
ME/CS 133(a): The Classical Matrix Groups

The notes provide a brief review of matrix groups, with a particular focus on the “classical”
matrix groups. The primary goal is to motivate the language and symbols used to represent
rotations (SO(2) and SO(3)) and spatial displacements (SE(2) and SE(3)).

1 Groups

Definition 1 : A group, G, is a mathematical structure with the following characteristics
and properties:

i. the group consists of a set of elements {gj} which can be indexed. The indices j may
form a finite, countably infinite, or continous (uncountably infinite) set.

ii. An associative binary group operation, denoted by
′∗′, termed the group product. The

product of two group elements is also a group element:

∀ gi, gj ∈ G gi ∗ gj = gk, where gk ∈ G.

The associativity of the group operation implies that (gi ∗ gj) ∗ gk = gi ∗ (gj ∗ gk).

iii. A unique group identify element, e, with the property that: e ∗ gj = gj for all gj ∈ G.

iv. For every gj ∈ G, there must exist an inverse element, g−1
j , such that

g−1
j ∗ gj = e.

Note that the above definition introduces the identity e as a left identity (i.e., the identity
multiplies a group element on the left). Similarly, the inverse of group element gi was defined
as a left inverse, where the inverse element multiplies the group element on the left. The
group definition can be used to show that e is also a right identity (i.e., e ∗ g = g ∗ e = g)
and g−1 is a right inverse of g (g−1 ∗ g = g ∗ g−1 = e).

Proof: (that the left inverse g−1 is also a right inverse)

g−1 = e ∗ g−1 = (g−1 ∗ g) ∗ g−1 = g−1 ∗ (g ∗ g−1) (1)

Next note that by the definition of the left inverse introduced above

e = (g−1)−1 ∗ g−1 .

Substitute from Equation (1) the expression for g−1, and then simplify:

e = (g−1)−1 ∗ g−1 ∗ (g ∗ g−1) = ((g−1)−1 ∗ g−1) ∗ (g ∗ g−1) = e ∗ (g ∗ g−1) = g ∗ g−1
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where the last equality arises from the left identity definition of e. Since we have shown that
e = g ∗ g−1, then g−1 must also be a right inverse of g.

Proof: (that the left identity e is also a right identity)

g = e ∗ g = (g ∗ g−1) ∗ g = g ∗ (g−1 ∗ g) = g ∗ e

where the second equality used the just-proved relationship that e = g ∗ g−1. Hence, e is
also a right identify.

Simple examples of groups include the integers, Z, with addition as the group operation, and
the real numbers mod zero, R− {0}, with multiplication as the group operation.

1.1 The General Linear Group, GL(N)

The set of all N ×N invertible matrices with the group operation of matrix multiplication
forms the General Linear Group of dimension N . This group is denoted by the symbol
GL(N), or GL(N,K) where K is a field, such as R, C, etc. Generally, we will only consider
the cases where K = R or K = C, which are respectively denoted byGL(N,R) andGL(N,C).
By default, the notation GL(N) refers to real matrices; i.e., GL(N) = GL(N,R).

The identity element of GL(N)is the identify matrix, and the inverse elements are clearly
just the matrix inverses. If matrix A is invertible (implying that det(A) 6= 0), then matrix
A−1 is invertible as well. Note that the product of invertible matrices is necessarily invertible.
This can be shown as follows. If matrices A and B are invertible (i.e. A,B ∈ GL(N)),
then det(A) 6= 0 and det(B) 6= 0. Hence, det(AB) = det(A) det(B) 6= 0. Similarly,
det[(AB)−1] = det[A−1] det[B−1] = (1/det(A)) (1/det(B)) 6= 0. Thus, a matrix which is
formed from the product of two invertible matrices is invertible and in GL(N).

2 Subgroups

A subgroup, H, of G (denoted H ⊆ G) is a subset of G which is itself a group under the
group operation of G. Note that this subgroup must contain the identity element.

The General Linear Group has several important subgroups, which as a family make up the
Classical Matrix Subgroups.

2.1 The Classical Matrix Subgroups

The Special Linear Group, SL(N), consists of all members of GL(N) whose determinant
has a value of +1. To see that this set of matrices forms a group, note that if A,B ∈ SL(N),
then to show that A ∗ B ∈ SL(N), note that det(AB) = det(A) · det(B) = 1 · 1 = 1.
Also, for any A ∈ SL(N), det(A−1) = [det(A)]−1 = [1]−1 = 1, so that every inverse is a
member of SL(N).
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The Orthogonal Group, O(N), consists of all real N × N matrices with the property
that:

AT A = I for all A ∈ O(N)

(Note that this relationship and the group properties also implies that for any A ∈ O(N),
A AT = I as well). As described in class, the group O(N) can represent spherical dis-
placements in N -dimensional Euclidean space. To check that O(N) forms a group, note
that:

• The product of two orthogonal matrices is an orthogonal matrix. Let A,B ∈ O(N).
Then: (AB)T (AB) = BT AT A B = BT B = I, and thus the product AB is
orthogonal.

• Recall that the inverse of an orthogonal matrix is the same as its transpose: AT = A−1

for all A ∈ O(N). Thus, since ATA = I for othogonal matrices, it is also true that the
inverse of A, A−1, is an orthogonal matrix: [A−1]T A−1 = [AT ]T AT = A AT = I.

The Special Orthogonal Group, SO(N), consists of all orthogonal matrices whose de-
terminants have value +1. To show that these matrices form a group, we can immediately
apply the results from the analyses of O(N) and SL(N) above to further show that the
product of matrices in SO(N) has determinant +1, and that the inverses of all matrices in
SO(N) have determinant +1.

The Unitary Group, U(N), consists of orthogonal matrices with complex matrix entries:
U(N) = O(N,C). Note that in this case of complex valued matrices, the matrix trans-
pose operation is replaced by the Hermitian operation (transpose and complex conjugation):
A∗ A = I for all A ∈ U(N), where A∗ is the transposed complex conjugate of A.

The Special Unitary Group, SU(N), consists of those unitary matrices with determinant
having value +1.

The Special Euclidean Group, SE(N), consists of all rigid body transformations of
N -dimensional Euclidean space which preserve the length of vectors (i.e., distances between
points). Matrices in SE(2) describe planar rigid body displacements, while matrices in SE(3)
describe spatial rigid body displacements. Matrices g in SE(N) take the form:

g =

[
R ~d
~0T 1

]
where R ∈ SO(N), ~d ∈ RN , and the vector ~0 is an N -vector whose elements are
identically zero. If ~p1 and ~p2 are two vectors in Rn, and ~p1, h and ~p2, h are their homogeneous
coordinates, then g(~p2,h − ~p1,h) is a homogeneous vector equivalent to R(~p2 − ~p1), and
||R(~p2 − ~p1|| = ||(~p2 − ~p1||

2.2 Some Simple Examples

• GL(1) = R− {0}.
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• GL(1,C) = C− {0}.

• O(1) = {1,−1}.

• SO(1) = {1}.

• SU(1) = {eiθ}, for all θ ∈ R.

• SO(2) = 2× 2 matrices of the form:[
cos θ − sin θ
sin θ cos θ

]

Note, the groups SO(2) and SU(1) are isomorphic because there is a one-to-one correspon-
dence between every element in the two groups.
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