, and use the displacement measurements
state estimates at different time instants, we augmentftée {o impose constraints between pairs of these poseg14],
Kalman filter state to include two instances (otdnes) of the  the robot’s orientation errors are assumed to be temporally
state estimate—hence the nar@eochastic Cloning Kalman yncorrelated, which transforms the problem of optimizing t
Filter (SC-KF)[9]. Moreover, in order to appropriately treathetwork of robot poses into a linear one, where only the robot
the correlations between consecutive displacement estshapositions are estimated. In [15]-[17] the full 3D robot pase
we further augment the state to include the most recef autonomous underwater vehicle is estimated, while in [7]
exteroceptive measuremer[lIQ]. As described in Section I, [18] displacement constraints are employed for estimatieg
with these state augmentations the displacement measot®mgose history of a robot in 2D.
can be expressed as functions of tharent filter state and All of the approaches discussed so far do not properly

thus an EKF framework can be employed. account for the correlations that exist between consezutiv
The following section reviews existing approaches for pr%ﬁsplaeement estimates, as they are assumeditalbpendent

cessing relative-state measurements, while Section W dg,ever as shown in Section lI-A. this assumption does
scribes our new approach. Section IV develops the profEyath ot generally hold. One could avoid such correlations by

of the state covariance in the important special case wirdye using each feature measurement in the computationnef

cﬁsplacement measurements are used for localizatiBec- displacement estimate [15]For example, half the measure-
tion V presents extensions of the SC-KF methodology, Whil&ens at each time step can be used to estimate the previous
Section VI describes its relation to SLAM. In Section VIIjst displacement, and the other half to estimate the next one. Th
shown that 'ghe_ attained position _tracking accuracy is sqperdrawback of this methodology is thixtcorporatingonly part
to that of existing approaches. Finally, the conclusiontief ot ie available exteroceptive measurements when conputin
work are presented in Section VIIl. each relative pose estimate results in less accurate déspla
ment estimates. In our worlgll available measurements are
Il. RELATED APPROACHES used to compute the relative-pose measurements at evesry tim

Displacement measurements can be treateavasage ve- Step, and the correlations that are introduced by this smce
locity measurementduring the corresponding time-interval.are explicitly identified and accounted for.
Theseaverage velocities can then be combined with velocity Solutions to the well-known Simultaneous Localization and
measurements obtained from the robot’s proprioceptive séviapping (SLAM) problem (cf. Section VI). “circumvent”
sors to improve their accuracy. However, this approach tise problem of treating the displacement measurements by
only applicable if the relative-state measurements areemadcluding thefeatures’positions in the state vector, and jointly
at a rate equal or higher to that of the proprioceptive sensoestimating the robot’'s and features’ state. While SLAM rffe
which is rarely the case in practice. Alternatively, theatd high localization accuracy, the computational complexsy
velocity estimate could be included in the state vector,thed sociated with the estimation of the positions of a large nemb
average velocity estimates could then be used as instantanef features results may be prohibitive for some real time
velocity pseudo-measurements in the EKF update step [18pplications (e.g., autonomous aircraft landing)hus there
The shortcoming of this method is that treating @aerage exists a need for methods that enaiieect processing of the
velocity measurement as amstantaneou®ne can introduce displacement measurements, at a lower computational cost.



In this paper, we propose an algorithm for optimally fusing Generally,not all feature measurements in the vectgr
the potentially correlated relative displacement estamatith are used to estimate displacement. For example, in lasar sca
proprioceptive measurements. this algorithm, the extero- matching there usually exists only partial overlap betweamn
ceptive measurements are consideregairs of consecutive secutive scans and therefore not all laser returns are sthtch
measurements, that are first processed in order to creAgea resultjf M/, denoteghe number of feature measurements
an inferredrelative-posemeasurement, and then fused withn > = { r ,,ngk , the ith component of thelacobian

Zk1 .
the proprioceptive measurements. The sole objective of : k Thtm ;
algofithr[; is top estimate the robot's state, and tJherefore trﬁ%%trlces.]k/ kam NGy, will take the form
states of features that are employed for deriving the digpla ith feature used
ment measurements are not estimatedence the proposed 'CJt ) _ Ve Ck/ktms o compute Zg/k4m 3)
algorithmcanoptimally fuse relative-pose measurements with”*/%+m/;
the minimum computational overhead (Section IlI-F). The-pr 0, else
posed method can be used either as a stand-alone localizafy ; = 1...M, andt {k,k + m}. Thus for some
algorithm, orcombinedwith SLAM in order to increase its applications, the Jacobiamsay be significantly sparse.
localization accuracy (cf. Section VI). Our goal is to compute the correlation between the dis-

placement estimates for the time intervdls — ¢, k] and
[k, k + m], which is defined as2{z; 1z, }. For this
purpose we employ (2), and the independence of exteroeeptiv
measurement errors at different time-steps, to obtain:

E{zkfé/kzjkr/mm} = Jlité/kE{gkzg}']I]:/lerm

Before presenting the Stochastic Cloning Kalman Filter _ gk R.JF T )
(SC-KF), we first study the structure of theorrelations k—4/k"kk/ktm
betweerconsecutive displacement estimates. eandz,.,, Note that exteroceptive measurements typically consisa of
denote the vectors of exteroceptive measurements at teps-srelatively small number of features detected in the robot’s
k andk + m, respectively, whose covariance matrices Bfe vicinity (e.g., distance and bearing to points on a wall,
and Ry..,. These are measurements, for example, of range the image coordinates of visual features). In such cases,
and bearing from a laser range finder, or of bearing fromthe measurements of the individual features are mutually
camera. By processing these measurements (&adaser scan independentand therefore the covariance matiiy, is block
matching), an estimatey, /., for the change in the robot diagonallin light of (3), whenZR;, is block diagonal, expression
pose between time-stepsandk+m is computed as a function (4) is if different featuresare used to estimate displacement
(either closed-form or implicit) ot and zj,: in consecutive time intervals (i.e., if non-overlappindsets
of z, are matched withz,_, and z,.,,, respectively).
Clearly, this isnot the case in general, and thus consecutive
The linearization of (1) relates error in the displacemesiit e displacement estimates are in most casesindependent.
mate, zy /. +m, 10 errors in the exteroceptive measureménts:

IIl. FILTERING WITH CORRELATED RELATIVE-STATE
MEASUREMENTS

A. Relative-pose Measurement Correlations

Zkjktm = Ek/ktm (Zks Zhtm) (1)

B. EKF Formulation

where the noise term arises from inaccuracies in the We now describe the formulation @in Extended Kalman
k/ktm filter (EKF) estimator thatan fuseproprioceptive and relative-

displacement estimation algorithm (e.g., errors due ttufea ose measurements. while oroerlv accounting for the €orre
matching [6]). We assume that the exteroceptive measuremgn ' properly 9

- ~ . ations in the latter.
errors, 2, and zj.,»,, and the noise termy,, ;.. ,,, are zero-

mean and independent, an assumption which holds in mOSEl'o reiterate the challenge posed in Section I, displacement

. ! o measurements relatevo robot states, and therefore tjant
practical cases if proper sensor characterization is padd.

In (2), J],: . and J];:J;m are the Jacobians of the functioerdf of these states must be available in the f||tgr. For this
o/ Rtm /k+m . . reason, weaugmentthe EKF (error) state vectdtto include
&k /k+m With respect toz, and zy .., respectively, i.e.,

two copies of the robot’s error state (cloning) [9]. The first

TEm = Valippem and  JEEM =V &, COpy of the error vector, X, represents the pose error at
the instant whenthe latest exteroceptive measurement was

recorded, while the second cop¥y.;, represents the error

in the robot’s current state. In the propagation phase of

The indices in the vector zI =| the filter, only the current (evolving) state is propagated,

[ 21{1 ,.,Z;{MJ are bizzare. It should really| Whilethe previous state remains.unchanged. Consequtmily,

be something Iike =7 = [ (z)T ... (ZkM)T] robot states rela_te_d b_y each_ displacement estimate are both
represented explicitly in the filter state.

zk/k+m =~ J]I:/k_,_»mﬂzvk + J:;;imﬂzkarm + Nk /k+m (2)

%

2The “hat” symbol;”, is used to denote the estimated value of a quantity, 3Since the extended form of the Kalman filter is employed fdinestion,
while the “tilde” symbol,™ , is used to signify the error between the actuathe state vector comprises tleerors in the estimated quantities, rather than
value of a quantity and its estimate. The relationship betwa variablex, the estimates. Therefore, cloning has to be applied to Wwthetror states,
its estimatez, and the erroi, isz =z — 7. and the state estimates.



To correctly account for the correlations between conseds- the cross-correlation between the robot’'s state and the
tive relative-state measurements, the state vector isiaddily measurement error &t (a closed-form expression fdfx, .,
augmented to include thmeasurement erroref the latest is derived in Section IlI-E).Between two consecutive updates,
exteroceptive measurement [12]. Thus, if the most recgmbprioceptive measurements are employed to propagate the
exteroceptive measurement was recordedatthe filter’'s filter's state and its covarianc&he robot's state estimate is
error-state vector aty; is: propagated in time by the, generally non-linear, equation:

o ~ ~ T = B ~
o o [, 5 Zlﬂ (5) Ketre = F(Xuyr, vr) ©)
wherev;, denotes the proprioceptive (e.g., linear and rotational
%/elocity) measurement dt.. Linearization of (9) yields the

error-propagation equation for the (evolving) second copy
the robot state:

where the subscrigfj denotes the value of a quantity at tim
stept, after exteroceptive measurements up to time-gtemd
proprioceptive measurements up to time-stepl, have been
processed. By including the measurement error irsjlgéem’s N B
state vectagrthe dependency of the relative-state measurement Xipie =~ FpXpp + Grig (20)
2K+ ON the exteroceptive measurementis transformed ) ~ )

into a dependency on theurrent state of the filterand the Where Fi and Gy, are the Jacobians of (Xjiq, vx) With
problem can now be treated in the standard EKF framewofRSpect to.X;,, and vy, respectively. Since the cloned state,
It should be noted that since the measurement error is thg|,, as well as the estimates for the measurement ejror
source of the correlation between the current and previod@ not change with the integration of a new proprioceptive
displacement estimates, it is the “minimum-length” ve¢tat Measurement (i.e.X; ,, = X;,), the error propagation
must be appended to the state vector in order to incorpdrate €quation for the augmented state vector is:

existing dependencies. Thus, as explained in Section, litiE X X S~
. - : = + Givg 11
approach yields the minimal computional overhead needed to k11K W hlk ok (11)
account for these correlation. I 0 O 0
with F, = |0 F, O and G = |G (12)
C. Filter Initialization 0 0 I 0
Consider the case where the first exteroceptive measurefhus the covariance matrix of the propagated filter state is:
ment, zo, is taken at timet, = 0 and let the robot's - s s =7 A “T
corresponding state estimate and covariance be denotedpwl‘k = FiPoeFy + GrQiGy, .
Xojo and Py, respectively. The initial error-state vector for Pyjk P:’F‘ka . Px, =,
the SC-KF contains the robot state and its clone, as well as = kam FkPk|kF% + Gj@Qka FyPx, ., | (13)
the errors of the exteroceptive measurements at time (step Py, 2 Py Fe Ry,
(ct. (3)): whereQ = E{v,0] } is the covariance of the proprioceptive
~ ~ T
Xojo [ olo 0jo 0 ©) By straightforward calculation, if» propagation steps occur

The superscript in (6) refers to the static copy of the statepetweeg two consecutive relative-state updatke,covariance

which will remain unchanged during propagation. matrix Py | is determined as
Cloning of the robot state creates two identical random p P FT p
variables that convethe same information, and are thiudly - klk kIES ot [k Xz
correlated. Moreover, since the exteroceptive measureaten’ +mlk = f“"g/kp’f““ TP’”’" k Fretm 1Pz
to IS not usedto estimate the initial robot state, the latter is Pxyz Pszk]:Hm/k Ry,
independent of the errag. Thus, thenitial covariance matrix (14)
of the SC-KF state vectdras the form: where F /i = H?:ol Fyyi, and Py, i is the propagated
y Poo Poo 0 covariance of the robot state at.,,. The form of (14)
Poo = |FPojo FPoo 0] . (7) shows that the covariance matrix of the filter can be be
0 0 Ro propagated with minimal computatiom an implementation
where efficiency is of utmost importance, the prodegt ,,, .
D. State Propagation can be accumulated, and the matrix multiplications necgssa

to computeﬁk+m|k can be delayed and carried out only when

During normal operation, the filter's state covariance matr : i
a new exteroceptiveneasurement is processed.

immediately after the relative-state measurement,/;, =
$u—e/k (212, 2x) has been processed, takes the form:

y Por  Pur Pxyz,
Py = Prr  Pur Pxyz
T T
PXIcZk PXIcZk Ry,

E. State Update

®) We next consider the state update step of the SC-KF filter.
Assume that a new exteroceptive measuremept,,, is
recorded atty,,, and along withz; it is used to produce

where Py, is the covariance ahe robotstate at;., Ry is the a relative-state measurementy i m = $k/krm (ks Zhtm)s

covariance matrix of the errof;, and Px, ., = E{f(ké’kf} relating robot poseX’;, and X ,. Note thatz;, /4,4, maynot



fully determine all the degrees of freedom of the pose chanfigorithm 1 Stochastic Cloning Kalman filter

betweent; andt,..,. For example, the scale is unobservablkitialization : When the first exteroceptive measurement is
when using a single camera to estimate displacement végeived:

point-feature correspondances [8]Thus, the relative-state o clone the state estimatﬁo‘o

measurement is equal to a nonlinear function of the robatos . initialize the filter state covariance matrix using (7)

at t,, andty.,,, with the addition of error:

Zisherm = M Xk, Xktm) + Zr/kgm - (15) Propagation: For each proprioceptive measurement:
The expected value ofy ., is computedfrom the state ~ « propagate the evolving copy of the robot state (9)
estimates at; andt,,, as » propagate the filter covariance using (13), or equivalently
_ s o (14)
Zkkrm = P( Xk Xktmir) (16)

and therefore, based on (2), the innovation is given by: Update: For each exteroceptive measurement:
compute the relative-state measurement using (1), and

m = m — 2k /ktm 17 * _ ) .
Thtm = Zk/ktm = Zk/k+ N (17) its Jacobians with respect to the current and previous
) Xk exteroceptive measurement, using (3).
= [Hk Hiym Jk/k+m] KXt mlk o update the current robot state using equations (16),
2, (17), (19), (21), and (22)
L [kem I Zotm « update the robot_ state covariance matrix using (_23)
k/k+m oy o remove the previous robot state and exteroceptive mea-
9 5 = y surement
= HirmXpymlk + EktmWhktm (18)

o create a cloned copy of the current robot state
whereHy, and Hy,,, are the Jacobians &f( X, Xx.,,) with o compute the covariance of the new augmented state
respect toX, and Xy, respectively. vector (cf. (24)) using (26) and (27)

Equation (18) demonstrates that if previous exteroceptive
measurement errorsy, are incorporated irthe state vector, . ~ _
the innovation of each measurement can be expressed as'feClone of the previous state errdfy;, and the previous
sum of an error term dependent on the augmented state gh%asurementerrork, are discarded. The robpt’s current state,
a noise term that is independent of the state &mdporally -‘k+m|k+m, IS cloned, and the exteroceptive measurement
uncorrelated Thus, using this approach the Kalman filtef™0rS:Zk+m, aré appended to the new filter stat@hus, the
equations can now be applied to the augmented systemfitigr €rror-state vector becomes
update the state. The residual covariance is equal to

S = Hictom Posomii Hibs + TR0 o Brm IR T + R

~ T
\ _ T T T
Xk-i—m\k-l—m - [Xk+m|k+m Xker\ker Zktm (24)

nk(/fégl To compute the new filter covariance matr, .k rm.,
the correlation between the robot's error-state estimate,

whereR,,, ., is the covariance of the noise e/, ym. X, ..k, and the measurement error vectdy,.,,, must

The Kalman gain is computed as: be determined. From (22) we obtain:
o o o o T ~ ~
K = Pk+m\ng+mS t= [Klz Klz-l—m Kg;} (20) Xk+m|k+m = Xk-i—m\k - Kker?"ker . (25)

We note that although the measuremenpt,, can be used Substitution from (18) yields:

to update the estimatesf the robot’s pose at; and for the ~ o

measurement errof;,, our goal is to update only the current PXpymzrim = E{)fk+m|k+mzk+m}

robot state at,, and its covariance. Therefore, only the = E{Xk+m|k2’,f+m} — Kiotm E{rhsmZim }

corresponding block elemea; ., ,,, of the Kalman gain matrix = — KpsmE{raemaL, )
need be computed. It's formula is: ktm m
K F Py HI + P HT = ~Khtm Ty tm (26)
m — m + m m .. . ~
ki ( Fpm/kS k= k+k f ’”u . where the statistical independence of the edpr,, to the
+ Fk-}-m/kPszka/ker) 57" . (21) errors in the propagated sta, ,,, has been employed in

this derivation. Based on this result, the covariance matri
of the augmented state at.,,, after the update has been
performed, can be expressed as:

Using this result, the equations for updating twrentrobot
state and covariance are:

Xker\ker = Xker‘k + Kk-{—m'fk—i—m (22) Pk+m|k+m Pk+m|k+m PXk+mZk:+m,
Pk+m|k+m = Pk-i—m\k - Kk+mSKlz+m . (23) Pk-i—m\k-i—m = P§+m|k+m P§+m|k+m PXk+mZk:+m, (27)
. . P P
The state update process is completed by computing the Kitmzigm  * Xpm Zktm Rietm

augmented covariance matrix, which is required to prodess For clarity, the steps of the SC-KF algorithm are outlined in
next relative-state measurement. Aftgr; ., is processed, Algorithm 1.



F. Computational Complexity pose attyy; is realized by combining the previous pose

While our proposed state augmentation approach does ¢@ttimate and the displacement measurement:
rect fo_r the correlatlons that haye been neglected in posvio X1 = 9(Xns 2kmr1) - (28)
work, its use imposes a cost in terms of computation and
memory requirements. We now show that these algorithni&y linearizing this equation, the pose errors fat.; can
requirements arénear in the number of features observed ape related to theerrors in the previous state estimate and
a single time-step. displacement measurement:

If N and M respectively denote the dimensions of the - - - ~
robot’s stateand he size of theneasurement vectaat ¢, Xt = PpXp+ TeZe/kp (29)
then the covariance matrii’k+m/k has size(2N + Mj) x where®; andI'; represent the Jacobians of the state prop-
(2N + My). If My, > N, the overhead of state augmentatioagation functiong(Xy, zj/x41), With respect to the previous
is mostly due to the inclusion of the measurements in the filtpose and the relative pose measurement, respectively:
state vector, which leads to a correct treatment of the teahpo
correlations in the relative-pose measurements. If these< Qr=Vg,9. Lw=Vz,..9. (30)
lations are ignored, the size of the filter state vector isévthe The covariance matrix of the pose estimates is propagated by
size of the robot’s state vector. In this case, the compriati s o7
complexity and memory requirements aN?). In the Prp1 = B{Xp 11 Xj 41}

algorithm proposed in this paper, the most computationally = &, P, ®7 +F;€Rk/k+11“f
expensive operation, fodM; > N, is the evaluation of the + @kE{)N(ki}f/kH}F;f +FkE{5k/k+1)~(£}<I’f (31)

covariance of the residual (cf. (19)). The covariance mratri
I5k+m‘k is of dimensions(2N + My,) x (2N + My), and where Ry /., denotes thecovariance ofthe displacement
thus the computational complexity of obtainiSgis generally €stimates, a quantity which is computedrbgnydisplacement
O((2N + My)?) ~ O(N? + M?). However, as explained estimation algorithms. A common simplifying assumption in
in Section IlI-A, the measurement noise covariance matricthe literature (e.g., [2], [7]) is that the measurement @pis
Ry, and Ry, are commonly block diagonal. By exploitingzx/x+1, @nd state errocX;, are uncorrelated, and thus the last
the structure 0ka+m|kv the computational complexity of two terms in (31) are set to zero. However, this assumption
evaluating (19) reduces ©0(N? + M;). Moreover, when the doesnotgenerally hold when correlations exist between con-
matricesR), and Ry, are block diagonal, the covariance masecutive displacement estimatés particular, by linearizing
trix Pj1,. . iS sparse, which reduces the storage requiremeifi€ state propagation equationsat we obtain (cf. (29)):
of the algorithm toO(N?2 + M;,) as well. T

For a number of applications, it it necessary to maintain E{Zk/kJrle} E{Zk/kJrl ((I)k 1 X1+ D12 l/k) }
a clone of the entire robot state and its covarianc&ose ~ - - ~ o .
inspection of the filter update equations reveals that amdy t = E{Zk/h1 X1} Ppo + E{Zk/kﬂzkfl/k}rkfl
states thatirectly affectthe relative-state measurement (i.e., = E{Zum +1%Jl{—1 /k}F;{q . (32)
those that are needed to compute the expected relatiee-stat
measurement ;. ., and its Jacob|a|ﬂk+m) are required for Note thatthe error termX,_1 depends on the measurement
the update step. Themainingstates and their covarianoeed errors of all exteroceptive measurements up to and incgudin
not be cloned, thus further reducing the memory and computéne-stepk — 1, while the error terny;, ;... depends on the
tional requirementd=or example, when measurements from afieasurement errors at time-stepandk + 1 (cf. (2)). As a
inertial measurement unit (IMU) are employed for localiaat  result, the errors(;,_; andz;, /., areindependent. Therefore,
estimates for the bias of the IMU measurements are oftéi applying the zero-mean assumption for the ey,
included in the state vector [19]. These bias estimatesigleawe obtainE{z, ;1 X"} = 0. Employing the result of (4)
do not appear in (16), and therefore it is not necessary aod substituting from (32) in (31), we obtaihe following
maintain their clones in the filter. expression for the propagation of the pose covariance in the

case ofinferred displacement measurements:

_ T T
DISPLACEMENT ESTIMATES Peyr = @pbp®p + Dp Ry L'y

k T
The preceding section presented the SC-KF algorithm in o Qeleadiy By /k+1F
the general case when both relative-state measurements and + Tedfp Ridb L T ®F (33)
proprioceptive measurements are available for fusion.dnyn

IV. STATE PROPAGATION BASED EXCLUSIVELY ON

The experimental results presented in Section VII-B demon-

cases, however, no reliable proprioceptive informatioavi- strate thatovariance estimates based on (33) more accuratel
able and displacement measurememitéy must be used to . . ) y
represent the uncertainty in the robot’s posecaspared to

propagate the estimate of the robot’s pose(e.g., [2], [H)s : . !
section adapts the analysis of Section IlI-A to these casg%? case where the correlation terms in (31) are ignored.

while still properly accounting for the correlations beeme
consecutive displacement estimates.

Once the displacement estimate between time-steasd
k+ 1 has been computed (cf. (1pn estimate for the robot’s



V. EXTENSIONS Let Yy, be the position of a static feature, which is observed

from L. > 2 consecutive robgboses Xy, Xx i1, ..., Xkrrn 1.

The measurement functiohy,, corresponding to these mea-
In order to simplify the presentation in Section lll, it wassurements is

assumed that only proprioceptive and relative-pose measur 5 £ )

ments aravailable However, this assumption is not necessary, “k+i — hyy (Xhyis Yy,) + 37, for i=0...L—1 (35)

as additional measurements can be processed istéamelard

EKF methodology [20]. For example, let

A. Treatment of Additional Measurements

wherenf" is the measurement noisétacking thesd. equa-
tions results in a block measurement equation of the form:

Zhge = ((Xnge) + npge

be an exteroceptive measurement received at time#steg. z5, = hy (Xi, Xpq1,. .., Xpyr-1,Yy,) +ny, . (36)

By linearizing, we obtain the measurement error equation: Eliminating the feature positiorl/;, from (36) yields a con-

Zhee = H1/<+e)?k+ak In straint vector that involves all of the robot poses:

Xk‘k ij(Xk,Xk+1,...,Xk+L_1,ij,nfj):Oq (37)
[0 Hiye O] | Xpsos| +n (39
2k

whereq is the dimension of the constraint vectoy,. If the
EKF state vectohas been augmented to include theopies
Since this expression adheres to the standard EKF model, ¢fiche robot posethe above equation can be usedperform
augmented filter state can be updated without any modifiGga EKF update, thus utilizingll the geometric information
tions to the algorithm. However, if additional measurersenprovided by the observations of this feature. Furthermore,
are processed, the compact expressions of (14) and (21) ire\f, features are observed fromh robot poses, then a
no longer valid, as update steps occur between consecutiedstraint vectorcy,, j = 1...M;, can be written for
displacement estimates. In this case, (13) and (20) shalddach of these features. Since the feature measurements are
used during the propagation and update steps. mutually uncorrelated, the resulting constraints willoalse
Another practically important case occurs when more thamcorrelated, and therefore, an EKF update that utilizés al
one sensor provides relative-pose measurements, bufiet difAf;, constraints can be performed @ M) time. The details
ent update rates. Such a situation would arise, for exampdé this extension are given in [21].
when a mobile robot is equipped with a camera and a laser
range finder. In such a scenario, the state-augmentation ap-
proach of the SC-KIstill applies In particular, every timei-
ther of the sensors records a measurement, cloning is appliedAn alternative approach to processing the feature mea-
Therefore, at any given time the filter state vector is cosgati surements obtained with an exteroceptive sensor jsituly
of i) three instances of the robot state, corresponding ¢o thstimatethe robot’s pose and theature positionsThis is the
current state, and the state at the last time instants wherell-known SLAM problem, which has been jwbextensively
each sensor received a measurement, and ii) the errors inshalied (e.g., [22]-[25])This section examinethe relation of
latest exteroceptive measurement of each sensor. Althtiigghthe SC-KF algorithm to SLAM.
propagation and update equationsstbe modified to account 1) Computational complexity:If an exact solution to
for the change in dimension of the statector, thebasic SLAM was possible, the resulting pose estimates would
principles of the approach still apply. be optimal, sinceall positioning information and all inter-
dependencies between the robot and the features would be
incorporated. Howevegood localization performance comes
at a considerable computational cost. It is well known that
In the basic SC-KF algorithm presented in Section lll,the computational complexity and memory requirements of
feature measuremendse processed to construdisplacement the EKF solution to SLAM increase quadratically with the
estimateswhich subsequently defirmnstraintsbetween con- number of features [22]. While several approximate sohgio
secutive robot poses. By including two robot poses in thexist that possess lower computational complexity (e2g],[
filter state vector, the SC-KEanoptimally process successive[25], [26]), many of them cannot guarantee the consistetficy o
exteroceptive measurements, while incurringomputational the estimates, nor is there a concrete measure of subojtyimal
cost linear in the number of observed featutdéswever, when  Since the high computational burden of SLAM is due
a static feature is observed more than two times, the basic S€ the need to maintain a map of the environment, the
KF must be modifiedIntuitively, the observation of a staticamount of computational resources allocated for locatimat
feature from multiple robot poses should imposgemmetric constantly increasegas the robot navigates in an unknown
constraint involving these measurements amdl of the environment. For continual operation over an extended pe-
corresponding poses. We now briefly describe an extensiorritad, this overhead can become unacceptably large. Even
the basic SC-KF approach that correctly incorporates multipie an approximate SLAM algorithm, the largest portion of
observations of a single point feature while still maintagn the computational resources is devoted to maintaining the
computational complexitylinear in the number of locally constantly expanding feature maplowever, there exist a
observed features. number of applicationwhere building a map isot necessary,

VI. RELATION TO SLAM

B. Extension to Multiple States



while real-time performance is of utmost importance (e.g sk
in autonomous aircraft landing [27], or emergency resppnse¢
Such applications require high localization accuracy, Vit
minimal computational overhead. s
Our proposed solution relies on employipgirs of con- “10f
secutive exteroceptive measurements in order to prodisse ¢
placement estimates, which are then fused with proprideept _
sensing informationAs shown in Section IlI-F,our algo- E K
rithm’s complexity is linear in the number of features obhser a5k
only at each time-stedn most cases this number is orders
of magnitude smallethan the number of features in the
environment. Areduced complexity SLAM approach that is  -3sf
similar in spirit to the SC-KF would consist of maintaining  _,|
only the most recently acquirddcal featuresi.e., those that —
are currently visible by the robot, in the state vector. Hasve ‘ ‘ ‘ ‘ ‘ ‘ ‘

—— SC-KF
— = SC-KF-NC
—  Pseudo-absolute updates
-©- Odometry

the algorithmic complexity of such an EKF-SLAM would be -1 0 1o 2 % “0 %
quadraticin the number of local featureB contrast, the SC- X (m)
KF is linear in the number of local features. Fig. 2. The estimated trajectory of the robot using the SCafgorithm

2) Feature position observabilitySLAM algorithms also (solid line), the SC-KF-NC algorithm (dashed line), the huet of [10] that

require the states of the local features to be completelgrubs Uses absolute position pseudo-measurements (dash-toéfcand odometry

. . . . only (solid line with circles).
able, in order to be included in the state vector. Whesingle
measurement does not provide sufficient information to ini-
tialize a feature’s position estimate with bounded uneetya by this approach will be inferior to thaof SLAM, as no
feature initialization schemesustbe implemented [28], [29] loop closingoccurs. The rate of uncertainty increase, though,
In fact, state augmentation is an integral partrafny methods s significantly lowerthan that attained when only proprio-
for delayed feature initialization [30], [31]. In contrast the ceptive measurements are used (cf. Section VII). However,
SC-KF framework feature initialization is not required sinceas mentioned in Section llI-F, in the SC-KF approach the
the feature measuremensse included in the augmented statgtate vectorX, is not required to contain only the robot’s
vector, instead of théeature positions pose. If high-level, stable featur¢gandmarks) are availahle

3) Data association: Since only pairs of exteroceptive their positions can be included in the “robot” state vector
measurements are used by the SC-KF algorjtihe data asso- X;. Therefore, the SC-KF method for processing relative-
ciation problem is simplifiedBecause SLAM requires a corre-state measurements can be expanded and integrated with the
spondence search ovelt map features in the robot’s vicinity, SLAM framework. This integration would further improve
its computational overhead is considerably higher [32]. Tihe attainable localization accuracy within areas witrgtag
facilitate robust data association, it is common practige toops. Since this modification is beyond the scope of this
employ a feature detection algorithm tleattracts “high-level” work, in the following section we present experimental fessu
features (e.g., landmarks such as corners, junctionsglistra applying the SC-KF methodology for the case where only
line segments) from raw sensor dafden,only these features relative-state and proprioceptive measurements arecenesl.
are employed for SLAM.

4) Information loss: While the extraction of high-level
features results in more robust and computationally thédeta VIl. EXPERIMENTAL RESULTS
algorithms (e.g., laser scans consist of hundreds of range
points, but may contain only a few corner features), this i i
approach, effectivelydiscards informationcontained in the ||~ M guessing that you used a Sick |adar.
sensor data (cf. Fig. 1)The feature-based estimates of thgP! €ase correct if necessary
robot’s pose are suboptimal compared to those that useeall th
available informationMaintaining and processing the entire This section presents experimental results that demaestra
history of raw sensor input (e.g., [33]) can lead to excellethe performance of the algorithms described in Sections Il
localization performancéjut such an approach may be infeaand IV. The experiments use a Pioneer Il mobile robot
sible for real-time implementation on typical mobile rodot equipped with a Sick LMS-200 laser rangefindEne robot’s
Conversely, the SC-KF approach typically takes advantageseconsists of its planar position and orientation in a global
of the available informatiolin two consecutiveexteroceptive frame:
measurements (i.e., most laser points in two scans can ke use
to estimate displacement by scan matching). Xe = [T Sy “o] = ["p0 ] (38)

5) SC-KF and SLAM:At this point, The SC-KF approach We first present results from the application of the SC-KIg an
essentially offers an “enhanced” form of Dead Reckoning, athen study the case where the robot’s state is propagated bas
the robot’s state uncertainty monotonically increases tinee.  on displacement estimates exclusively (i.e., no propptice
For longer robot traverses the positioning accuracy obthinmeasurements aievailablg.

I’ I’



A. Stochastic Cloning Kalman Filter to perform a more thorough assessment of the impact of

In this experiment, odometry measurements are fused wifff measurement correlations on the position accuracy and
displacement measurements that are obtained by laser stign Uncertainty estimatesthe primary objective of these
matching with the method presented in [6]. The SC_KglmuIatmns is tacontrastthe behavior of the estimation errors

equations for the particular odometry and measurement mo3dh the computed covariance values in the cases when the
employed intheseexperiments are presented in [34]. correlations between consecuuv_e measurements are dedoun
1) Experiment descriptionDuring the firstexperimentthe for (SC'KF)’, VS. W_hen they are ignored (SC-KF-NC). )
robot traversed a trajectory of approximately 165 m, while Fpr the S|mulat|on res““_s shown here, a ro_bot moves in
recording 378 laser scans. The robot processed a new | equc_ular trajectory of radiug m, Wh"? observing a W"?‘"
scanapproximately everl.5 m, or every time its orientationt at lies6 m from the center of its trajectory. The relative-

changed by 10 We here compare the performance of the S YOSE meafsurements in thig case are created by pe_rforming
KF algorithm to that obtainet) the approach of Hoffmaet ine-matching, instead of point matching between consesut

al. [10]. In [10], the displacement estimates and the previoﬁg"’m"s [36]. Since only one line is available, the motion ef th

pose estimates are combined to yield pseudo-measurerrienf§’8Ot along the line dlrect.u_)n IS unobservalple. As a r?’“‘“’
the robot's absolute position. In order to guarantee ctersis singular value decomposition of the covariance matrix ef th

estimates for the latter case, we have employed the Cov&fiPots displacement estimate can be written as

ance Intersection (Cl) method [35] for fusing the pseudo- s1 0 0 VT
measurements of absolute position with the most currerg POSRy /kpm = [Vu V{,} 0 sy O {VUT] , 81 — 00
estimates. From here on we refer to this approach as “pseudo- 0 0 s3 °

absquFe update_s ) . . _whereV,, is the basis vector of the unobservable direction
As discussed in Section llI-F, the SC-KF has computanon(al_e_ a unit vector along the direction of the wall, expess

complexity linear in the number of feature measuremsaitsn ith respect to the robot frame at time stépandV, is a

at each posdf even this computational complexity is deeme(il>< 5 matrix, whose column vectors form the basis of the

too high for a particular application, one can ignore thc(?bservable subspace. To avoid numerical instability in the

correlations between consecutive displacement measateme.. .
at the expense of optimality. In that case, the augmentéel S?Igter' the displacement measurements; . ., computed by

only contains the two copies of the robot state [Bfsults ne-matching are projected onto the observable subs| '

for this approximate, though computationally simpler,iamat clreatlng a relative-state measurement of dimension 2ndiye

_ T
of the SC-KF, referred to as SC-KF-NC (i.e., no correlatiord/+m = Vo 2k/ktm:

bet th t dered Fig. 4 shows the robot pose errors (solid lines), along
bglévvsear:] d ;?gg;urgggr:,wfgrgg a;fgfr:;féeof)tﬁ;esﬁi ﬂh the corresponding9.8th percentile of their distribution
comp: : P . . dashed lines). The left column shows the results for the SC-
Therobot trajectories estimated by the different algorith

2 ) ) . F algorithm presented in Section Ill, while the right one
are shown in Fig. 2. Fig. 3 presents the covariance estlma}SF the SC-KF-NC algorithm. As evident from Fig. 4, the
for the robot pose as a function of tim&¥e observe that '

. . . covariance estimates of the SC-KF-NC are not commensurate
correctly accounting for the correlations between contbezu

displ t estimates in the SC-KE Its | lleard with the corresponding errors. When the temporal cor@hati
ISplacement estimates in the SR, results In SMalleitov. e measurements are properly treated, as is the cadweefor t

ance values. Even though ground truth for the entire trajgct SC-KF, substantially more accurate covariance estim#tas

is not known, the final robot gose is known to coincide Witfl) ' '

the initial one. The errors in the final robot pose are equéﬂea the true uncertainty of the robot's state, are coeghut
= ' . oreover, evaluation of the rms value of the pose errors show
to X = [0.5m 0.44m — 0.11°]T (0.4% of the trajectory th P

| h) for th ~ T at the errorsassociated witithe SC-KF algorithm (which
ength) for the SC.'KF’X = [0.6lm 0.65m  — 0.13°] accounts for correlations) are 25% smalleanthose of the
(0.54% of the trajectory length) for the SC-KF-NQ, = SC-KE-NC.

[15.03m 7.07m —32.3°]7 (10.6% of the trajectory length) for

— o|T
the approach of [10], and” = [32.4m 5.95m —69.9°]" B gtate Propagation based on Displacement Estimates
(19.9% of the trajectory length) for Dead Reckoning based . . \
We nowpresent results for the case in which the robot’s pose

on odometry. From these error values, as well as from visual {imated us v displ t estimat ted f
inspection of the trajectory estimates in Fig. 2, we conelu estimated usingnly displacement estimates computed from

that both the SC-KF and the SC-KF-NC yield very simila/?Se" Scan matching. Given a displacement estimae, ,, =
results. However, the approach based on creating pseull@i+m " ®k+m]". the global robot pose is propagated using
measurements of the absolute pose [10] performs significarff’® equations

worse. It shOl_JId be r_10ted, that_ the errors in the _fmtlot Xpm = 9( Xk, 2k kgm) =

poseare consistent with the estimated covariance in all cases o o G ke

considered. [ APker] _ [ Qk] C(% ok)" Prtm (39)
2) Impact of correlations:Clearly, the lack of ground truth “ Dretm - S o, FOrm

data along the entire trajectory for th_e real-world experniin In this case, the Jacobian matricks andT',, are given by
does not allow for a detailed comparison of the performance

of the SC-KF and SC-KF-NC algorithms, as both appear to b, — oo |l ~WC (1) *Prtm
attain comparable estimation accura®ymulations are used BTV RIT g 1
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Fig. 3. The time evolution of the diagonal elements of theaciance matrix of the robot's pose. Note the difference i tbrtical axes’ scale. In these
plots, the covariance values after filter updates are plotte
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Fig. 5. The estimated trajectory of the robot based only sarlacan match-

ing. The map is presented for visualization purposes onlytransforming
os o8 all the laser points using the estimated robot pose. Somgitaps” points in
[ N TN B e S - the map are due to the presence of people.
(c) (d)
= - Ch) 0
AA ' i /,/"/ Fk = V/Z\k/k-f-mg = |: 0 1
Sl B T It i WMW Fig. 5 presents the estimated robot trajectory, along with t

. map of the area that has been construdigdoverlaying all
the scan points, transformed using the estimates of thet robo
‘ . T pose (we stress that the map is only plotted for visualipatio
.. purposes, and igot estimated by the algorithmJhis experi-
ment used the same dataset frection VII-A.Fig. 6 presents
©) @ covariance estimates for the robot’s pose, computed u8iBlg (
Fig. 4. The robot pose errors (solid lines) vs. the corredpmn99.8th (SC_KF’, solid linesjn contrast wnhthpse qompUted when t,he
percentile of their distribution, (dashed lines). The leiumn shows the COrrelations between the consecutive displacement estsma
results for the SC-KF algorithm proposed in this paper, evtiile right one are ignored (SC-KF-NC, dashed lines). As expected, the pose
demonstrates the results for the SC-KF-NC algorithm. Irsehplots, the covariance is larger when only displacement measurements
covariance values after filter updates are plotted. (a - bdrErand £30
bounds along the:-axis (c - d) Errors and:3c bounds along the-axis (e are used, cqmpgred to the case where odometry measurements
- f) Orientation errors and-3c bounds. are fused with displacement measurements (cf. Fig. 3). From
Fig. 6 we observe that accounting for the correlations tesul
in significantlysmallervalues for the covariance of the robot’s
pose estimates.
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Fig. 6. The estimated covariance of the robot's pose wherctineelation between consecutive measurements is propedgunted for (solid lines) vs.
the covariance estimated when the correlations are ign@ashed lines). (a) Covariance along thexis (b) Covariance along thg-axis (c) Orientation
Covariance. At approximately 130 sec, a displacement agtiased on very few laser points was computed, resultiagsirdden increase in the covariance.

C. Investigation of the effects of correlations 08
! — SC-KF

Based on numerous experiments and simulatasts, the 0.7r, ]

. . . 1

results of Fig. 6 (i.e., smaller covariance values when tire ¢ |
0.6 ! B

I

1

relations between displacement measurements are acdour
for) are typical. We attribute thisesultto the fact that the
correlation between consecutive relative-pose estimatass
to be negative An intuitive explanation for this observation
can be given by means of a simple example Ifatimensional
motion Consider a robot moving on a straight line, anc
recording measurements,, of the distance to a single feature \ /

on the same line. If at time-stefp the error in the distance o2t s
measurement is equal @, > 0, this error will contribute AN L7
towardsunderestimatinghe robot’s displacement during the o1 T~al -7 A
interval [k — 1, k], but will contribute toward®verestimating
the displacement during the intervét, k + 1]. Therefore, % 1 ) 3 ) 5 6 7 3 9
the errore;, has opposite effects on the two displacement Measurement Spacing (m)

estimates, rendering them negatively correlated. ' _ . o
. L. ; . . Fig. 7. The covariance estimates at the end of a 100 m trajeating the
In this 1D example, it is interesting to examine the timexpression of (33) (solid line), vs. when the correlatiorsazen consecutive
evolution of the covariance when the correlations are mtypedisplaCEmGHt measuretments ?frﬁo?gtth?ncgur?]tzd afgr rﬁ‘i’ﬁ%ﬂﬁﬁ t;?cti
treated. Note that the robot's displacement can be compurﬁiﬁ{\}vﬁ) e ation] part, '
as the difference of two consecutive distance measurements
I.8., zx/k+1 = 2k — 21+1. If the covariance of the individual
distance measurements is equalp = R, = o2, then the In the context of this 1D example, we next study the
covariance ofz /541 is equal toRy /.41 = 202. Moreover, behavior of the covariancevhen features come in and out
for this example it is easy to see that all the Jacobians i (3¥ the robot’s Field Of View (FOV). Assume that a uniform
are constant, and given bg{j/kH =1, Jfﬁlﬂ’ = —1, &, = distribution of features, with density, exists on the line, and
I', = I',_1 = 1. Substituting these values in (33), we obtaithat the robot’'s FOV is limited t@,,.x. If the robot moves by
the following equation for covariance propagatiarihis case: A/ between the time instants the measurements are recorded,
then the overlap in the FOV at consecutive time instants is
Pe+ Biprpr = Be = By = Py (40) Ay Within this region lieM), = p(fmax — Af) features,
We thus see that the covariance of the robot’s position estimWhose measurements aused for displacement estimation.
remainsconstantduring propagation when the correlationd he least-squares displacement estimate is given by:
are properly treated. This occurs dbecausethe error in
the measurement; effectively “cancels out”. On the other
hand, if the correlations between consecutive displacémen
measurements are ignored, we obtain

o
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I
I
1
I
I
I
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\ I
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1 1

Final Covariance (mz)
o o
w i
T :
. .

Ppq

M,

1
Zk/k+1 = m Z(Zk — Zk11,) (42)
i=1

wherezy,, andzy1, are the measurements to thth feature at
time-stepst andk + 1, respectively. The covariance of /5.1

P = Pk‘f'Rk/k_H ZPk+202. _ g
is given by:

(41)

In this case the position covariance increasese linearbsualt

2
that does not reflect the evolution of the true state unceytai 20

Rijkv1 = M (43)

202
p(gmax - AE) .



Thus, if one ignores the correlations between consecuti
_dlsplacement estimates, the covariance propagation iequat.¢
is:

— - SC-KF-NC
— SC-KF

202
p(gmax - Aé) '
At the end of a path of lengtliioa (i.€., after fiota/AL
propagation steps), the estimated covariance of the rot ° %% 't 15 2 25 3 35 4 45 5 55
position, starting from a zero initial value, will be givey:b
Vi ota 2 2 8k

total ? . (45)

AL p(lmax — AL)
We now derive the corresponding covariance equations or tl
case that the correlations are properyorporated. Since the

Py = P+ (44)

Position Cov. (
o - N w » (42} (o]
:

Pﬁna] =

(radz)
(2}

4

Attitude Cov.

robot moves by a distanak! between the time instantshen e i
the measurements are recorded, the number of features 1 P
are observed at three consecutive time instants fi.e.l, k, ' " Measurement Spacing (m) ' '

andk + 1), is p(fmax — 2A¢). Employing this observatioto

evaluate the Jacobians in (33) yields foowing expression Fig-f8- _The_COV?fi?jnce estim_art]es at the end (#‘ ha 100 m tm}'edr? a robot
. . . performing visual odometry with a stereo pair. The top plaives the position
for the propagation of the covariance: uncertainty, while the bottom one the attitude uncertaidien correlations

2062A/ are properly treated (solid lines), the covariance is a rwrio function of
Poy1 =P+ ————, for  lpax > 2A0 . (46) the measurement spacing. This is not the case when caosredagire ignored
" p(bmax — AL)? (dashed lines).

Notethat if £1,.x < 2A4, NO overlap exists between the FOV at

time instantsk— 1 andk+ 1, and thus no feature measuremeritme-varying. As a result, an analogous closed form anslysi
can beused for computing two displacement estimates. In thég general trajectories and arbitrary feature placerappears
caseexpression (44) is exacht the end of a path of length to be intractable However, simulationexperiments indicate

l1ota1, the covariance of the robot position is: that the conclusions drawn for the 1D case also apply to the
5 more practical scenarios of robots moving in 2D and 3D. For
20 gtotal i i i i
Pinal = —————=,  for  lyax > 2A0 . (47) example,Fig. 8 shows the position and attitude covariance
P(lmax — AL) at the end of a 100 m trajectory for a robot performing

Fig. 7 plots the variance in the robot’s positiahthe end visual odometry with a stereo paif cameras [2]. Thelotted
of a trajectory of lengtlY,,,; = 100 m, as a function the linesrepresenthe traces of the submatrices of the covariance
of the size of therobot’s displacement between consecutiveiatrix correspondingrespectivelyto position (top subplot)
measurements. The solid line corresponds to the case wiaed attitude (bottom subplotYhese plots once again show
the correlations between displacement measurements arethat the covariance is a monotonically increasing function
counted for (cf. (47)), while the dashed line corresponds @ measuremenspacing when the exact expression of (33)
the case when these are ignored (cf. (450)e parameters is employed, while an artificial “valley’appears wherthe
used to generate this plot arthie feature density i = 5 correlation terms in (33) are ignored.
features/m, the robot’s FOV &,,.x = 10 m, and the standard
deviation of the each distance measurementis 0.2 m. It is VIII. CONCLUSIONS
important to note that when the correlations between censecln this paper, we have proposed an efficient EKF-based
utive measurements are accounted for, the final uncertaietimation algorithm, terme@ Stochastic Cloningalman
is a monotonically increasingunction of the displacement Filtering (SC-KF), for the problem of fusing propriocemiv
between measurements/. This agrees with intuition, which measurements with relative-state measurements that are in
dictates that when measurements occur less frequently, taged from exteroceptive sensory input. An analysis of the
accuracy of the state estimates deteriorates. Howeven thiee structure of the measurement equations demonstretet!
correlations between displacement measurements areeighowhen the same exteroceptive measurements are processed
the covariance estimates do not have this propdfly. 7 to estimate displacement in consecutive time intervals, th
shows thatfor A/ < 5 m, as measurements are recordedisplacement errors are temporally correlated. The mam co
more frequently, the covariance estimabesomdarger. This tribution of this work is the introduction of a novel feature
behavior is clearly incorrect, and arises due to fact that timarginalization process that allow®r the processingof
dependency between consecutive displacement estimateselative-pose measurements whileso considering the corre-
ignored. lations between these. This method is based on augmenting
The preceding analysis substantiates, at leatihe simple the state vector of the EKF to temporarily include the robot
case of a robot moving in 1Dhat the use oéxpression (33) poses and the feature observations related through a local
for covariance propagation results in substantially ma@®ia geometric constraint (i.e., a relative-state measurema&yt
rate covariance estimates. Unfortunately, for robots mgpun employing state augmentation, the dependence of thevelati
2D [4] and 3D [2], the covariance propagation equations astate measurement on previous states and measurements is



transformed to a dependence on therent state of the filter, [21]
and this enables application of the standard EKF framework.
The experimentaénd simulation results demonstrate thagpy
the SC-KF method attains better localization performance
compared to previous approaches [10], while the overhe@g]
imposed by the additional complexity is minimal. The metho
yields more accurate estimates, and most significantly, it
provides a more precise description of the uncertainty & ti&éﬂ
robot’s state estimates. Additionally, the method is vilesa
since it is independent of the actual sensing modalitiesl use
to obtain the proprioceptive and exteroceptive measurEmeTZS]
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