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Abstract: As a data-driven, equation-free decomposition method, the DMD can characterise dynamic behaviour of a non-
linear system by using the DMD modes and eigenvalues. However, all current provable algorithms suffer from a separate
procedure for obtaining the DMD modes and determining the number of modes. In this study, the authors propose a
nuclear norm regularised DMD (NNR-DMD) algorithm that produces low-dimensional spatio-temporal modes. A
nuclear norm regularisation term is added to the optimisation problem of the standard DMD algorithm for prompting
the sparsity of the projected DMD modes. Split Bregman method is applied to solve the regularised convex, but non-
smooth optimisation problem. Several numerical examples demonstrate the potential of the proposed NNR-DMD
algorithm: (i) it can identify the low-dimensional spatio-temporal DMD modes in which each of them possesses a
single temporal frequency; (ii) the reconstruction errors based on the sparse DMD modes can be reduced when it
compares with the sparsity-promoting DMD algorithm penalising the l1-norm of the vector of DMD amplitudes; and (iii)
it can obtain low-dimensional coherent structures when the NNR-DMD algorithm is applied to coherency identification
of generators in an interconnected power system.
1 Introduction

As a powerful tool developed in the fluid mechanics community,
dynamic mode decomposition (DMD) can capture information
about dynamics of a flow even when these dynamics are
non-linear [1]. DMD modes obtained from data in simulations or
in experiments identify coherent structures in fluid flows. Although
the DMD was first introduced in [2] only for evaluating fluid
dynamics, the DMD has been widely used to analyse
observational data arising from complex, high-dimensional
systems that may be described by a low-dimensional attractor
subspace defined by a few coherent structures [3]. In [4], the
DMD is used for background/foreground separation in videos. The
DMD modes can be interpreted as stationary background pixels, or
low-rank components of the data matrix. In [5], a DMD model is
learned for behaviour-specific parameter configurations in physical
human–robot interaction tasks. Therefore, the importance of the
DMD is verified in the field of robotics. In [6], a
physically-motivated DMD algorithm is presented to monitor the
spatial and temporal dynamics of non-linear transient phenomena
in power systems. The DMD modes can be used to identify the
coherent generators.

One of the main advantages of using the DMD is that it is a
data-driven, equation-free method to reconstruct the underlying
low-dimensional dynamics of the system from snapshot
measurements alone [7]. Although there are numerous data-driven,
equation-free decomposition methods such as singular value
decomposition (SVD), principal component analysis (PCA),
independent component analysis, the DMD can characterise
non-linear dynamics of the system by using the DMD modes and
eigenvalues. Theoretically, the DMD can be interpreted as a
numerical approximation to Koopman spectral analysis using
linear transformations on Hilbert space to analyse Hamiltonian
system [1]. For Koopman spectral analysis, a linear but
infinite-dimensional Koopman operator is introduced to capture the
full information of the nonlinear dynamical system even if the
governing dynamics of the system are finite dimensional. Thus,
DMD is applicable to nonlinear systems since it approximates the
Koopman modes and eigenvalues, but not the Koopman
eigenfunctions [8]. For a comprehensive understanding of the
connection between the DMD and other data-driven
decomposition methods, we refer reader to [9].

The DMD method is closely related to proper orthogonal
decomposition (POD) method which sometimes also called PCA
or Karhunen–Loeve decomposition method introduced for the
fluids community by Lumley [10] and Sirovich [11]. The POD
method allows the given data to be represented as a linear
combination of basic functions, or modes. The POD modes
containing multi-frequency temporal components are spatial
orthogonal. The DMD modes can be viewed as the linear
combinations of the POD modes, which may be non-orthogonal.
However, each DMD mode corresponds to a single-frequency
component, which can provide an interpretation in terms of decay
rate and frequency of this component. Therefore, although the
DMD modes lack spatial orthogonality, they may be essential to
capturing important system dynamics, while the POD modes fail
intrinsically to provide any dynamical information. However, the
major pitfall of the DMD method is that it is not entirely clear
how to obtain to a mode set when a user only requires fewer
modes. Consequently, a question of how best to extract fewer
dominated modes can be urgent for some practical applications.
For example, identifying dominant low frequency inter-area modes
of oscillation has received increased importance for a near
real-monitoring in a multi-area power system [6]. Another example
is to identify a subset of DMD modes that retain the most
important flow dynamic information for a fluid system. The first
notable attempts toward this goal were made by Chen et al. in
[12] with the introduction of optimised DMD (opt-DMD). For
finding complex scalars to minimise the overall residual of fitting
the given data set, a global optimisation technique that combined
simulated annealing and the Nelder–Mead simplex method was
employed, which conducts an intractable combinatorial search. In
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[13, 14], a new method, called optimal mode decomposition (OMD),
was presented to estimate the linear dynamics of a high-dimensional
system. Both the dynamic matrix and the low-rank basis were
simultaneously optimised by employing a gradient-based
algorithm. However, the algorithm is computationally expensive
and the rank should be firstly fixed. Recently, a sparsity-promoting
DMD (SP-DMD) algorithm has been developed to balance
between the quality of approximation and the number of modes in
[15]. The method consists of two steps, in which the first step
seeks a sparsity structure and the second step determines the
optimal the non-zero amplitudes associating with the sparsity
structure. The method can be viewed as a convex relation of the
optimisation problem in the opt-DMD algorithm by using l1 norm.
However, the SP-DMD method cannot optimise over both the
modes and the number of modes simultaneously because the
modes are fixed.

In this paper, we develop a nuclear norm regularised DMD
(NNR-DMD) algorithm. This algorithm picks the appropriate
number of modes or model complexity by adding an additional
nuclear norm term into the optimisation problem of the DMD
algorithm in the least-square sense. The objective of the proposed
algorithm is straightforwardly to determine a low-rank
representation of the matrix that captures the dynamic inherent in
the data sequence. Unfortunately, rank minimisation is NP-hard in
general. Thus, nuclear norm of the matrix instead of its rank, as a
popular convex heuristic [16], is used to obtain a regularised
version of the optimisation problem. Recently, the nuclear norm
regularisation approach has been successfully applied in matrix
factorisation based low-rank representation in [17–19]. Finally,
split Bregman method is then employed to solve the resulting
regularised optimisation problem with a non-smooth nuclear norm
term and a smooth Frobenius norm term. The split Bregman
method, proposed in [20, 21], is admirably suitable for dealing
with the decoupling between the nuclear and Frobenius norm
terms in the iterations. In each iteration of the proposed
NNR-DMD algorithm, the optimisation problem can be
decomposed into some easily solvable subproblems which are
computationally fast and easy to code.

The rest of the paper is organised as follows. We first present an
algorithmic definition of the SVD-based DMD, its different
interpretations and sparsity prompting DMD algorithms in Section
2. The proposed NNR-DMD algorithm is then presented in
Section 3. Section 4 provides several numerical test examples.
Concluding remarks are drawn in Section 5.

Notations used in this paper are shown as follows: Cn denotes the
n-dimensional complex space. The set of all n ×m matrices with
complex entries is denoted by C

n×m. For any A [ C
n×m, A*

denotes the complex-conjugate-transpose of A, A‖ ‖fro denotes the
Frobenius norm of A, A‖ ‖∗ denotes the nuclear norm of A, which
is the sum of all singular values of A. diag(x) is a diagonal matrix
with its diagonal entries being entries of a vector x. <e{·} and
ℑm{·} denote the real and the imaginary parts of a complex
quantity, respectively. Finally, we denote the identity matrix by I
whose dimension should be clear from the context.
2 Dynamic model decomposition

2.1 Preliminaries and problem statement

We assume that a sequential set of data vectors {x0, x1, . . . , xm} is
generated by a linear system

xk+1 = Axk (1)

where xk [ Cn is the kth snapshot, A [ Cn×n is an unknown
(time-independent) matrix. Obviously, the evolution of x is
governed by the eigenvalues of A for the linear system. When the
data set are generated from a non-linear system, it is assumed that
A is an operator to approximate the dynamics of the non-linear
system.
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The computation of DMD modes proceeds as follows:

Algorithm 1 (standard DMD):

1. The data are grouped into matrices

X0 = [x0, x1, . . . , xm−1]
X1 = [x1, x2, . . . , xm]

(2)

2. Compute the reduced SVD of X0

X0 = USV ∗ (3)

where U is n × r, Σ is diagonal and r × r, V is m × r, and r is the rank
of X0.
3. Assume that an optimal representation F of the matrix A in the
basis spanned by the POD modes of X0 is provided by the DMD
algorithm

A ≃ UFU∗ (4)

Compute the least-squares fit A that satisfies X1 = AX0 by minimising
the Frobenius norm of the difference between X1 and X0

min
F

X1 − UFSV ∗∥∥ ∥∥2
fro (5)

where F is r × r. The optimal solution to (5) is obtained by

Fdmd = U∗X1VS
−1 (6)

4. Compute the eigenvalues and eigenvectors of Fdmd

Fdmd = WLW−1 (7)

where L = diag([l1 l2 . . . lr]) [ Cr×r is a diagonal matrix
consisting of eigenvalues lj and W = [v1 v2 . . . vr] [ C

r×r is
the matrix of right eigenvectors, respectively.
5. Compute the DMD modes

F = UW (8)

where F = [f1 f2 . . . fn]
T [ C

n×r is the matrix of projected
DMD modes.

The motivation of the DMD algorithm can be interpreted using
linear dynamical system theory in the noise-free case [15].
Suppose the dynamics of a linear system of extremely high
observational dimension are governed by a low-dimensional state
space as

ut+1 = Fdmdut (9)

The eigenvalues and eigenvectors of Fdmd determine the dynamic
behaviour of the linear system. Thus, each state vector θt can be
determined by

ut = Ft
dmdu0 = WLtW ∗u0 =

∑r

i=1

vil
t
iv

∗
i u0 =

∑r

i=1

vil
t
iai (10)

where each ai = v∗
i u0 represents the ith modal of the initial

condition θ0.
The state vector θt is mapped into a higher dimensional

observational vector by

xt ≃ Uut (11)
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Thus, we have

xt+1 ≃ Uut+1 = UFdmdut = UFdmdU
∗︸����︷︷����︸

A

Uut︸︷︷︸
xt

≃ Axt (12)

which is an approximate of a linear dynamic system as (1).
Furthermore, experimental or numerical snapshots can be

approximated by using a linear combination of the DMD modes as
follows

xt ≃
∑r

i=1

fil
t
iai, t [ {0, 1, . . . , m− 1} (13)

The unknown vector α = [α1, …, αr]
T can be determined by solving

the following optimisation problem

min
a

X 0 −FDaV and

∥∥ ∥∥2
fro (14)

where Dα≜ diag(α) and Vand is a Vandermode matrix written as

V and W

1 l1 · · · lm−1
1

1 l2 · · · lm−1
2

..

. ..
. . .

. ..
.

1 lr · · · lm−1
r

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ (15)

In [6], the DMD has been interpreted as characterising global
dynamic behaviour of spatio-temporal data. The jth element of the
vector xt denotes an observation at the j measurement point at the
time t. By substituting (7) into (6), we have

U∗X1VS
−1 = WLW−1 (16)

Thus, the data sequence X1 can be expressed as

X1 ≃ UW︸�︷︷�︸
Spatial structure

L W−1SV ∗︸����︷︷����︸
Temporal structure

= FLG(t) (17)

where each row of G(t) W W−1SV ∗ [ Cr×(m−1) represents a
temporal pattern containing a single-frequency component, and
each row of Φ represents a spatial mode (DMD mode). The
dynamical modes, fj =Uωj, represent the spatial coherent
structure. Moreover, the decay rating |lj| associating with the jth
mode is related to the damping in case of sampled dynamics,
while fj W ℑm{log (lj)}/(2pDt) is the frequency of the jth
temporal pattern.

2.2 Sparsity-promoting DMD

For the OMD algorithm proposed in [13, 14], a low-rank
approximation of the flow dynamics is obtained by solving a
rank-constrained matrix optimisation problem as follows

min
A

X1 − AX0

∥∥ ∥∥2
fro

s.t. A W FFFT

F [ Cr×r, F [ Sn,r

(18)

where Sn,r is the set of Stiefel matrices

Sn,r = {F [ C
n×r|FTF = I , r ≪ n} (19)

Although this optimisation problem can be solved using a technique
based on optimisation on the Grassman manifold, it inherits the
drawbacks of non-convex problems such as local convergence and
being sensitive to initial solutions.
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For the SP-DMD algorithm proposed in [15]. A sparsity structure
is sought by solving a l1-norm regularised optimisation problem in
its first step as follows

min
a

‖X0 −FDaV and‖2fro + g
∑r
i=1

ai

∣∣ ∣∣ (20)

The sparsity structure is identified because the l1-norm can prompt
the sparsity of the vector α.

In its second step, the optimal values of the non-zeros amplitudes
are determined by solving a constrained optimisation problem only
associating with the support of the vector α.

Although the SP-DMD algorithm can achieve a global optimal
solution by solving two convex optimisation problems, it assumes
that the modes are fixed in advance. Its task is to find the optimal
and sparse modes from the given mode set. However, the modes
and their corresponding amplitudes are interacted on each other.
Thus, we seek a low-rank matrix straightforwardly to obtain
sparsity-promoting DMD.
3 Nuclear norm regularised DMD

3.1 Problem formulations

Notice that the optimisation (5) can be equivalently written as

min
F

U∗X1 − FSV ∗∥∥ ∥∥2
fro (21)

By defining Y =U*X1 and X = ΣV*, the DMD can be generalised to a
matrix optimisation problem as follows

min
F

Y − FX‖ ‖2fro (22)

We approach the sparseness-inducing regularisation for DMD by
augmenting the objective function in (22) with an addition term,
rank(F), that penalises the rank of the matrix F

min
F

1

2
Y − FX‖2fro + m · rank(F)∥∥ (23)

where μ is a positive regularisation parameter balancing the
least-square fitting term and the low-dimensional representation of
the matrix F. However, as directly minimising the rank is NP-hard
in general. Thus, paralleling the use of the l1-norm in sparse
approximation of cardinality minimisation of a vector, a convex
relation for rank minimisation is adopted by replacing the rank
minimisation by nuclear norm minimisation. The resulting
optimisation problem can be written as follows

min
F

1

2
‖Y − FX‖2fro + m F‖ ‖∗ (24)

Then, the modes Φ can be achieved according the optimal solution
Fdmd of (24). Computing the eigenvalue decomposition Fdmd =
WΛW−1, we have F = UŴ where Ŵ is a matrix consisting of
the eigenvectors with non-zeros eigenvalues. Owing to the
introduced nuclear norm to prompt the low-rank representation of
Fdmd, the number of non-zeros eigenvalues of Fdmd may less far
than the rank r.

Defining F : Cr×m � Cr2 as a linear operator as

X (F) = X̂vec(F) (25)

where vec(F) creates a column vector from the matrix F by stacking
the column of F and X̂ is the Kronecker product of a r × r identity
matrix and an m × r matrix XT, the optimisation problem (24) can
IET Signal Process., 2016, Vol. 10, Iss. 6, pp. 626–632
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Fig. 1 Algorithm 2 (NNR-DMD)
be equivalently written as

min
F

1

2
vec(Y )−X (F)‖22 + m F‖ ‖∗

∥∥ (26)

This convex program is an over-determined problem as r2≤ r ×m.
Unlike recovery of low-rank matrix from nuclear norm
minimisation in the field of compressed sensing, the regularisation
using nuclear norm minimisation is to avoid over-fitting and seek
a ‘simplest’ model.

3.2 Split Bregman iteration for nuclear norm regularised
DMD

We reformulate (24) by introducing a new variable H and a
constraint F =H as

min
F,H

1

2
Y − FX‖ ‖fro2+m H‖ ‖∗

s.t. F = H
(27)

The solving convex programming problem with separable structure
is easy to produce an algorithm that consists of simple, ease to
compute steps. Then, (27) can be converted into an unconstrained
problem by use of penalty technique

min
F,H

1

2
‖Y − FX‖2fro + m H‖ ‖∗+

h

2
H − F‖ ‖2fro (28)

Thus, we apply the split Bregman method and get the split Bregman
iteration as follows

(Fk+1, Hk+1) = argmin
F,H

1

2
Y − FX‖ ‖2fro

+ m H‖ ‖∗ +
h

2
H − F − Bk

∥∥ ∥∥2
fro

Bk+1 = Bk + (Fk+1 − Hk+1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(29)

The first minimisation of (29) can be split into two simpler
subproblems as

Fk+1 = argmin
F

1

2
Y − FX‖ ‖2fro+

h

2
Hk − F − Bk

∥∥ ∥∥2
fro (30)

Hk+1 = argmin
H

m H‖ ‖∗+
h

2
H − Fk+1 − Bk

∥∥ ∥∥2
fro (31)

Equation (30) is convex and differentiable, which can obtain a close
form solution as follows

Fk+1 = [YX ∗ + h(Hk − Bk )](XX ∗ + hI)−1 (32)

Equation (31) can be solved by singular value soft-thresholding
method performing the shrinkage operation on singular values of
H [22]. Let the matrix Z =F k+1 + Bk has SVD Z = UH ŜV

T
H . Then

the solution of the optimisation problem (31) is given by

Hk+1 = UHSm/h[Ŝ]V
T
H (33)

where Sm/h[Ŝ] is the shrinkage operation applied entrywise to the

matrix Ŝ as

(Sm/h[Ŝ])ij = max 0, Ŝij

∣∣∣ ∣∣∣− m/h
( )

Ŝij/ Ŝij

∣∣∣ ∣∣∣ (34)

and |·| is the modulus of the complex matrix entry.
Now, we present complete algorithm for NNR-DMD as

Algorithm 2 (see Fig. 1).
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Two stop criteria are adopted. The first criterion is

Fk − Fk−1
∥∥ ∥∥

fro

Fk−1
∥∥ ∥∥

fro

≤ 10−5.

The other criterion is that the maximum number of iterations is set
to 500.

The convergence property of the proposed algorithm NNR-DMD
is shown in the following theorem, which is similar to that in the
work [23, 24].

Theorem 1: Assume that there exists at least one solution F̂ of (24).
Assume μ > 0. Then, the following property for the split Bregman
iteration in Algorithm 2 (NNR-DMD) holds

lim
k�+1

1

2
‖Y − FkX‖2fro + m‖Fk‖∗ =

1

2
Y − F̂X‖2fro + m F̂

∥∥ ∥∥
∗

∥∥
(35)
3.3 Complexity analysis

In this part, we discuss the computational complexity of the proposed
algorithm NNR-DMD. In (3), the computational complexity of
performing SVD of X0 is O(nm2); The computational complexity
of matrix multiplication for Fk+1 is O(r3); The computational
complexity of SVD on the small matrix Z is O(r3). The
computational complexity of matrix multiplication for Hk+1 is also
O(r3). Therefore, the total computational complexity of the
proposed algorithm is O(nm2 + 3kr3), where k is the number of
iterations. As the rank r of the matrix X0 satisfies r≤min(m, n)
and the number m of the snapshots can be picked to a relatively
small one, the computational complexity of the proposed
algorithm can be acceptable for many signal processing tasks.
4 Numerical examples

4.1 Identifying the temporal frequency

In this example, the proposed algorithm (NNR-DMD) is to identify
the temporal frequency from the spatio-temporal data generating
from a synthetic sinusoidal flow of the form

f (x, t) = sin (kx− 2pft) egt (36)

with parameters g = 1, k = 4, and f = 2. The flow was used in [13, 25].
The number of temporal snapshots was m = 50, taken at time
intervals dt = π/50. The number of spatial samples was n = 201 by
taking at sampling intervals dx = π/50. The resulting data
{x0, x1, . . . , xm} was corrupted by adding zeros-mean Gaussian
629



Fig. 2 New England 39-bus test system model
noise with covariance σ = 0.1. The parameters of the NNR-DMD
were set as μ = 10 and η = 100.

The eigenvalues and frequencies on 250 data ensembles using
Monte Carlo sampling method at the covariance level were
averaged. We obtained only a pair of conjugate complex
eigenvalues by using the NNR-DMD algorithm. The
corresponding positive frequency was 1.9997. This means that the
single frequency is correctly identified by applying the NNR-DMD
algorithm. The temporal pattern only contains a single-frequency
component, just as the assumption holds.

We provide the comparison of the running time of the proposed
NNR-DMD algorithm and the OMD algorithm in [13]. The
experiment was performed with Matlab 2014a on an Intel(R) Core
(TM) i7-4700MQ CPU 2.39 GHz Laptop running Windows8 with
4 GB main memory. The running time of the proposed
NNR-DMD algorithm is less than 0.8 s, while the OMD algorithm
takes around 3.8 s.

4.2 Reducing the reconstruction errors

The data set of two-dimensional Poiseuille flow provided by
Jovanovic et al. [15] was used to analyse the reconstruction errors.
The performance of the NNR-DMD algorithm is compared with
the SP-DMD algorithm given in [15]. The data set was collected
from 150 Chebyshev collocation points and 100 temporal
snapshots. Thus, we have n = 150 and m = 50. The rank of the
matrix of snapshots X0 is r = 26. The parameters of the
NNR-DMD algorithms for this example were set as μ = 1 and η = 10.

For the NNR-DMD algorithm, the unknown vector of amplitudes
α was obtained by solving a convex optimisation problem

min
a

J (a) = X0 −FDaV and

∥∥ ∥∥2
fro (37)

Here, Φ and Vand were obtained by applying the NNR-DMD
algorithm or the standard DMD algorithm.

A relative residual value was introduced to compare the
reconstruction performance, which is defined as

%Ploss W 100

�����
J (a)

J (0)

√
= 100

X0 −FDaV and

∥∥ ∥∥
fro

X0

∥∥ ∥∥
fro

(38)

For the NNR-DMD algorithm, five DMD modes were obtained and
the relative residual value for the optimal vector of amplitudes was
2.75%. According the results of [15], the reasonable number of
modes in the Poiseuille flow may be achieved with six modes. It
means that the number of modes using our algorithm approximates
the ideal result. However, the relative residual value resulting from
the SP-DMD algorithm exceeded to 8%, which shows significant
performance deterioration compared with our algorithm. The main
reason lies in that our algorithm optimises the number of modes
and DMD modes Φ simultaneously, whereas the SP-DMD
algorithm only find the best modes from the mode set obtained by
the standard DMD algorithm.

We also provide the comparison of the running time of the proposed
NNR-DMD algorithm and the SP-DMD algorithm. The experiment
was performed on the same test environment as the previous
experiment. The running time of the proposed NNR-DMD
algorithm is less than 0.4 s, whereas the SP-DMD algorithm takes
around 1.2 s.

4.3 Identifying coherent generators in a power system

In interconnected power systems, coherency identification of
generators can be very important for reducing the dynamic model
order and initiating islanding when large changes in loads or
generation may lead the power system into different balanced
islands to avoid wide-area blackouts [26, 27]. Intuitively, a group
of generators is said to be coherent if after some disturbances, they
present similar time-domain response trends. Recently, data-driven
630
methods using online measurements and signal processing
techniques such as PCA, ICA, and Hilbert–Huang transform [28–
30], have received considerable attention because the methods are
free of very accurate model of the study system. In particular,
methods borrowing from the fluid flow field have also been
applied to identify the coherency generators. In [31], a systematic
and rigorous way for coherency identification based on the
Koopman modes has been presented. However, the Koopman
modal expansions for the high dimensionality are computationally
challengeable. Thus, in [6], the DMD algorithm has been proposed
for large datasets.

We performed coherency identification in the New England
39-bus test system, which is shown in Fig. 2. Non-linear
simulations of the test system were performed using the
MATLAB-based PST toolbox [32]. The system was being
simulated for 5 s and lines 16 and 17 were tripped at t = 1 s.
Measurements were recorded over 5 s at a rate 50 samples per
second. The speed deviations of all ten generators (G1–G10) in
the 5 s time interval are shown in Fig. 3. We selected the
measurements from the first second to fifth second to construct
the snapshot matrices X0 and X1. The generator 1 was set as the
reference generator. The speed deviations after subtracting the
mean values were used for the following experiments. The fast
Fourier transform (FFT) of the speed deviations is shown in
Fig. 4. From Fig. 4, it can be seen that their dominant frequency is
about 0.59 Hz. By using the small-signal analysis method
provided in [32, 33], the dominant low frequency inter-area modes
of oscillation are about 0.58 Hz, which coincide with the results of
time transient analysis.

The μ in the NNR-DMD algorithm was set to 0.001 because the
speed deviations after subtracting the mean values are small. The
parameter η was set to 0.01. The eigenvalues lis and their
corresponding frequencies by applying the DMD algorithm and
the proposed algorithm NNR-DMD are shown in Table 1. Fig. 5
also shows a plot of the eigenvalues lis. As seen in Table 1 and
Fig. 4, the NNR-DMD can obtain only a dominant frequency
0.5805 Hz, whereas the DMD algorithm exhibits all frequencies.
However, the dominant frequency 0.5805 Hz obtained using the
NNR-DMD algorithm is closer to the theoretical result than the
frequency 0.5477 Hz obtained using the DMD algorithm.

Clusters of coherent generators were identified from the spatial
modes corresponding to the dominant low frequencies 0.54 and
0.58 Hz for the DMD and NNR-DMD algorithms are shown in
Figs. 6 and 7, respectively. The eighth column of matrix Φ for the
DMD algorithm shows the strongest clustering information,
IET Signal Process., 2016, Vol. 10, Iss. 6, pp. 626–632
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Fig. 4 Spectra analysis results for speed deviations of generators from G1
to G10

Fig. 3 Generator speed deviations Fig. 5 Eigenvalues lis obtained from the DMD and NNR-DMD algorithms
whereas the second column of matrix Φ for the NNR-DMD
algorithm does. By setting the number of groups to two and using
the Coherency Toolbox based on the slow coherency theory [32,
33], a benchmark of coherency identification of two coherent
generator groups, {1, 2, 3, 8, 9, 10} and {4, 5, 6, 7}, was obtained.
As seen in Figs. 6 and 7, although the generator clustering results
of the two algorithms are identical by using the signatures of real
modes and match the benchmark results, the NNR-DMD
Table 1 Comparisons of eigenvalues lis and their associated
frequencies

DMD NNRDMD

li Frequency li Frequency

1.0480 0 1.4078 0
0.9877 + 0.1660i 1.3247 0.9350 + 0.0683i 0.5805
0.9877− 0.1660i −1.3247 0.9350− 0.0683i −0.5805
0.9951 + 0.1038i 0.8267 0.4902 0
0.9951− 0.1038i −0.8267 0.1662 0
0.9900 + 0.1382i 1.1039 0.4475 0
0.9900− 0.1382i −1.1039 – –
0.9948 + 0.0686i 0.5477 – –
0.9948− 0.0686i −0.5477 – –
0.0084 0 – –
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algorithm can find the dominant mode with the strongest impact
on the spatial coherent structure by using the nuclear norm
regularisation, whereas the DMD algorithm provides more modes
needed to be further selected for coherency identification.
5 Concluding remarks

This paper has introduced a NNR-DMD algorithm, as an extension
of the standard DMD algorithm, for identifying a low-rank DMD
matrix. The low-rank matrix is obtained by introducing a nuclear
norm term of the matrix to the stand least-squares optimisation
problem. The resulting regularised version of the optimisation
problem is a convex, but non-smooth optimisation problem which
the split Bregman algorithm provides an effective tool for
decoupling the variables with different norms and updates the
variables alternately. We have shown that the solving process is
computationally efficient and easy to implement. The numerical
results show that the proposed NNR-DMD algorithm can be
efficient to identify the temporal frequency from the
spatio-temporal data, reduce the reconstruction errors by
comparing with the OMD and SP-DMD algorithms. The algorithm
is also suitable for coherency identification of generators in an
interconnected power system, which is verified in the England
39-bus test system.
Fig. 6 Coherency identification using the DMD algorithm
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Fig. 7 Coherency identification using the NNR-DMD algorithm
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