
CDS 110: Solution to Homework #1

Problem 1 (CDS 101, CDS 110): (5 points)

In this problem, you were to Search the web for an article in the popular press about a
feedback and control system.

Your grade on this simple problem depended upon your completeness in including the key
components:

(a): Describe the feedback system using the terminology given in the article.

(b): describe the underlying process or system being controlled,

(c): Describe the sensor, actuator and computational element.

Problem 2 (CDS 101, CDS 110): (20 points)

You were given a simplified model of a cruise control for a car

mv̇ = −av + u+ d

where m is the mass of the car, v is the car’s forward velocity, a is a “drag coefficient” which
models the effects of air drag, u is the control input (a lumped model which accounts for the
effect of the motor’s output on the traction force at the wheel-to-ground contact), and d is
a disturbance.

Part (a): You were to consider an open loop control strategy defined by

u = âvref

where â is an estimate of the drag coefficient and vref is the desired reference speed.
Note that the estimate â may not be accurate. Compute the steady state response for
this strategy as a function of β = a/â. You should plot vss/vref as a function of β,
where vss is your steady state solution.

Solution: In steady state, v̇ = 0, so that vss = u/a, where u is the control input and
vss is the steady state velocity. This result assumes that d = 0, which was part of the
problem statement. Since u = âvref in this simple control, vss = (â/a)vref = (1/β)vref .
Or, vss/vref = (1/β). Hence, vss will actually equal vref in the obvious case where the
estimate, â, of the parameter a is exactly correct, or when β = 1..

Part (b): This part considers a proportional closed loop control strategy:

u = −kp(v − vref )
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where vref is the desired reference speed and kp is the proportional gain. Compute the
steady state response for this strategy when kp = 10â, and again plot the result as a
function of β.

Solution: Since v̇ = 0 in steady state, and we ignore the disturbane, we have 0 =
−avss − kp(vss − vref ). Solving for vss yields:

vss =
( kp
a+ kp

)
vref .

Hence, as kp becomes larger, the steady state velocity more closely approaches the
reference velocity. If kp = 10â, then (vss/vref ) = (10â/(a + 10â)) =

(
10

10+β

)
. Hence,

with this feedback structure, there will typically be a steady state error for most
reasonable values of β, but the error is not too sensitive to the value of β.

Part (c): Next consider a proportional-integal (PI) feedback control strategy.

u = −kp(v − vref )− ki
∫ t

0

(v − vref )dt.

Again, compute the steady state response, and compare the result to your answers
found in Parts (a) and (b). Hint: in one way of solving this problem, introduce
q =

∫ t
0

(v − vref )dt, and then q̇ = (v − vref )
Solution: With this feedback, the system equations are:

v̇ = −av − kp(v − vref )− ki
∫ t

0

(v − vref )dt. (1)

There are a variety of arguments to use that all lead to the same conclusion: vss = vref .
In one argument, take the time derivative of Equation (1), and set all of the derivative
terms to zero. In another argument, set v̇ = 0 in (1), and solve (using the identity
q̇ + vref = v):

0 = −a(q̇ + vref )− kpq̇ − kiq = −(a+ kp)q̇ − avref − kiq.

For the right hand side of this equation to be zero, we require q̇ = (vss− vref ) = 0 and
q = −avref/ki. In other words, the integral term estimates the factor avref !

Problem 3 (CDS 110): (15 points) Consider the differential equations:

dy

dt
+ 3y = 4u, (2)

d2

dt2
+ 2

dy

dt
+ y = 2

du

dt
+ u (3)

where u is the system input, and y is the system output.
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Part (a): Solve each of these equations.

Solution: For the first order equation (2), let us first find the homogeneous solution,
yh(t):

dy

dt
= −3t; ⇒ yh(t) = e−3ty(0).

To find the particular solution, recall from the class notes that a general first order
o.d.e. and its solution take the form

ẋ+ p(t)x = g(t) ⇒ x(t) =
1

µ
(t)

∫
µ(τ)g(τ)dτ

where µ(t) = e
∫
p(t)dt. For this particular problem, p(t) = 3 and g(t) = 4u(t), and

hence µ(t) = e−3t, and

yp(t) = e−3t

∫
e3τ4u(τ)dτ = 4

∫
e−3(t−τ)u(τ)dτ.

Putting the homogeneous and inhomogeneous solutions together yields:

y(t) = e−3ty(0) + 4

∫ t

0

e−3(t−τ)u(τ)dτ.

For the second order equation (3), let us assume an exponential solution to the homo-
geneous part of the equation: est. Assuming this solution, the characteristic equation
of the homogeneous o.d.e is s2 + s2s+ 1 = 0, which has two repeated roots at s = −1.
Hence, the homogeneous solution is:

yh(t) = C1e
−t + C2te

−t.

For the particular solution, one has to assume a structural form for the input function
in order to have any hope of finding an analytical solution. Here are two examples,
which are related to parts (b) and (c) of this problem.

First assume that u = 1, which has particular solution yp(t) = 1. In this case, the
solution is y = 1 + C1e

−t + C2te
−t.

As a second particular solution example, let us assume a solution of the form yp(t) =
G(s)est. Substituting this solution into (3), and noting that ẏp(t) = sestG(s) and
ÿp(t) = s2estG(s), one finds:

G(s) =
2s+ 1

s2 + s2 + 1
.

Part (b): Find the response of each system to: (1) a unit step input, u(t) = 1; (2) an
exponential signal u(t) = est.
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Solution: For o.d.e. (2), the output for a unit step input is:

y(t) = e−3ty(0) + 4

∫ t

0

e−3(t−τ)dτ = e−3ty(0) + 4e−3t

∫ t

0

e3τdτ (4)

= e−3ty(0) + 4e−3t e
3τ

3

∣∣∣∣t
0

= e−3ty(0) + 4e−3t(e3t − 1)/3 (5)

= e−3ty(0) +
4

3
(1− e−3t). (6)

For the exponential input u = est,

y(t) = e−3ty(0) + 4

∫ t

o

e−3(t−τ)esτdτ = e−3ty(0) + 4e−3t

∫ t

0

e(3+s)τdτ (7)

= e−3ty(0) + 4e−3t e
(3+s)τ

(3 + s)

∣∣∣∣t
0

= e−3ty(0) +
4

s+ 3
(est − e−3t) (8)

For o.d.e. (3), we derived the step response in the last part of this problem.

Part (c): Derive the transfor functions for each of these systems.

Solution: For o.d.e. (2), assume a solution of the form yp(t) = G(s)est for input
u(t) = est. Substituting these terms into the o.d.e. yields:

sG(s)est + 3G(s)est = 4est

from which we can infer that

G(s) =
4

s+ 3
.

The transfer function for o.d.e. (3) was derived above.
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