
ME/CS 133(a): Solution to Homework #3

Problem 1: (Problem 6(a,b,d) in Chapter 2 of MLS).

Part (a): Let Q = (q0, ~q) and P = (p0, ~p) be unit quaternions—i.e., QQ∗ = PP ∗ = 1.
The set of unit quaternions is a group if you can show that: (i) multiplication is associative;
(ii) the product of group elements yields a group element; (iii) the set contains an identity
element; (iv) every group element has an inverse element, and the inverse is in the group.

(i) Since quaternions themselves are a group, multiplication between them is associative.
So, for any quaternions R, S, and T , R(ST) = (RS)T . Then, in particular, for unit
quaternions this property must hold.

Alternatively, one show also associativity directly, by showing that for 3 unit quater-
nions Q, P , R, we have P (QR) = (PQ)R; note that this holds for quaternions
of any magnitude, as we do not have to use that they are unit quaternions in the
proof. This method involves applying the quaternion multiplication formula, QP =
(q0p0− ~q · ~p, q0~p+ p0~q+ ~q× ~p), twice in evaluating each side, and then using the vector

identities ~a · (~b× ~c) = ~b · (~c× ~a) = ~c · (~a×~b) and ~a× (~b× ~c) = ~b(~a · ~c)− ~c(~a ·~b). Full
mathematical details are not shown here, but via these identities, one can show that
P (QR) = (PQ)R = (r0p0q0 − r0(~q · ~p)− q0(~r · ~p)− p0(~r · ~q)− ~r · (~q × ~p), r0(q0~p+ p0~q +
~q × ~p) + (q0p0 − ~q · ~p)~r + ~r × (q0~p+ p0~q + ~q × ~p)).

(ii) The product of unit quaternions, QP , is a unit quaternion if and only if QP (QP)∗ = 1.
We will show that (QP)∗ = P ∗Q∗. From here, it follows that QP (QP)∗ = QPP ∗Q∗ =
QQ∗ = 1, using associativity of quaternion multiplication and that Q, P are both unit
quaternions.

Now, we just need to prove that (QP)∗ = P ∗Q∗. We demonstrate this via quaternion
multiplication and using that for any quaternion Q, Q∗ = (q0,−~q):

QP = (q0p0 − ~q · ~p, q0~p+ p0~q + ~q × ~p)
(QP)∗ = (q0p0 − ~q · ~p,−q0~p− p0~q − ~q × ~p)
P ∗Q∗ = (p0,−~p) · (q0,−~q) = (q0p0 − (−~p) · (~q), q0(−~p) + p0(−~q) + (−~q ×−~p))

= (q0p0 − ~q · ~p,−q0~p− p0~q − ~q × ~p)
= (QP)∗

(iii) The identity quaternion is: e = (1, 0, 0, 0) = 1 + 0 · i + 0 · j + 0 · k. This is a unit
quaternion, as q20 + q21 + q22 + q23 = 1.

(iv) The inverse of any unit quaternion Q is Q∗, which is also a unit quaternion, since
Q∗(Q∗)∗ = Q∗Q = (QQ∗)∗ = 1∗ = 1.

1

Part (b): If a unit quaternion, Q, has real part q0 and vector part ~q, and ~x = [x1 x2 x3]
T

is represented as a pure quaternion X = (0, x1, x2, x3) = 0 + ~x, then:

XQ−1 = (~x · ~q, q0~x− (~x× ~q)),

where ~x · ~q is the real part and q0~x− (~x× ~q) is the vector part.

Similarly, the product QXQ−1 is:

QXQ−1 = (q0(~x · ~q)− ~q · (q0~x− ~x× ~q), q0(q0~x− ~x× ~q) + (~x · ~q)~q + ~q × (q0~x− ~x× ~q))

The real part of QXQ−1 is:

(~x · ~q)q0 − ~q · [q0~x− (~x× ~q)] = q0(~x · ~q)− q0(~x · ~q) + ~q · (~x× ~q) = 0,

where the equality comes from the identity ~a · (~b× ~c) = ~b · (~c× ~a).

Thus QXQ−1 is a pure quaternion when X is.

The vector part of QXQ−1 is:

q0(q0~x− ~x× ~q) + (~x · ~q)~q + ~q × (q0~x− ~x× ~q)
= q0

2~x− q0(~x× ~q) + (~x · ~q)~q + q0(~q × ~x)− ~q × (~x× ~q)
= q20~x− 2q0(~x× ~q) + (~x · ~q)~q − [(~q · ~q)~x− (~x · ~q)~q]
= [q20 − (~q · ~q)]~x+ 2[(~x · ~q)~q + q0(~q × ~x)]

where we have used the triple cross product identity: ~a× (~b× ~c) = (~a · ~c)~b− (~a ·~b)~c

Next, we need to verify that the vector part of QXQ∗ describes the point to which ~x is
rotated under the rotation associated with Q.

Firstly, we will show that the vector part of QXQ∗ can be rewritten as ~x+ 2[~q × (~q × ~x) +
q0(~q × ~x)]. That is, we would like to show:

~x+ 2[~q × (~q × ~x) + q0(~q × ~x)] = [q20 − (~q · ~q)]~x+ 2[(~x · ~q)~q + q0(~q × ~x)] (1)

We cancel 2q0(~q × ~x) from both sides and use the fact that q20 = 1− ~q · ~q, which comes from
the fact that Q is a unit quaternion. This gives us that Equation (1) is equivalent to the
following:

~x+ 2[~q × (~q × ~x)] = [1− 2(~q · ~q)]~x+ 2[(~x · ~q)~q]

Canceling ~x from both sides and dividing by 2, we find that this is equivalent to:

~q × (~q × ~x) = −(~q · ~q)~x+ (~x · ~q)~q

2

From the triple cross product identity: ~a× (~b× ~c) = (~a · ~c)~b− (~a ·~b)~c, we know that this is
a true statement for any vectors ~x and ~q, thus proving the desired statement.

Now, we would like to show that the vector expression ~v := ~x + 2[~q × (~q × ~x) + q0(~q × ~x)]
is equal to R~x, where R is the rotation matrix associated with the quaternion Q. We will
transform first from quaternion coordinates to the equivalent angle-axis coordinates (θ, ~ω),
and then from angle-axis coordinates to the corresponding rotation matrix R.

First, recall from page 34 of MLS that Q = (q0, ~q) =
(
cos(θ

2
), ~ω sin θ

2

)
. This gives us that

θ = ±2 arccos(q0), and that ~ω = ~q

sin(θ
2
)

if θ 6= 0 and ~ω = 0 otherwise. Since both possible

(θ, ~ω) pairs give the same equivalent rotation R, without loss of generality, we can pick
θ = 2 arccos(q0).

We can ignore the case in which θ = 0, since then ~ω = ~q = 0, and it is clear that R = I,
R~x = ~x, and the vector part of QXQ∗ is ~x.

Next, we transform from angle-axis coordinates (θ, ~ω) to R = eθω̂. We can do this using
Rodrigues’ formula, R = eθω̂ = I + ω̂ sin θ+ ω̂2(1− cos θ). Note that this form of Rodrigues’
formula is valid when ~ω is a unit vector; here we can confirm that this is indeed the case:

||~ω||2 =
||~q||2

sin2(θ
2
)

=
1− q20
sin2(θ

2
)

=
1− cos2(θ

2
)

sin2(θ
2
)

=
sin2(θ

2
)

sin2(θ
2
)

= 1

At this point, we have developed expressions to calculate θ and ~ω from Q, and to calculate
R from θ and ~ω. Showing that ~v = R~x by hand is doable, but involves tedious algebra. The
attached Matlab code demonstrates the usage of Matlab’s symbolic toolbox to show that
the two expressions are equivalent (using Mathematica would also work well here).

3

1

% Code for ME/CS 133 Homework 3 problem 1b.

clear; clc; close all;

syms q0 q1 q2 q3 theta x1 x2 x3 % Declare symbolic variables

% Define vectors x and q, where q is the vector portion of the
 quaterion:
x = [x1; x2; x3];
q = [q1; q2; q3];

% Define theta and w_hat in term of elements of quaternion Q:
theta = @(q0)(2*acos(q0));

w_hat = @(q1, q2, q3, theta)([0, -q3, q2; q3, 0, -q1; -q2, q1,
 0] ./ ...
 sin(theta/2));

% Use Rodriguez' formula to transform from theta and w_hat to a
 rotation
% matrix R. Note that we can use the form of the equation for w being
 a
% unit vector, since we have shown that this is the case.
R = @(w_hat, theta)(eye(3) + w_hat .* sin(theta) + ...
 w_hat^2 .* (1 - cos(theta)));

% Rotate point x by rotation R:
fprintf('x under rotation R:\n');

% Evaluate R in terms of elements of Q.
w_hat_eval = w_hat(q1, q2, q3, theta(q0));
R_eval = R(w_hat_eval, theta(q0));

% Simplify and print out the answer:
R_eval = simplify(R_eval * x);
collect(R_eval, [x1, x2, x3])

% Vector expression for vector portion of QXQ*:
v = x + 2 .* (cross(q, cross(q, x)) + q0 .* cross(q, x));

fprintf('Vector portion of QXQ*:\n');
collect(v, [x1, x2, x3])

x under rotation R:

ans =

 (- 2*q2^2 - 2*q3^2 + 1)*x1 + (2*q1*q2 - 2*q0*q3)*x2 + (2*q0*q2 +
 2*q1*q3)*x3
 (2*q0*q3 + 2*q1*q2)*x1 + (- 2*q1^2 - 2*q3^2 + 1)*x2 + (2*q2*q3 -
 2*q0*q1)*x3
 (2*q1*q3 - 2*q0*q2)*x1 + (2*q0*q1 + 2*q2*q3)*x2 + (- 2*q1^2 - 2*q2^2
 + 1)*x3

2

Vector portion of QXQ*:

ans =

 (- 2*q2^2 - 2*q3^2 + 1)*x1 + (2*q1*q2 - 2*q0*q3)*x2 + (2*q0*q2 +
 2*q1*q3)*x3
 (2*q0*q3 + 2*q1*q2)*x1 + (- 2*q1^2 - 2*q3^2 + 1)*x2 + (2*q2*q3 -
 2*q0*q1)*x3
 (2*q1*q3 - 2*q0*q2)*x1 + (2*q0*q1 + 2*q2*q3)*x2 + (- 2*q1^2 - 2*q2^2
 + 1)*x3

Published with MATLAB® R2016a

Part (d):

(i) If A1, A2 ∈ SO(3), then each of the 9 elements in the product matrix A1A2 requires
3 multiplications and 2 additions. Hence, the product A1A2 requires a total of 27
multiplications and 18 additions.

(ii) Let Q1 and Q2 be quaternions, with respective real and vector parts q10, q20 and ~q1,
~q2. The real part of the quaternion product, q10q20 − ~q1 · ~q2, requires 4 multiplications
and 3 additions (where the subtraction is counted as an addition). The vector part,
~q3 = q10~q2 + q20~q1 + ~q1 × ~q2, can be evaluated in 12 multiplications and 9 additions.
Thus, the quaternion product requires a total of 16 multiplications and 12 additions.
It is therefore more efficient than the equivalent matrix multiplication.

(iii) The rotation of a vector by multiplication of a 3×3 rotation matrix times a 3×1 vector
requires only 9 multiplications and 6 additions, since the evaluation of each element of
the resultant vector requires 3 multiplications and 2 additions.

(iv) The number of multiplications and additions for the equivalent quaternion operation
will depend upon the form which one uses for the quaternion vector rotation. Using
the identity 1 = q20 + ~q · ~q, it is possible to show that the vector part of QXQ−1 in
part (b) above can be rearranged (shown in part b) to the form:

~x+ 2[~q × (~q × ~x) + q0(~q × ~x)]

Since ~q × ~x need only be evaluated once, this takes only 18 multiplications and 12
additions. However, no matter what form one tries, the quaternion approach will
always take more operations than the matrix/vector approach for vector rotation.

Problem 2: We can use the “particle counting” argument that was used in class during
the discussion of planar kinematics. Let’s solve the problem for rigid bodies moving in an
n-dimensional space. Then we can specialize to the case n = 3 (3-dimensional Euclidean
space).

The particles that make up a rigid body in an n-dimensional Euclidean space each have n
degrees-of-freedom (DOF) when they are not constrained to be in a rigid body. The key
thing to recognize is that the number of constraints needed to join the particles to make a
rigid body. For particles in an n-dimensional space, the total number of DOF for N particles,
which are not constrained to be a rigid body, is nN . The first particle, P1, has no constraints
on its motion. Particle P2 has one constraint on its location to be joined to the rigid body,
etc. Partial Pn has (n − 1) constraints. Particles Pn+1, . . . , PN have n constraints. So, the
total DOF has of the rigid body is the sum of the DOF of all particles without constraints,
minus the number of constraints:

Nn − [(N − n)n+
n∑
i=1

(n− i)] = n2 −
n∑
i=1

(n− i) = n2 − 1

2
(n2 − n) =

1

2
(n2 + n)

4

For n = 3, we get the answer:
1

2
(32 + 3) = 6.

Problem # 3: (Problem 11(a,b,d) in Chapter 2 of the MLS text)

Part (a): Recall that the matrix exponential of a twist, ξ̂, is:

eφξ̂ = I +
φ

1!
ξ̂ +

φ2

2!
ξ̂2 +

φ3

3!
ξ̂3 + · · ·

To show that the exponential of the twist is in SE(2), we must show that eφξ̂ takes the
homogeneous form of a displacement, i.e.

eφξ̂ =

[
R p
~0 1

]
,

where R is a rotation matrix and p is any vector in R2.

First, let’s consider the case of ξ = (v, ω) with ω = 0. If:

ξ̂ =

0 0 vx
0 0 vy
0 0 0


then ξ̂2 = 0. Thus, ξ̂n = 0 for n ≥ 2, and

eφξ̂ = I + φξ̂ =

1 0 φvx
0 1 φvy
0 0 1

 =

[
I ~vφ
~0t 1

]
To compute the exponential for the more general case in which ω 6= 0, let us assume that
||ω|| = 1 by the appropriate scaling of φ. In this case, note that ω̂2 = −I, where I is the
2 × 2 identity matrix. It is easiest if we choose a different coordinate system in which to
perform the calculations. Let

ξ̂ =

0 −ω vx
ω 0 vy
0 0 0

 =

[
ω̂ ~v
~0T 0

]
Let

g =

[
I ω̂~v
~0T 1

]
Let us define a new twist, ξ̂

′
:

ξ̂
′
= g−1ξ̂g =

[
I −ω̂~v
0 1

] [
ω̂ ~v
0 0

] [
I ω̂~v
0 1

]
=

[
ω̂ (ω̂2~v + ~v)
0 0

]
=

[
ω̂ 0
0 0

]
5

where we made use of the identity ω̂2 = −I. That is, we have chosen a coordinate system
in which ξ̂

′
corresponds to a pure rotation. Thus,

eφξ̂
′

=

[
eφω̂ 0
0 1

]
.

Using Eq. (2.35) on page 42 of the MLS text:

eφξ̂ = geφξ̂
′

g−1 =

[
eφω̂ (I − eφω̂)ω̂~v
0 1

]
which is clearly an element of SE(2).

Part(b): In the pure translation case, we know from part (a) that w = 0 and the twist
matrix takes the form

ξ̂ =

0 0 vx
0 0 vy
0 0 0

 .
.

Then, (ξ̂)∨ = [vxvy0]T .

The twist corresponding to pure rotation about a point ~q = (qx, qy) can be thought of as a
coordinate transformation of a twist ξ

′
= (0, 0, ω)—which is pure rotation—by a transfor-

mation h, which is pure translation by ~q. ξ
′

is a pure rotation about the origin, and then we
translate using the displacement matrix h:

h =

[
I ~q
0 1

]

Then, ξ̂ = hξ̂
′
h−1. Note that eξ̂φ = ehξ̂

′
h−1φ = heξ̂

′φh−1. Thus, the twist matrix ξ̂
′

corre-
sponds to a rotation in a coordinate frame with origin at ~q, while multiplication by h and
h−1 corresponds to observing this rotation at the global origin.

ξ = Adhξ
′
= (hξ̂

′
h−1)∨, (2)

where ξ̂
′
=

[
ω̂ 0
~0T 0

]
. Expanding Eq. (2) gives:

ξ = (hξ̂
′
h−1)∨ =

[
ω̂ −ω̂~q
~0T 0

]∨
=

 ωqy
−ωqx
ω

 =

 qy
−qx

1

 ,
where the last step assumes that ω = 1.

Part (d): Let

g =

[
A ~p
~0T 1

]
6

where A ∈ SO(2) and ~p ∈ R2. Then direct calculation shows that ġg−1 and g−1ġ are twists:

V̂ s = ġg−1 =

[
Ȧ ~̇p
~0T 0

] [
AT −AT~p
~0T 1

]
=

[
ȦAT ~̇p− ȦAT~p
~0T 0

]

To finish showing that V̂ s is a twist, we must show that ȦAT is skew-symmetric. This can
be shown as in lecture:

AAT = I → ȦTA+ AT Ȧ = 0→ AT Ȧ = −(ȦTA) = −(AT Ȧ)T

Similarly,

V̂ b = g−1ġ =

[
AT −AT~p
~0T 1

] [
Ȧ ~̇p
~0T 0

]
=

[
AT Ȧ AT ~̇p
~0T 0

]
,

Similarly, we can show that AT Ȧ is skew-symmetric by differentiating both sides of ATA = I.

The spatial and body velocities have definitions analogous to those for 3-dimensional rigid
bodies.

Problem 4:

Part (a): Elements of SU(2) have the form:

[
z w
−w∗ z∗

]
=

[
(a+ ib) (c+ id)
−(c− id) (a− ib)

]
where zz∗ + ww∗ = a2 + b2 + c2 + d2 = 1. To show that the matrices[

1 0
0 1

] [
i 0
0 −i

] [
0 1
−1 0

] [
0 i
i 0

]
form a basis for SU(2), let A, B, C, and D be real numbers. Then, the matrix formed by
the product of A, B, C,and D with these matrices is:

A

[
1 0
0 1

]
+B

[
i 0
0 −i

]
+ C

[
0 1
−1 0

]
+D

[
0 i
i 0

]
=

[
A+ iB C + iD
C − iD A− iB

]
.

This is a matrix in SU(2) for any choice of A, B, C, and D where A2 +B2 + C2 +D2 = 1.
Any matrix in SU(2) can be written as a linear combination of these 4 matrices in this
way, and thus they span SU(2). The 4 matrices are also linearly independent (none can be
written as a linear combination of the others), and thus they form a basis for SU(2).

Thus these four basis matrices for SU(2) are in 1-to-1 correspondence with the 1, i, j, and
k basis elements for the quaternions. Thus, the scalar elements A, B, C, and D are in

7

one-to-one correspondence with the scalar elements of unit quaternions. That is, let a unit
quaternion be represented by q = λ1 +λ2i+λ3j+λ4k = (λ1, λ2, λ3, λ4). The correspondence
is then:

λ1 = A = Re(z) =
z + z∗

2
(3)

λ2 = B = Im(z) =
i(z∗ − z)

2
(4)

λ3 = C = Re(w) =
w + w∗

2
(5)

λ4 = D = Im(w) =
i(w∗ − w)

2
(6)

Part (b): The unit quaternion elements are in one-to-one correspondence with the Euler
parameters of a rotation: (λ1, λ2, λ3, λ4) = (cos φ

2
, ωx sin φ

2
, ωy sin φ

2
, ωz sin φ

2
), where φ is the

rotation about an axis represented by a unit vector ~ω = [ωx ωy ωz]
T . A 2 × 2 complex

matrix which represents an arbitrary rotation as a function of the z-y-x Euler angles can be
developed as the product of 2 × 2 complex matrices which represent rotations about the z,
y, and x axes.

Consider a rotation about the x-axis of amount γ. Since ~w = [1, 0, 0]T , this is represented
by the quaternion in which λ1 = cos γ

2
, λ2 = sin γ

2
, λ3 = λ4 = 0:

Mx =

[
(cos γ

2
+ i sin γ

2
) 0

0 (cos γ
2
− i sin γ

2
)

]
=

[
ei

γ
2 0

0 e−i
γ
2

]
.

Similarly, a rotation of amount φ about the y-axis has λ1 = cos φ
2
, λ2 = 0,λ3 = sin φ

2
, λ4 = 0.

This can be represented as:

My =

[
cos φ

2
sin φ

2

− sin φ
2

cos φ
2

]
Finally, a rotation of amount ψ about the z-axis has λ1 = cos ψ

2
, λ2 = λ3 = 0, λ4 = sin ψ

2
,

and can be represented as:

Mz =

[
cos ψ

2
i sin ψ

2

i sin ψ
2

cos ψ
2

]
The product of these matrices, MzMyMx, yields the result.

8

