
ME/CS 133(a): Solution to Homework #2

Problem 1: (Problem 4(a,b) in Chapter 2 of MLS).

Part (a): Let’s assume that the statement in part (b) of the problem is true. Let ~w be a
3× 1 vector and let ~v be any 3× 1 vector. Then:

(RŵRT )~v = Rŵ(RT~v)
= R(~w × (RT~v))
= (R~w)× (RRT~v)
= (R~w)× ~v
= (̂R~w)~v

Since this must be true for any vector ~v, then RŵRT = (R~w)ˆ.

Part (b): We can now assume that part (a) holds.

(R~v)× (R~w) = (̂R~v)(R~w)
= (Rv̂RT )(R~w)
= Rv̂RTR~w
= R(v̂ ~w)
= R(~v × ~w)

Proving (b) without using (a):

Note that the proof above shows only that statements a) and b) are equivalent, but
not to what extent they hold. Though this was considered sufficient for the homework
assignment, we here offer a proof of part b) that does not rely on a).

We would like to show that R(~v × ~w) = (R~v)× (R~w). To do so, we use the fact that

for any two vectors ~a and ~b ∈ R3, ~a × ~b = ||~a|| ∗ ||~b|| sin θ ∗ ~n, where θ is the angle

between ~a and ~b and ~n is the unit vector normal to both ~a and ~b in the direction given
by the right-hand rule.

Next, we define some notation. Let θ1 be the angle between ~v and ~w, and ~n1 be the
unit normal vector orthogonal to ~v and ~w. Let θ2 be the angle between R~v and R~w,
and ~n2 be the unit normal vector corresponding to R~v and R~w. In both cases, the unit
normal vectors point in the right-handed direction.

Simplifying the left-hand side: R(~v× ~w) = R(||~v|| ∗ ||~w|| sin θ1 ∗~n1) = ||~v|| ∗ ||~w|| sin θ1 ∗
(R~n1).

Simplifying the right-hand side: (R~v) × (R~w) = || ~Rv|| ∗ || ~Rw|| sin θ2 ∗ ~n2 = ||~v|| ∗
||~w|| sin θ2 ∗~n2, where the last equality comes from the fact that R is a rotation matrix
and therefore preserves vector lengths.
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Setting these expressions for the left and right sides equal, we see that the statement
we’re trying to prove is equivalent to ||~v|| ∗ ||~w|| sin θ1 ∗ (R~n1) = ||~v|| ∗ ||~w|| sin θ2 ∗ ~n2.
We divide by ||~v|| and ||~w|| (we can assume that these are nonzero, as if either were
zero, equality would hold trivially).

Thus, it suffices to prove that:

sin θ1 ∗ (R~n1) = sin θ2 ∗ ~n2. (1)

We argue that R~n1 is a unit vector and is orthogonal to both R~v and R~w. We have that
||R~n1|| = ||~n1|| = 1, and (R~n1)T (R~v) = ~nT1R

TR~v = ~nT1 ~v = 0 (since ~n1 is perpendicular
to ~v by definition), and similarly for R~w. This proves that R~n1 = ± ~n2.

Next, we show that cos θ1 = cos θ2. By definition of the cosine, we know that ~a ·~b =
~aT~b = ||~a|| ∗ ||~b|| cos θ, with ~a, ~b, and θ all defined as before. Using properties of
orthogonal matrices, we can see that:

cos θ1 =
~vT ~w

||~v|| ∗ ||~w||
=

~vT (RTR)~w

||R~v|| ∗ ||R~w||
=

(R~v)T (R~w)

||R~v|| ∗ ||R~w||
= cos θ2.

This yields two alternatives: either θ1 = θ2 or θ1 = −θ2. We consider these two cases
separately.

Case 1: θ1 = θ2, and so sin θ1 = sin θ2. We know from earlier that R~n1 is a unit normal
vector to (R~v) and (R~w). Since the angle between ~v and ~w does not change signs under
the rotation, R~n1 will be in the right-handed orientation. So, ~n2 = R~n1 and therefore
sin θ1 ∗ (R~n1) = sin θ2 ∗ ~n2.

Case 2: θ1 = −θ2, and so sin θ1 = − sin θ2. With a change in the sign of the angle
between θ1 and θ2, the direction of the normal vector ~n2 would also undergo a sign
change (given by the right-hand rule). So, ~n2 = −R~n1 in this case. Therefore, we
again find that sin θ1 ∗ (R~n1) = sin θ2 ∗ ~n2.

Thus, we have proven that (1) holds, which completes the proof that R(~v × ~w) =
(R~v)× (R~w).

Problem 2: (Problem 3(c) of chapter 2 in the MLS text).

Let rotation matrix R take the symbolic form:r11 r12 r13

r21 r22 r23

r31 r32 r33

 (2)

The solution results from an expansion of the determinant of the matrix R (along the first
column):

det(R) = r11(r22r33 − r32r23) + r21(r32r13 − r12r33) + r31(r12r23 − r22r13).
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Note that if the second and third columns of R are denoted

~r2 =

r12

r22

r32

 ~r3 =

r13

r23

r33

 ,
then ~r2 × ~r3 takes the symbolic form:

~r2 × ~r3 =

r22r33 − r32r23

r32r13 − r12r33

r12r23 − r22r13

 .
Hence, we can see that det(R) = ~r1 · (~r2 × ~r3).

This expression is true for any 3 × 3 matrix. Note that if R ∈ SO(3), then ~r2 can always
be identified with the “y-axis” of a reference frame, while ~r3 is associated with a “z-axis.”
Hence, ~r2 × ~r3 is associated with the “x-axis,” whose dot product with ~r1 (which is the
associated “x-axis”) must have value 1.

Problem 3: (Problem 8(b,c) in Chapter 2 of the MLS text).

Solution to 8(b):

Firstly, note that (gΛg−1)n = g(Λn)g−1. We prove this by induction. The base case, n = 1,
is clear. If we assume that (gΛg−1)n = g(Λn)g−1 for some n, then (gΛg−1)n+1 = (gΛg−1)n ∗
(gΛg−1) = g(Λn)∗ (g−1g)∗Λg−1 = g(Λn)∗ I ∗Λg−1 = gΛn+1g−1, thus proving our statement.

egΛg
−1

= I +
1

1!
gΛg−1 +

1

2!
(gΛg−1)2 +

1

3!
(gΛg−1)3 + · · ·

= I +
1

1!
gΛg−1 +

1

2!
(gΛ2g−1) +

1

3!
(gΛ3g−1) + · · ·

= g(I +
1

1!
Λ +

1

2!
Λ2 +

1

3!
Λ3 + · · · )g−1

= geΛg−1

Solution to 8(c): Assuming that Λ is constant and θ is a function of time:

d

dt
eΛθ =

d

dt
(I +

1

1!
θΛ +

1

2!
θ2Λ2 + · · · )

=
1

1!
θ̇Λ +

1

2!
2θ̇θΛ2 + · · ·

= θ̇Λ(I +
1

1!
θΛ + · · · ) = θ̇ΛeΛθ

Also, since θ is a scalar and Λ commutes with itself, we can equivalently write:
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d

dt
eΛθ =

1

1!
θ̇Λ +

1

2!
2θ̇θΛ2 + · · ·

= (I +
1

1!
θΛ + · · · )θ̇Λ = eΛθθ̇Λ

Problem 4: Let Z-Y-X Euler angles be denoted by ψ, φ, and γ.

• Part (a): Develop an expression for the rotation matrix that describes the Z-Y-X
rotation as a function of the angles ψ, φ, and γ.

Rotation about the z-axis by angle ψ can be represented by a rotation matrix whose
form can be determined from the Rodriguez Equation:

Rot(~z, ψ) = I + sinψẑ + (1− cosψ)ẑ2 =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 .

Using the Rodriguez equation, the rotations about the y-axis and x-axis can be simi-
larly found as:

Rot(~y, φ) =

 cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ

 Rot(~x, γ) =

1 0 0
0 cos γ − sin γ
0 sin γ cos γ

 .

Multiplying the matrices yields the result:

R(ψ, φ, γ) = Rot(~z, ψ) Rot(~y, φ) Rot(~x, γ)

=

cψ cφ (cψ sφ sγ − sψ cγ) (cψ sφ cγ + sψ sγ)
sψ cφ (sψ sφ sγ + cψ cγ) (sψ sφ cγ − cψ sγ)
−sφ cφ sγ cφ cγ

 (3)

where cφ and sφ are respectively shorthand notation for cosφ and sinφ, etc.

• Part (b): Given a rotation matrix of the form:

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 (4)

compute the angles ψ, φ, and γ as a function of the rij.

Direct observation of the matrices in Equations (3) and (4) show that:

− sinφ = r31 .

4



Because sin(π−φ) = sinφ, there are two solutions to this equation: φ1 = − sin−1(r31),
and φ2 = π−φ1. Similar matchings of the matrix components yield (assuming cosφ 6=
0):

a11 = cψcφ, a21 = sψcφ→ ψ = Atan2[
r21

cosφ
,
r11

cosφ
]

a32 = cφsγ, a33 = cφcγ → γ = Atan2[
r32

cosφ
,
r33

cosφ
],

where the value φ1 or φ2 is used consistently. Thus, there are two equivalent triples
(ψ, φ, γ) that result in rotation matrix R.

Problem 5: (5 points, Problem 10(b) in Chapter 2 of the MLS text).

Note that

ω̂ =

[
0 −w
w 0

]
= wJ where J =

[
0 −1
1 0

]
Then:

ω̂2 = w2

[
−1 0
0 −1

]
= −w2I; ω̂3 = −w3J

Hence the exponential of ω̂ can be computed as:

exp (θω̂) =

(
I +

θ

1!
ω̂ + +

θ2

2!
ω̂2 + · · ·

)
=

(
I +

wθ

1!
J − w2θ2

2!
I − w3θ3

3!
J + · · ·

)
=

(
1− w2θ2

2!
+ · · ·

)
I +

(
wθ

1!
− w3θ3

3!
+ · · ·

)
J

=

[
cos(wθ) − sin(wθ)
sin(wθ) cos(wθ)

]
,

where we utilize the Taylor expansions of the sine and cosine functions.

While you weren’t asked to consider this part of the problem, note that the exponential map
from so(2) to SO(2) is surjective, as every point in SO(2) can be covered by a point in so(2).
This map is not injective since exp(θω̂) = exp((θ + 2π)ω̂).
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