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Gaussian Processes for Nonlinear Signal Processing
Fernando Pérez-Cruz, Steven Van Vaerenbergh, Juan José Murillo-Fuentes, Miguel Lázaro-Gredilla and

Ignacio Santamarı́a

Abstract—Gaussian processes (GPs) are versatile tools
that have been successfully employed to solve nonlinear
estimation problems in machine learning, but that are
rarely used in signal processing. In this tutorial, we present
GPs for regression as a natural nonlinear extension to
optimal Wiener filtering. After establishing their basic
formulation, we discuss several important aspects and
extensions, including recursive and adaptive algorithms
for dealing with non-stationarity, low-complexity solutions,
non-Gaussian noise models and classification scenarios.
Furthermore, we provide a selection of relevant applica-
tions to wireless digital communications.

I. INTRODUCTION

Gaussian processes (GPs) are Bayesian state-of-the-art
tools for discriminative machine learning, i.e., regression
[1], classification [2] and dimensionality reduction [3].
GPs were first proposed in statistics by Tony O’Hagan
[4] and they are well-known to the geostatistics commu-
nity as kriging. However, due to their high computational
complexity they did not become widely applied tools in
machine learning until the early XXI century [5]. GPs
can be interpreted as a family of kernel methods with the
additional advantage of providing a full conditional sta-
tistical description for the predicted variable, which can
be primarily used to establish confidence intervals and to
set hyper-parameters. In a nutshell, Gaussian processes
assume that a Gaussian process prior governs the set of
possible latent functions (which are unobserved), and the
likelihood (of the latent function) and observations shape
this prior to produce posterior probabilistic estimates.
Consequently, the joint distribution of training and test
data is a multidimensional Gaussian and the predicted
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distribution is estimated by conditioning on the training
data.

While GPs are well-established tools in machine
learning, they are not as widely used by the signal
processing community as neural networks or support
vector machines (SVMs) are. In our opinion, there are
several explanations for the limited use of GPs in signal
processing problems. First, they do not have a simple
intuition for classification problems. Second, their direct
implementation is computationally demanding. Third,
their plain vanilla version might seem uptight and not
flexible enough. Fourth, to most signal processing ex-
perts Gaussian process merely stands for a noise model
and not for a flexible algorithm that they should be using.

In this paper, we present an overview on Gaussian
processes explained for and by signal processing prac-
titioners. We introduce GPs as the natural nonlinear
Bayesian extension to the linear minimum mean square
error (MMSE) and Wiener filtering, which are central to
many signal processing algorithms and applications. We
believe that GPs provide the correct approach to solve an
MMSE filter nonlinearly, because they naturally extend
least squares to nonlinear solutions through the kernel
trick; they use a simple yet flexible prior to control the
nonlinearity; and, evidence sampling or maximization
allows setting the hyper-parameters without overfitting.
This last feature is most interesting: by avoiding cross-
validation we are able to optimize over a larger number
of hyperparameters, thus increasing the available kernel
expressiveness. Additionally, GP provides a full statisti-
cal description of its predictions.

The tutorial is divided in three parts. We have summa-
rized in Figure 1 the relationship between the regression
techniques introduced throughout the different sections.
In the first part, Section II provides a detailed overview
of Gaussian processes for regression (GPR) [1]. We
show that they are the natural nonlinear extension to
MMSE/Wiener filtering and how they can be solved
recursively. The second part of the paper focuses briefly
on several key aspects of GP-based techniques. Consec-
utively, we review solutions to adjust the kernel function
(Section III ), to tame the computational complexity
of GPs (Section IV ), and to deal with non-Gaussian
noise models (Section V ). In the third part, we cover
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Fig. 1: Relationship between the regression techniques
discussed in this tutorial.

additional extensions of interest to signal processing
practitioners, in particular dealing with non-stationary
scenarios (Section VI ) and classification problems (Sec-
tion VII ). We illustrate them with relevant examples
in signal processing for wireless communications. We
conclude the paper with a discussion.

II. GAUSSIAN PROCESSES FOR MACHINE LEARNING

A. Minimum mean square error: a starting point

GPs can be introduced in a number of ways and we,
as signal processing practitioners, find it particularly ap-
pealing to start from the MMSE solution. This is because
the Wiener solution, which is obtained by minimizing the
MSE criterion, is our first approach to most estimation
problems and, as we show, GPs are its natural Bayesian
extension.

Many signal processing problems reduce to estimating
from an observed random process x ∈ Rp another related
process y ∈ R. These two processes are related by a
probabilistic, possibly unknown, model p(x|y). It is well
known that the unconstrained MMSE estimate,

argmin
f(x)

E
[
‖y − f(x)‖2

]
, (1)

coincides with the conditional mean estimate of y given
x

fmmse(x) = E[y|x] =

∫
yp(y|x)dy =

∫
y
p(x|y)p(y)

p(x)
dy.

(2)
If p(y,x) is jointly Gaussian, i.e. p(y) and p(x|y) are
Gaussians and E[x|y] is linear in y, this solution is linear.
If y and x are zero mean, the solution yields E[y|x] =
w>x, where

wmmse = argmin
w

E

[(
y −w>x

)2]
=
(
E
[
xx>

])−1
E [xy] .

(3)

Furthermore, these expectations can be easily estimated,
using the sample mean, from independently and iden-
tically distributed (iid) samples drawn from p(x|y) and
p(y), namely Dn = {xi, yi}ni=1.

However, if x is not linearly related to y (plus
Gaussian noise) or y is not Gaussian distributed, the
conditional estimate of y given x is no longer linear.
Computing the nonlinear conditional mean estimate in
(2) directly from Dn either leads to overfitted solutions,
because there are no convergence guarantees for general
density estimation [6], or to suboptimal solutions, if we
restrict the density model to come from a narrow class
of distributions. For instance, in channel equalization,
although suboptimal, the sampled version of (3) is used
due to its simplicity. One viable solution would be to
minimize the sampled version of (1) with a restricted
family of approximating functions to avoid overfitting.
Kernel least squares (KLS) [7] and Gaussian process
regression, among others, follow such approach.

B. Gaussian Processes for Regression

In its simplest form, GPR models the output nonlin-
early according to

y = f(x) + ν, (4)

and it follows (1), without assuming that x and y are
linearly related or that p(y) is Gaussian distributed.
Nevertheless, it still considers that p(y|x) is Gaussian
distributed, i.e., ν is a zero-mean Gaussian1. In this way,
GP can be understood as a natural nonlinear extension
to MMSE estimation. Additionally, GPR does not only
estimate (2) from Dn, but it also provides a full statistical
description of y given x, namely

p(y|x,Dn). (5)

GPs can be presented as a nonlinear regressor that
expresses the input-output relation in (4) by assum-
ing that a real-valued function f(x), known as latent
function, underlies the regression problem and that this
function follows a Gaussian process. Before the la-
bels are revealed, we assume this latent function has
been drawn from a Gaussian process prior. GPs are
characterized by their mean and covariance functions,
denoted by µ(x) and k(x,x′), respectively. Even though
nonzero mean priors might be of use, working with zero-
mean priors typically represents a reasonable assumption
and it simplifies the notation. The covariance function
explains the correlation between each pair of points
in the input space and characterizes the functions that

1A further relaxation to this condition is discussed in Section V.
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can be described by the Gaussian process. For example,
k(x,x′) = x>x′ only yields linear latent functions and it
is used to solve Bayesian linear regression problems, for
which the mean of the posterior process coincides with
the MMSE solution in (3), as shown in Section II-E. We
cover the design of covariance functions in Section III.

For any finite set of inputs Dn, a Gaussian process
becomes a multidimensional Gaussian defined by its
mean (zero in our case) and covariance matrix, (Kn)ij =
k(xi,xj), ∀xi,xj ∈ Dn. The Gaussian process prior
becomes

p(fn|Xn) = N (0,Kn), (6)

where fn = [f(x1), f(x2), . . . , f(xn)]> and Xn =
[x1,x2, . . . ,xn]. We want to compute the estimate for
a general input x, when the labels for the n training
examples, denoted by yn = [y1, y2, . . . , yn]>, are known.
We can analytically compute (5) by using the standard
tools of Bayesian statistics: Bayes’ rule, marginalization
and conditioning.

We first apply Bayes’ rule to obtain the posterior
density for the latent function

p(f(x), fn|x,Dn) =
p(yn|fn)p(f(x), fn|x,Xn)

p(yn|Xn)
, (7)

where p(f(x), fn|x,Xn) is the Gaussian process prior
in (6) extended with a general input x, p(yn|fn) is the
likelihood for the latent function at the training set, in
which yn is independent of Xn given the latent function
fn, and p(yn|Xn) is the marginal likelihood or evidence
of the model.

The likelihood function is given by a factorized model:

p(yn|fn) =

n∏
i=1

p(yi|f(xi)), (8)

because the samples in Dn are iid. In turn, for each pair
(f(xi), yi), the likelihood is given by (4), therefore

p(yi|f(xi)) ∼ N (f(xi), σ
2
ν). (9)

A Gaussian likelihood function is conjugate to the
Gaussian prior and hence the posterior in (7) is also a
multidimensional Gaussian, which simplifies the compu-
tations to obtain (5). If the observation model were not
Gaussian, warped Gaussian processes (see Section V )
could be used to estimate (5).

Finally, we can obtain the posterior density in (5) for
a general input x by conditioning on the training set and
x, and by marginalizing the latent function:

p(y|x,Dn)=

∫
p(y|f(x))p(f(x)|x,Dn)df(x), (10)

where2

p(f(x)|Dn,x) =

∫
p(f(x), fn|x,Dn)dfn. (11)

We have divided the marginalization in two separate
equations to show the marginalization of the latent func-
tion over the training set in (11), and the marginalization
of the latent function at a general input x in (10). As
mentioned earlier, the likelihood and the prior are Gaus-
sians and therefore the marginalization in (10) and (11)
only involves Gaussian distributions. Thereby, we can
analytically compute (10) and (11) by using Gaussian
conditioning and marginalization properties, leading to
the following Gaussian density for the output:

p(f(x)|x,Dn) ∼ N
(
µf(x), σ

2
f(x)

)
, (12)

where

µf(x) = k>C−1n yn, (13a)

σ2f(x) = k(x,x)− k>C−1n k, (13b)

with

k = [k(x1,x), k(x2,x), . . . , k(xn,x)]>, (14)

Cn = Kn + σ2νIn. (15)

The mean for p(y|x,Dn) is also given by (13a), i.e.,
µy = µf(x), and its variance is

σ2y = σ2f(x) + σ2ν , (16)

which, as expected, also accounts for the noise in the
observation model.

The mean prediction of GPR in (13a) is the solution
provided by KLS, or kernel ridge regression (KRR) [7],
in which the covariance function takes the place of the
kernel. However, unlike standard kernel methods, GPR
provides error bars for each estimate in (13b) or (16) and
has a natural procedure for setting the covariance/kernel
by evidence sampling or maximization, as detailed in
Section III. In SVM or KRR the hyper-parameters are
typically adjusted by cross-validation, needing to retrain
the models for different settings of the hyper-parameters
on a grid search. So, typically only one or two hyper-
parameters can be fitted. GPs can actually learn tens
of hyper-parameter, because either sampling or evidence
maximization allows setting them by a hassle-free pro-
cedure.

2Given the training data set, fn takes values in Rn as it is a vector
of n samples of a Gaussian process.
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Fig. 2: Example of a Gaussian process posterior in (12)
with 20 training samples, denoted by green +. Five
instances of the posterior are plotted by thin blue lines
and the mean of the posterior, µy, by a red thick line.
The shaded area denotes the error bars for the mean
prediction: µy ± 2σy.

C. An example

In Fig. 2 we include an illustrative example with
20 training points, in which we depict (12) for any x
between −3 and 4. We used standard functions from the
GPML toolbox, available at http://www.gaussianprocess.
org/gpml/, to generate the GP in this figure. We have
chosen a Gaussian kernel that is fixed3 as k(xi,xj) =
exp (−2||xi − xj ||2) and σν = 0.1. In the plot, we show
the mean of the process in red and the shaded area
denotes the error bar for each prediction, i.e., µy ± 2σy.
We also plot 5 samples from the posterior in thin blue
lines.

We observe three different regions in the figure. On
the right-hand side, we do not have samples and, for
x > 3, the GPR provides the solution given by the prior
(zero mean and ±2). At the center, where most of the
data points lie, we have a very accurate view of the
latent function with small error bars (close to ±2σν).
On the left hand side, we only have two samples and
we notice the mixed effect of the prior widening the
error bars and the data points constraining the values of
the mean to lie close to the available samples. This is
the typical behavior of GPR, which provides an accurate
solution where the data lies and high error bars where we
do not have available information and, consequently, we
presume that the prediction in that area is not accurate.

3The kernel is typically expressed in a parametric form, see Section
III.

D. Recursive GPs

In many signal processing applications, the samples
become available sequentially and estimation algorithms
should obtain the new solution every time a new datum
is received. In order to keep the computational complex-
ity low, it is more interesting to perform inexpensive
recursive updates rather than to recalculate the entire
batch solution. Online Gaussian Processes [8] fulfill
these requisites as follows.

Let us assume that we have observed the first n
samples and that at this point the new datum xn+1 is pro-
vided. We can readily compute the predicted distribution
for yn+1 using (13a), (13b) and (16). Furthermore, by
using the formula for the inverse of a partitioned matrix
and the Woodbury identity we update C−1n+1 from C−1n

C−1n+1 =

[
C−1n + C−1n kn+1k

>
n+1C

−1
n /σ2yn+1

−C−1n kn+1/σ
2
yn+1

−k>n+1C
−1
n /σ2yn+1

1/σ2yn+1

]
,

(17)
where σ2yn+1

and kn+1 correspond to (16) and (14),
respectively, for x = xn+1.

Nevertheless, for online scenarios, it is more con-
venient to update the predicted mean and covariance
matrix for all the available samples, as it is easier to
interpret how the prediction changes with each new
datum. Additionally, as we will show in Section VI,
this formulation makes the adaptation to non-stationary
scenarios straightforward. Let us denote by µn and Σn

the posterior mean and covariance matrix for the samples
in Dn. By applying (13a) and (13b) we obtain

µn = KnC
−1
n yn, (18a)

Σn = Kn −KnC
−1
n Kn, (18b)

Once the new datum (xn+1, yn+1) is observed, the
updated mean and covariance matrix can be computed
recursively as follows:

µn+1 =

[
µn

µf(xn+1)

]
−
µf(xn+1) − yn+1

σ2yn+1

[
hn+1

σ2f(xn+1)

]
(19a)

Σn+1 =

[
Σn hn+1

h>n+1 σ2f(xn+1)

]
− 1

σ2yn+1

[
hn+1

σ2f(xn+1)

] [
h>n+1 σ2f(xn+1)

]
,

(19b)

where hn+1 = ΣnK
−1
n kn+1 = (In − KnC

−1
n )kn+1.

As can be observed in (19a), the mean of the new
process is obtained by applying a correction term to
the previous mean, proportional to the estimation error,
µf(xn+1) − yn+1. Because of the relation between Σn

and C−1n stated in (18b), only one of the two matrices
needs to be stored and updated in an online formulation.

http://www.gaussianprocess.org/gpml/
http://www.gaussianprocess.org/gpml/
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Some authors [8] prefer to rely on C−1n , whereas others
[9] store and update Σn.

The recursive update of the mean in (19a) is equiva-
lent to what is known as kernel recursive least-squares
(KRLS) in the signal processing literature (see for in-
stance [8]–[10] ). The unbounded growth of the involved
matrices, visible in (19) and (17), is the main limitation
in the KRLS formulation. Practical KRLS implementa-
tions typically either limit this growth [10,11] or even
fix the matrix sizes [12]. Nevertheless, the solution
of KRLS is limited to the mean only and it cannot
estimate confidence intervals. By using a GP framework,
though, an estimate of the entire posterior distribution is
obtained, including the covariance in (19b).

E. Connection to MMSE: GPR with a linear latent
function

If we replace f(x) in (4) with a linear model

y = w>x + ν,

the Gaussian process prior over f(x) becomes a
spherical-Gaussian prior distribution over w, p(w) ∼
N (0, σ2wI).

We can now compute the posterior for w, as we did
for the latent function in (7)

p(w|D) =
p(y|X,w)p(w)

p(y|X)
=

p(w)

p(y|X)

n∏
i=1

p(yi|xi,w),

where p(yi|xi,w) is the likelihood. Since the prior and
likelihood are Gaussians, so it is the posterior, and its
mean and covariance are given by

µw =
1

σ2ν
ΣwX>y, (20a)

Σw =
(
X>X/σ2ν + I/σ2w

)−1
. (20b)

We can readily notice that (20a) is the sampled version of
(3), when the prior variance σ2w tends to infinity (i.e., the
prior has no effect of the solution). The precision matrix
(the inverse covariance) is composed of two terms: the
first depends on the data and the other one on the
prior over w. The effect of the prior in the mean and
covariance fades away, as we have more available data.
The estimate for a general input x is computed as in (10)

p(y|x,D)=

∫
p(y|x,w)p(w|D)dw, (21)

which is a Gaussian distribution with mean and variance
given by:

µy = x>µw =
1

σ2ν
x>ΣwX>y (22)

σ2y = x>Σwx + σ2ν (23)

Equations (22) and (23) can be, respectively, rewritten
as (13a) and (16), if we use the inner product between
the xi multiplied by the width of the prior over w, i.e.
the kernel matrix is given by: Kn = Xσ2wIX>. The
kernel matrix must include the width of the prior over
w, because the kernel matrix represents the prior of
the Gaussian process and σ2w is the prior of the linear
Bayesian estimator. By using the Woodbury’s identity, it
follows that

Σw = σ2wI− σ2wIX>
(
σ2νI + Kn

)−1
Xσ2wI. (24)

Now, by replacing (24) in (22) and (23), we,respectively,
recover (13a) and (16). These steps connect the esti-
mation of a Bayesian linear model and the nonlinear
estimation using a kernel or covariance function without
needing to explicitly indicate the nonlinear mapping.

III. COVARIANCE FUNCTIONS

In the previous section, we have assumed that the
covariance functions k(x,x′) are known, which is not
typically the case. In fact, the design of a good co-
variance function is crucial for GPs to provide accurate
nonlinear solutions. The covariance function plays the
same role as the kernel function in SVMs or KLS
[7]. It describes the relation between the inputs and
its form determines the possible solutions of the GPR.
It controls how fast the function can change or how
the samples in one part of the input space affect the
latent function everywhere else. For most problems, we
can specify a parametric kernel function that captures
any available information about the problem at hand.
As already discussed, unlike kernel methods, GPs can
infer these parameters, the so-called hyper-parameters,
from the samples in Dn using the Bayesian framework.
Instead of relying on computational intensive procedures
as cross-validation [13] or learning the kernel matrix
[14], as kernel methods need to.

The covariance function must be positive semi-
definite, as it represents the covariance matrix of a
multidimensional Gaussian distribution. The covariance
can be built by adding simpler covariance matrices,
weighted by a positive hyper-parameter, or by multi-
plying them together, as the addition and multiplication
of positive definite matrices yields a positive definite
matrix. In general, the design of the kernel should rely
on the information that we have for each estimation
problem and should be designed to get the most accurate
solution with the least amount of samples. Nevertheless,
the following kernel in (25) often works well in signal
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processing applications

k(xi,xj) = α1 exp

(
−

d∑
`=1

γ`||xi` − xj`||2
)

+α2x
>
i xj+α3δij ,

(25)
where θ = [α1, γ1, γ2, . . . , γd, α2, α3]

> are the hyper-
parameters. The first term is a radial basis kernel, also
denoted as RBF or Gaussian, with a different length-
scale for each input dimension. This term is universal
and allows constructing a generic nonlinear regressor. If
we have symmetries in our problem, we can use the same
length-scale for all dimensions: γ` = γ for ` = 1, . . . , d.
The second term is the linear covariance function. The
last term represents the noise variance α3 = σ2ν , which
can be treated as an additional hyper-parameter to be
learned from the data. We can add other terms or other
covariance functions that allow for faster transitions, like
the Matérn kernel among others [5].

If the hyper-parameters, θ, are unknown, the likeli-
hood in (8) and the prior in (6) can, respectively, be ex-
pressed4 as p(y|f ,θ) and p(f |X,θ), and we can proceed
to integrate out θ as we did for the latent function, f , in
Section II-B. First, we compute the marginal likelihood
of the hyper-parameters of the kernel given the training
dataset

p(y|X,θ) =

∫
p(y|f ,θ)p(f |X,θ)df . (26)

Second, we can define a prior for the hyper-parameters,
p(θ), that can be used to construct its posterior. Third,
we integrate out the hyper-parameters to obtain the
predictions. However, in this case, the marginal likeli-
hood does not have a conjugate prior and the posterior
cannot be obtained in closed form. Hence, the integration
has to be done either by sampling or approximations.
Although this approach is well principled, it is compu-
tational intensive and it may be not feasible for some
applications. For example, Markov-Chain Monte Carlo
(MCMC) methods require several hundred to several
thousand samples from the posterior of θ to integrate
it out. Interested readers can find further details in [5].

Alternatively, we can maximize the marginal likeli-
hood in (26) to obtain its optimal setting [1]. Although
setting the hyper-parameters by maximum likelihood
(ML) is not a purely Bayesian solution, it is fairly
standard in the community and it allows using Bayesian
solutions in time sensitive applications. This optimiza-
tion is nonconvex [15], but, as we increase the number
of training samples, the likelihood becomes a unimodal
distribution around the ML hyper-parameters and the

4We have dropped the subindex n, as it is inconsequential and
unnecessarily clutters the notation.

solution can be found using gradient ascent techniques.
See [5] for further details.

IV. SPARSE GPS: DEALING WITH LARGE-SCALE

DATA SETS

To perform inference under any GP model, the inverse
of the covariance matrix must be computed. This is a
costly operation, O(n3), that becomes prohibitive for
large enough n. Given the ever-increasing availability
of large-scale databases, a lot of effort has been devoted
over the last decade to the development of approximate
methods that allow inference in GPs to scale linearly
with the number of data points. These approximate
methods are referred to as “sparse GPs”, since they
approximate the full GP model using a finite-basis-set
expansion. This set of bases is usually spawned by using
a common functional form with different parametriza-
tions. For instance, it is common to use bases of the type
{k(zb,x)}mb=1, where {zb}mb=1 —known as the active
set— is a subset of the input samples parametrizing the
bases.

Under the unifying framework of [16], it can be shown
that most relevant sparse GP proposals [17,18], which
were initially thought of as entirely different low-cost
approximations, can be expressed as exact inference
under different modifications of the original GP prior.
This modified prior induces a rank-m (m � n) covari-
ance matrix —plus optional (block) diagonal correcting
terms—, clarifying how the reduced O(m2n) cost of
exact inference arises.

Among the mentioned approximations, the sparse
pseudo-input GP (SPGP) [18] is generally regarded as
the most efficient. Unlike other alternatives, it does not
require the active set to be a subset of the training data.
Instead, {zb}mb=1 can be selected to lie anywhere in the
input space, thus increasing the flexibility of the finite
set expansion. This selection is typically performed by
evidence maximization. An even more flexible option,
which does not require the active set to even lie in the
input domain, is presented in [19].

Despite the success of SPGP, it is worth mentioning
that increasing the number of bases in this algorithm
does not yield, in general, convergence to the full GP
solution because the active set {zb}mb=1 is not constrained
to be a subset of input data. This might lead to overfiting
in some pathological cases. A recent variational sparse
GP proposal that guarantees convergence to the full
GP solution while still allowing the active set to be
unconstrained is presented in [20].

Further approaches yielding reduced computational
cost involve numerical approximations to accelerate
matrix-vector multiplications and compactly supported
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covariance functions which set most entries of the co-
variance matrix to zero [21].

Sparsity is often seen in online signal processing in the
form of pruning, which restricts the active set to a subset
of input data. The success of SPGP and its variational
counterpart suggests that advanced forms of pruning may
result in increased efficiency for a given sparsity level.

V. WARPED GPS: BEYOND THE STANDARD NOISE

MODEL

Even though GPs are very flexible priors for the latent
function, they might not be suitable to model all types
of data. It is often the case that applying a logarithmic
transformation to the target variable of some regression
task (e.g., those involving stock prices, measured sound
power, etc) can enhance the ability of GPs to model it.

In [22] it is shown that it is possible to include
a non-linear preprocessing of output data h(y) (called
warping function in this context) as part of the modeling
process and learn it. In more detail, a parametric form
for z = h(y) is selected, then z (which depends on the
parameters of h(y)) is regarded as a GP, and finally,
the parameters of h(y) are selected by maximizing
the evidence of such GP (i.e., a ML approach). The
authors suggest using h(y) =

∑l
i=1 ai tanh(bi(y + ci))

as the parametric form of the warping function, but any
option resulting in a monotonic function is valid. A non-
parametric version of warped GPs using a variational
approximation has been proposed in [23].

VI. TRACKING NON-STATIONARY SCENARIOS:
LEARNING TO FORGET

KRLS algorithms, discussed in Section II-D, tradition-
ally consider that the mapping function f(·) is constant
throughout the whole learning process [10,24]. However,
in the signal processing domain this function (which
might represent, for instance, a fading channel) is often
subject to changes and the model must account for
this non-stationarity. Some kernel-based algorithms have
been proposed to deal with non-stationary scenarios.
They include a kernelized version of the extended RLS
filter [24], a sliding-window KRLS approach [12] and a
family of projection-based algorithms [25,26].

In order to add adaptivity to the online GP algorithm
described in Section II-D, it is necessary to make it
“forget” the information contained in old samples. This
becomes possible by including a “forgetting” step after
each update

µ←
√
λµ (27a)

Σ← λΣ + (1− λ)K. (27b)

to shift the posterior distribution towards the prior (for
0 < λ < 1), thus effectively reducing the influence of
older samples. Note that when using this formulation
there is no need to store or update C−1, see [9] for fur-
ther details. The adaptive, GP-based algorithm obtained
in this manner is known as KRLS-T.

Equations (27) might seem like an ad-hoc step to
enable forgetting. However, it can be shown that the
whole learning procedure —including the mentioned
controlled forgetting step— corresponds exactly to a
principled non-stationary scheme within the GP frame-
work, as described in [27]. It is sufficient to consider an
augmented input space that includes the time stamp t
of each sample and define a spatio-temporal covariance
function:

kst([t x>]>, [t′ x′>]>) = kt(t, t
′)ks(x,x

′), (28)

where ks(x,x
′) is the already-known spatial covariance

function and kt(t, t
′) is a temporal covariance function

giving more weight to samples that are closer in time.
Inference on this augmented model effectively accounts
for non-stationarity in f(·) and recent samples have
more impact in predictions for the current time instant.
It is fairly simple to include this augmented model
in the online learning process described in the previ-
ous section. When the temporal covariance is set to
kt(t, t

′) = λ
|t−t′|

2 , λ ∈ (0, 1], inference in the augmented
spatio-temporal GP model is exactly equivalent to using
(27) after each update (19) in the algorithm of Section
II-D, which has the added benefit of being inexpensive
and online. See [9,27,28] for further details.

Observe that λ is used here to model the speed at
which f(·) varies, playing a similar rôle to that of the
forgetting factor in linear adaptive filtering algorithms.
When used with a linear spatial covariance, the above
model reduces to linear extended RLS filtering. The
selection of this parameter is usually rather ad-hoc.
However, using the GP framework, we can select it in a
principled manner using Type-II ML, see [27].

In Fig. 3 we take the example of Fig. 2 and we apply
a forgetting factor λ = 0.8. The red continuous line
indicates the original mean function before forgetting.
After applying one forgetting update, this mean function
is displaced toward zero, as indicated by the the blue
dashed line. The shaded gray area represents the error
bars prior to forgetting. The forgetting update expands
this area into the shaded red area, which tends to the
prior variance of 1.
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Fig. 3: Illustration of forgetting step (27) on the GP of
Fig. 2: the dashed line represents the predictive mean
that is pulled towards the prior mean, while the shaded
red area represents the region µy ± 2σy after forgetting.

A. Tracking a time-selective nonlinear communication
channel

To illustrate the validity of the adaptive filtering algo-
rithm, we focus on the problem of tracking a nonlinear
Rayleigh fading channel [29, Chapter 7]. The used
model consists of a memoryless saturating nonlinearity
followed by a time-varying linear channel, as shown in
Fig. 4. This model appears for instance in broadcast
or satellite communications when the amplifier operates
close to saturation regime [30].

In a first, simulated setup, the time-varying linear
fading channel consists of 5 randomly generated paths,
and the saturating nonlinearity is chosen as y = tanh(x).
We fix the symbol rate at T = 1µs, and we simulate two
scenarios: one with a normalized Doppler frequency of
fdT = 10−4 (where fd denotes the Doppler spread),
representing a slow-fading channel, and another one
with fdT = 10−3, corresponding to a fast time-varying
channel. Note that a higher Doppler frequency yields
a more difficult tracking problem, as it corresponds to
a channel that changes faster in time. We consider a
Gaussian source signal, and we add 30 dB of additive
white Gaussian noise to the output signal. Given one
input-output data pair per time instant, the tracking
problem consists in estimating the received signal that
corresponds to a new channel input.

Figs. 5(a,b) illustrate the tracking results obtained by
KRLS-T in these scenarios. As a reference, we include
the performance of several state-of-the-art adaptive filter-
ing algorithms, whose Matlab implementations are taken
from the Kernel Adaptive Filtering Toolbox, available at
http://sourceforge.net/projects/kafbox/. In particular, we

Fig. 4: The nonlinear channel used in the example
consists of a nonlinearity followed by a linear channel.

compare KRLS-T with normalized least mean squares
(NLMS), extended RLS (EX-RLS), both of which are
linear algorithms, see [29], and quantized kernel LMS
(QKLMS) [31], which is an efficient, kernelized version
of the LMS algorithm. A Gaussian kernel k(xi,xj) =
exp(−γ‖xi − xj‖2) is used for QKLMS and KRLS-T.
In each scenario the optimal hyperparameters of KRLS-
T are obtained by performing Type-II ML optimization
(see Section III ) on a separate data set of 500 test
samples. The optimal parameters of the other algorithms
are obtained by performing cross-validation on the test
data set. To avoid an unbounded growth of the matrices
involved in KRLS-T, its memory is limited to 100 bases
which are selected by pruning the least relevant bases
(see [9] for details on the pruning mechanism). The
quantization parameter of QKLMS is set to yield similar
memory sizes. As can be seen in Figs. 5(a,b), KRLS-
T outperforms the other algorithms with a significant
margin in both scenarios. By being kernel-based it is
capable to deal with nonlinear identification problems, in
contrast to the classical EX-RLS and NLMS algorithms.
Furthermore, it shows excellent convergence speed and
steady-state performance when compared to QKLMS.
Additional experimental comparisons to other kernel
adaptive filters can be found in [9].

In a second setup we used a wireless communication
test bed that allows to evaluate the performance of
digital communication systems in realistic indoor envi-
ronments. This platform is composed of several transmit
and receive nodes, each one including a radio-frequency
front-end and baseband hardware for signal generation
and acquisition. The front-end also incorporates a pro-
grammable variable attenuator to control the transmit
power value and therefore the signal saturation. A more
detailed description of the test bed can be found in [32].
Using the hardware platform, we reproduced the model
corresponding to Fig. 4 by transmitting clipped orthog-
onal frequency-division multiplexing (OFDM) signals
centered at 5.4 GHz over real frequency-selective and
time-varying channels. Notice that, unlike the simulated
setup, several parameters such as the noise level and
the variation of the channel coefficients are unknown.
To have an idea about the channel characteristics, we
first measured the indoor channel using the procedure

http://sourceforge.net/projects/kafbox/
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Fig. 5: Tracking results on a nonlinear Rayleigh fading channel: (a) simulation results for a slow-fading scenario;
(b) simulation results for a fast time-varying scenario; (c) tracking results on data measured on the test bed with
fast time-varying channels; (d) channel taps of the noisy linear channels, measured on the test bed setup.

TABLE I: Steady-state NMSE performance for Fig. 5.

NLMS EX-RLS QKLMS KRLS-T

fdT = 10−4, simulated −13.3 dB −13.0 dB −14.6 dB −22.3 dB
fdT = 10−3, simulated −10.6 dB −11.0 dB −9.9 dB −15.3 dB
fdT = 10−3, real data −11.5 dB −12.5 dB −15.8 dB −21.3 dB

described in [32]. As an example, the variation of the
four main channel coefficients is depicted in Fig. 5(d), in-
dicating a normalized Doppler frequency around fdT =
10−3. We then transmitted periodically OFDM signals
with the transmit amplifier operating close to saturation
and acquired the received signals. The transmitted and
received signals were used to track the nonlinear channel
variations as in the simulated setup. The results, shown
in Fig. 5(c), are similar to those of the simulated setup.
Finally, the steady-state NMSE performances of all three
scenarios, Figs. 5(a,b,c), are summarized in Table I.

VII. GAUSSIAN PROCESSES FOR CLASSIFICATION

For classification problems, the labels are drawn from
a finite set and GPs return a probabilistic prediction
for each label in the finite set, i.e., how certain is the

classifier about its prediction. In this tutorial, we limit our
presentation of GPs for classification (GPC) for binary
classification problems, i.e., yi ∈ {0, 1}. For GPC, we
change the likelihood model for the latent function at x
using a response function Φ(·):

p(y = 1|f(x)) = Φ(f(x)). (29)

The response function “squashes” the real-valued latent
function to an (0, 1)-interval that represents the posterior
probability for y [5]. Standard choices for the response
function are Φ(a) = 1/(1+exp(−a)) and the cumulative
density function of a standard normal distribution, used
in logistic and probit regression respectively.

The integrals in (10) and (11) are now analytically
intractable, because the likelihood and the prior are not
conjugated. Therefore, we have to resort to numerical



IEEE SIGNAL PROCESSING MAGAZINE, VOL. 30, NO. 4, JULY 2013 10

methods or approximations to solve them. The posterior
distribution in (7) is typically single-mode and the stan-
dard methods approximate it with a Gaussian [5]. Using
a Gaussian approximation for (7) allows exact marginal-
ization in (11) and we can use numerical integration for
solving (10), as it involves marginalizing a single real-
valued quantity. The two standard approximations are the
Laplace method or expectation propagation (EP) [33]. In
[2], EP is shown to be a more accurate approximation.

A. Probabilistic channel equalization

GPC predictive performance is similar to other non-
linear discriminative methods, such as SVMs. However,
if the probabilistic output is of importance, then GPC
outperforms other kernel algorithms, because it naturally
incorporates the confidence interval in its predictions. In
digital communication, channel decoders follow equal-
izers, which work optimally when accurate posterior
estimates are given for each symbol. To illustrate that
GPC provide accurate posterior probability estimates,
we equalize a dispersive channel model like the one in
Fig. 4 using GPC and SVM with a probabilistic output.
These outputs are subsequently fed to a low-density
parity-check (LDPC) belief-propagation based channel
decoder to assess the quality of the estimated posterior
probabilities. Details for the experimental set up can
be found in [34] in which linear and nonlinear channel
models are tested. We now summarize the results for the
linear channel model in that paper.

In Fig. 6, we depict the posterior probability estimates
versus the true posterior probability, in (a) for the GPC-
based equalizer and in (b) for SVM-based equalizer, to
emphasize the differences between the equalizers we use
a highly noisy scenario with normalized signal-to-noise
ratio of 2 dB. If we threshold at 0.5, both equalizers
provide similar error rates and we cannot tell if there
is an advantage from using GPC. However, if we con-
sider the whole probability space, GPC predictions are
significantly closer to the main diagonal that represents
a perfect match, hence GPC provides more accurate
predictions to the channel decoder.

To further quantify the gain from using a GPC-based
equalizer with accurate posterior probability estimates,
we plot the bit error rate (BER) in Fig. 7 after the
probabilistic channel encoder, in which the GPC-based
equalizer clearly outperforms the SVM-based equalizer
and is close to the optimal solution (known channel
and forward-backward (BCJR) equalizer). This example
is illustrative of the results that can be expected from
GPC when a probabilistic output is needed to perform
optimally.

0 1 2 3 4 5
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10 3

10 2

10 1

Eb/No (dB)

BE
R

 

 

GPC LDPC
SVM Platt LDPC
BCJR LDPC

Fig. 7: GPC and SVM as probabilistic channel equalizer
in channel LDPC decoding: BER for the GPC-LDPC
(O), the SVM-LDPC (◦) and the optimal solution (�).

VIII. DISCUSSION

In this tutorial, we have presented Gaussian Processes
for Regression in detail from the point of view of
MMSE/Wiener filtering, so it is amenable to signal
processing practitioners. GPR provides the same mean
estimate as KLS or KRR for the same kernel matrix.
On the plus side, GPR provides error bars that take into
account the approximation error and the error from the
likelihood model, so we know the uncertainty of our
model for any input point (see Fig. 2 ), while KLS as-
sumes the error bars are given by the likelihood function
(i.e., constant for the whole input space). Additionally,
GPR naturally allows computing the hyper-parameters
of the kernel function by sampling or maximizing the
marginal likelihood, being able to set tens of hyper-
parameters, while KLS or SVM need to rely on cross-
validation, in which only one or two parameters can be
easily tuned. On the minus side, the GP prior imposes
a strong assumption on the error bars that might not be
accurate, if the latent variable model does not follow a
Gaussian process. Although, in any case, it is better than
not having error bars.

We have also shown that some of the limitations of
the standard GPR can be eased. GPs can be extended
to non-Gaussian noise models and classification prob-
lems, in which GPC provides an accurate a posteriori
probability estimate. The computational complexity of
GPs can be reduced considerably, from cubic to linear
in the number of training examples, without significantly
affecting the mean and error bars prediction. Finally, we
have shown the GP can be solved iteratively, with an
RLS formulation that can be adapted to non-stationary
environments efficiently.
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Fig. 6: GPC as probabilistic channel equalizer: (a) calibration curve for the GPC and (b) calibration curve for the
SVM.

Instead of covering more methods and applications in
detail, our intention was to provide a tutorial paper on
how to use GPs in signal processing, with a number
of illustrative examples. Nevertheless, since we assume
that there are several other methods and applications that
are relevant to the reader, we finish with a brief list of
further topics. In particular, GPs have also been applied
to problems including modeling human motion [35],
source separation [36], estimating chlorophyll concentra-
tion [37], approximating stochastic differential equations
[38] and multi-user detection [39], among others.
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