Neural Networks, Vol. 3. pp. 351560, 1990
Printed in the USA. All rights reserved.

ORIGINAL CONTRIBUTION

(893-6080/90 $3.00 + .00
Copyright - 1990 Pergamon Press ple

Universal Approximation of an Unknown Mapping and Its
Derivatives Using Multilayer Feedforward Networks

KURT HORNIK, MAXWELL STINCHCOMBE, AND HALBERT WHITE

University of California. San Diego

(Received 11 August 1989; revised and accepied 31 January 1990)

Abstract—We give conditions ensuring that multilayer feedforward networks with as few as a single hidden layer
and an appropriately smooth hidden layer activation function are capable of arbitrarily accurate approximation
to an arbitrary function and its derivatives. In fact, these networks can approximate functions that are not
differentiable in the classical sense, but possess only a generalized derivative, as is the case for certain piecewise
differentiable functions. The conditions imposed on the hidden layer activation function are relatively mild; the
conditions imposed on the domain of the function to be approximated have practical implications. QOur ap-
proximation results provide a previously missing theoretical justification for the use of multilaver feedforward
networks in applications requiring simultaneous upproximation of a function and its derivatives.
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1. INTRODUCTION

The capability of sufficiently complex multilayer
feedforward networks to approximate an unknown
mapping f: R” — R arbitrarily well has been recently
investigated by Cybenko (1989), Funahashi (1989).
Hecht-Nielsen (1989), Hornik, Stinchcombe. and
White (1989) (HSW) (all for sigmoid hidden layer
activation functions) and Stinchcombe and White
(1989) (SW) (non-sigmoid hidden layer activation
functions). In applications, it may be desirable to
approximate not only the unknown mapping. but
also its unknown derivatives. This is the case in Jor-
dan’s (1989) recent investigation of robot learning of
smooth movement. Jordan states:

The Jacobian matrix dz/dx . . . is the matrix that relates
small changes in the controller output to small changes in
the task space results and cannot be assumed to be avail-
able a priori, or provided by the environment. However,
all of the derivatives in the matrix are forward derivatives.
Thev are easily obtained by differentiation if a forward
model is available. The forward model itself must be
learned, but this can be achieved directly by system iden-
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tification. Once the model i1s accurate over a particular
domain, its derivatives provide a learning operator that
allows the system to convert errors in task space into errors
in articulatory space and thereby change the controller.

Thus, learning an adequate approximation to the Ja-
cobian matrix of an unknown mapping is a key com-
ponent of Jordan’s approach to robot learning of
smooth movement.

Despite the success of Jordan's experiments, there
is no existing theoretical guarantee that multilayer
feedforward networks generally have the capability
to approximate an unknown mapping and its deriv-
atives simultaneously. For example. a network with
hard limiting hidden layer activations approximates
unknown mappings with a piecewise-constant func-
tion. the first derivatives of which exist and are zero
almost everywhere. Obviously. the derivatives of such
a network output function cannot approximate the
derivatives of an arbitrary function.

Intuition suggests that networks having smooth
hidden layer activation functions ought to have out-
put function derivatives that will approximate the
derivatives of an unknown mapping. However, the
justification for this intuition is not obvious. Consider
the class of single hidden layer feedforward networks
having network output functions belonging to the set
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where x represents an r vector of network inputs
(reN=1{1,2....1),%=(1.x")" (the superscript
T denotes transposition), ff; represents hidden to out-
put layer weights and y, represents input to hidden
layer weights. j = 1.. .. . q. where q is the number
of hidden units, and G is a given hidden unit acti-
vation function. The first partial derivatives of the
network output function are given by

o
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where x; is the ith component of x, 5, is the ith
component of y,, i = 1. ... .r(yuis the input layer
bias to hidden unit j), and DG denotes the first de-
rivative of G. Available results ensure that there exist
choices for ff;and 7, j = 1. .. ., g for which dg/dx,
can well approximate df/dx;, the derivative of the
unknown mapping. (Note that if G is sigmoid, then
DG is non-sigmoid, so that the results of SW are
relevant.) The problem is that these choices for f,
and 7; are not necessarily the choices for which g
adequately approximates f or for which dg/dx, ap-
proximates df/dx, for h # i. Nor is it obvious that a
single set of weights exists that simultaneously en-
sures an adequate approximation to f and its deriv-
atives.

Our purpose here is to establish rigorously that
such a set of weights does indeed exist, and that
multilayer feedforward networks with as few as a
single hidden layer and fairly arbitrary hidden layer
activation functions are in fact capable of arbitrarity
accurate approximation to an unknown mapping and
its derivatives, to as many orders as desired.

This fact not only justifies corresponding aspects
of Jordan’s (1989) approach to network learning of
smooth movements, but generally supports use of
muitilayer feedforward networks in any application
requiring approximation of an unknown mapping and
its derivatives. For example, a net appropriately
trained to approximate the transfer function of a
(perfectly measured) deterministic chaos (e.g.. as in
Lapedes & Farber, 1987) could be used to obtain
information on the Lyapounov exponents of the un-
derlying chaos. (The Lyapounov exponents are de-
fined in terms of the first derivatives of the transfer
function.)

Another potential application area is economics,
where theoretical considerations lead to hypotheses
about the derivative properties (e.g., “elasticities,”
aln f/a Inx; = (8f/ax;) (x/f)), of certain functions
arising in the theory of the firm and of the consumer
(production functions, cost functions, utility func-
tions and expenditure functions). (See, e.g., Varian,
1978.) Approximation of these functions and their
derivatives can aid in confirmation or refutation of
particular theories of the firm or the consumer. Such
analyses have been conducted by Elbadawi, Gallant,
and Souza (1983) using Fourier series. An approach
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based on kernel regression is described by Vinod and
Ullah (1985) (see also Ullah. 1988). Our resnlts es-
tablish neural network models as providing an alter-
native framework for studying the theory of the firm
and of the consumer.

Approximation of derivatives aiso permits sensi-
tivity analyses in which the relative etfects on output
of small changes in input variables in different re-
gions of input space can be investigated. Gilstrap.and
Dominy {1989) have proposed suclh analyses as the
basis on which network knowledge can be explicated.

Finally. we note that any network suitably trained
to approximate a mapping satisfying some nenfincar
partial differential equations (pde) will have an out-
put function that itself approximately sausfies the
pde by virtue of its approximation «f the mapping's
derivatives.

Formally. our results arc obtained by showing that
for broad classes of multilayer fcedforward net-
works. the set X(G) is dense in general spaces of
tunctions where distance between functions is mea-
sured taking into account differences between the
derivatives of the functions (including derivatives of
order zero).

Because the mathematical background regarding
these spaces may be somewhat unfamiliar, we pro-
vide a synopsis of the relevant material i section 2.
Section 3 contains our main results. Section 4 pro-
vides a brief discussion on implementation of a feed-
forward net that yields the desired derivatives as out-
puts. together with some briet remarks concerning
learning of the representations shown here to.be pos-
sible. Section 3 provides a summary and some con-
cluding remarks. Mathematical proofs are gathered
into the Mathematical Appendix.

2. BACKGROUND ON FUNCTION SPACES

This section reviews relevant basic concepts for the
theoretical results of the following section. For ad-
ditional detail. see for example. Adams (1975) and
Showalter (1977},

We are concerned here with how well the collec-
tion of network output functions 2(G) can approx-
imate certain spaces of functions. Given a function
space, say S. we can measure the distance between
two elements of § using a metric p. Formally. p is a
mapping with the properties: (1) forall f, g € S, p(f,
g) = 0: (2) for f. g h € S, p(f. h) = p(f. 8) + p(g.
h). (3) p(f, g) = 0if and only if / = g. The pair (S,
p) is called a metric space. To deseribe the-ability of
the set 3(G) to approximate the space S, the concept
of p-denseness applies. '

DEFINITION 2.1: Let U be a subset of R'. let S be a
collection of functions f : U—> R and let p be a metric
on S. For any g in 2(G) (recall ¢ : R" — R) define
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the restriction of g to U, g, as gu(x) = g(x) for x
in U, gi(x) unspecified for x not in U.

Suppose that for any fin S and ¢ > O there exists
g in 2(G) such that p(f, g) < ¢. Then we say that
S(G) contains a subset p-dense in S. If in addition
g belongs to S for everv g in 2(G), we say that 2(G)
is p-dense in §. I

The first part of this definition allows for the possi-
bility that 2(G) may contain functions g for which
g does not belong to S. Even so, when X(G) has
this denseness property. it always contains a single
hidden layer feedforward network output function
capable of arbitrarily accurate approximation to any
member of S in terms of the metric p.

We shall consider approximating elements of a
variety of metric spaces (S, p) using feedforward net-
works. For all of what follows, we let U be an open
subset of R’. (We could have U = R’.) To specify
the first function space of interest of interest, let
C(U) be the set of all functions continuous on U.
Let @ be an r-tuple a = (e, . ... @)’ of non-
negative integers (a “multi-index™). If x belongs to
R Jet vt =y - xge s .- x. Denote by D" the
partial derivative

dloxt = gl (axn axn L L dxs)

of order lo| = @, + @, + - + a,. For nonnegative
integers m. we define C"(U) = {f € C(U)|Df &
C(U) for all «. |a] = m} and C*(U) = N,, ,C"(U).
We let D be the identity, so that C"(U) = C(U).
Thus. the functions in C"(U) have continuous de-
rivatives up to order m on U. while the functions in
C"(U) have continuous derivatives on U of every
order.

For these spaces, we adopt the following termi-
nology.

DEFINITION 2.2: Letm, [ E{Q} UN,0=m < [, and
U C R’ be given, and let S C C'(U). Suppose that
for any fin S, compact K C U and ¢ > O there
exists g in 2(G) such that max,.,, sup,ex|Df(x) —
Deg(x)| < &. Then we say that 3(G) is m-uniformly
dense on compacta in S. O

There are many metrics inducing m-uniform con-
vergence on compacta. For example, see Dugundji
(1966, p. 172). We denote any such metric p%. This
metric depends on U, but we suppress this for no-
tational convenience.

When X(G) is m-uniformly dense on compacta in
S, then no matter how we choose an fin §, a compact
subset K of U, or the accuracy of approximation
& > (), we can always find a single hidden layer feed-
forward network having output function g (in £(G))
with all derivatives of g, on K up to order m lying

within ¢ of those of fon K. This is a strong and very
desirable approximation property. In the next sec-
tion, we impose conditions on G and U that ensure
that 2(G) is indeed m-uniformly dense on compacta
in particular useful subsets § of ("(U). Thus, such
networks can be used to approximate any unknown
mapping and its derivatives to any desired degree of
accuracy in this precise sense.

Another useful approach to measuring distances
between functions taking into account differences be-
tween derivatives is based on metrics defined for
collections of functions known as Sobolev spaces. To
define these spaces, we must first introduce the spaces
L,(U. n).

For any open subset U of R’ let :#(U) be the Borel
a-field generated by the open subsets of U (i.e., :3(U)
is the smallest collection of subsets of U that contains
U and all open subsets of U and is closed under
complements and countable unions).

A function f : U — R is said to be (Borel) mea-
surable if for every open subset A of R, the set {x €
Ulf(x) € A} belongs to s(U). Continuous functions
on U are measurable, as are piecewise continuous
functions. Nonmeasurable functions exist (see, ¢.g.,
Halmos. 1974, p. 69), but they are pathological. and
generally not relevant in applications.

A measure y assigns a number in [0, %] to every
set in B(U), with w(J) = 0 and u(B) = 27, u(B;)
whenever B = N/ B, B, U B, = Jforalli # j.
When u(U) < =, uis called a finite measure. An
important measure is the Lebesgue measure /4 on (R’,
%(R")). When r = 1, 4 measures the length of in-
tervals B = (a. b) as #(B) = b - a. Forr = 2,/
measures the area of rectangles B = (4. b) X (¢, d)
as A(B) = (b — a)(d — ¢). When r = 3. 4 measures
volumes in a similar manner. Generally (i.e., for all
r), 4 provides a measure of the generalized volume
of a set.

The space L,(U. p) is the collection of all mea-
surable functions f such that [|fll, .. = [fJfl
du]'? < =, 1 = p < », where the integral is defined
in the sense of Lebesgue. When i = 4 we may write
either [ fds or [,f(x) dx to denote the same integral.
We measure the distance between two functions f
and g belonging to L,(U, x) in terms of the metric
poulfs 8 =If — gl.u,.. Two functions that differ
only on sets of y-measure zero have p, . (f, g) = 0.
We shall not distinguish between such functions. Thus,
f€ L,(U, u) represents an equivalence class of func-
tions, all of which differ from each other only on sets
of yu-measure zero. Functions in L,(U, 1) need not
have derivatives, and the distance measure p, ;,, takes
no account of relationships between any derivatives
that do exist.

The first Sobolev space we consider is denoted
S(U, p), defined as the collection of all functions f
in C™(U) such that [|[D“fll, ., < = for all |a| = m.
We define the Sobolev norm |fll.., ., € (Zi-n
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Dfliy 1;,)'%. The Sobolev metric is

/’,fff,l(f~ g) = Nf - g”m.;v L

Note that p;’, depends implicitly on U, but we sup-
press this dependence for notational convenience.
The Sobolev metric explicitly takes into account dis-
tances between derivatives. Two functions in $;'(U.
u) are close in the Sobolev metric p;/, when all de-
rivatives of order 0 =< |a| = m are close in L, metric.

For many interesting choices for G, 2(g) need not
be a subset of §3'(U, 1). However. we shall generally
be able to find H in %(G) such that for every 4 in
2(H), hy, belongs to S3(U, 1) and 2(H) is p¥' -dense
in S7(U, p).

In the next section, we give conditions on G.
U. and u ensuring that single hidden layer feedfor-
ward networks can be used to approximate any un-
known mapping and its derivatives to any desired
degree of accuracy in the metric ). In particular,
we take U = R’ and assume that x 1s finite and
compactly supported, that is, there is a compact sub-
set K of R such that u(K) = u(R").

Next we consider the Sobolev space 8}'(loc) de-
fined as the collection of all functions fin C”(R")
such that for every open bounded subset U of R’ the
function f belongs to $7(U, /2). To define a metric
on this space of functions, let U, = {x € R" : [x| <
noi=1..... r} and put

fee s, p.

i fogy =2 2 min(lf = gllopc, o 1),

el
f. g € §y{loc).

Two functions in S7(loc) are close in the metric
P If their derivatives of orders 0 = |af = m are
close in L, metric on open bounded subsets of R’
We give conditions on G ensuring that single hidden
layer feedforward netrorks can be used to approxi-
mate any unknown mapping and its derivatives to
any desired degree of accuracy in the metric p}'..

The spaces Sp(U, p) are limited by the fact that
they do not include functions that have derivatives
everywhere except on sets of measure zero (e.g..
piecewise differentiable functions). Interestingly, it
turns out to be possible to approximate such func-
tions arbitrarily well using multilayer feedforward
networks. However, in order to discuss this possi-
bility precisely, it is necessary to work with a gen-
ralized notion of the derivative.

In order to provide the proper generalization, we
introduce the concepts of distributions and distribu-
tional derivatives due to Schwartz (1950). For all
functions f in a broad class (L, ,,(U) specified be-
low), we can associate a specific distribution, differ-
entiable of all orders. When the function f is differ-
entiable, the distributional derivatives correspond to
the classical derivatives. However, even when the
function f is not differentiable in the classical sense
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there is often a function in the original space cor-
responding to the distributional derivative. This
function is called a “weak™ or “gencralized” deriv-
ative, and provides the generalization of the classical
derivative needed for our discussion of the approx-
imation capabilities of multilaver fcedforward net-
works.

The formal definitions of . distribution and
its derivatives make use of functions belonging 10
CiU) = C(U) N Cy(U), where C,(U) is the space
of all functions in C(U) with compact support. {The
support of f € C(U) is defined as supp f == clyr €
U : flx) # 0}, where cl denotes the closure of the
indicated set.) Functions in C;({/) have continuous
derivatives of all orders and compact support.

A distribution on U over R iv detined as a linear
mapping T CH{U) — & (e Tiud, + b
uT(h)) + bT(¢-). a. b & B¢, n = Cilliy. We
construct the distributions used here in a straight-
forward manner. Let K be & compact subsct of [/
Let L (K. /) be the set of all measurable functions
[ U— R such that [, |fl &/ -~ <. The space of
locally integrable functions on & s L, (U) =
N LK, 2)IK C U, K compactj. For every [ in
L, (U)Y we define the distribution 7, such that

1Ay = ’ foh dr, a e T

B
This is readily verified to be a lincar mapping from
Ci(U) to R.
Further, for any distribution 7 we may. define the
distributional derivative 9“7 such thar

A T(dy = (- 1)T(D ). @ Oty

Consequently, a7 is also a linear mapping f{rom
C;(U) to R. This definition is constructed so- that
when f belongs to C"(Uj}, then #°T, = Tpe for
la| = m. In this case the distributional derivative
corresponds precisely to the classical derivative. To
see this, note that

T 0) = (D) TAD )
= (=1 | HDee) ds
S
= [ (DY do.
St

= Tn"f(;(b)«
The key step.is the equality, which follows from in-

P € Cigl).

“tegration by parts and the fact that ¢ vanishes at the

boundary of U because it has compact support.
Even when the classical derivative does not exist,
there may exist an element & of L, (U) such that
0°T; = T,. In such cases, we write h = a%f and call
8°f the weak or generalized derivative of f. (When
f e Cc™(U), 3 = D°f.) Showalter (1977. pp. 30—
31) gives numerous examples of functions in Ly U)
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having weak derivatives, but not classical derivatives.
However, not all functions in L, (U) have weak
derivatives. Such functions will play no role in what
follows.

We now have sufficient background to define the
Sobolev spaces

Wo(U) = {f € Ll U)]of € L(U. 1), 0 = |a| = m}.

This is the collection of all functions having gener-
alized derivatives belonging to L,(U, /) of order up
to m. Consequently, W;'(U) includes S;(U. 2). as
well as functions that do not have derivatives in the
classical sense. such as piecewise differentiable func-
tions.

Although it would be possible to define “weighted”
Sobolev spaces W}(U. u) containing S)'(U. u) for
# # 4 in an obvious way. we leave formal consid-
eration of these spaces aside in order to avoid certain
unpleasant technicalities. (See Kufner, 1980. and
Kufner and Sandig. 1987.)

The norm on W;(U) generalizes that on S)(U,
A): we write it as

; Vg
e = (S t0r) rewaw)
For the metric on W(U) we suppress the depend-
ence on U and write

Pt 8) = Nf — gl fr 8 € WL,

Two functions are close in the Sobolev space Wi(U/)
if all generalized derivatives are close in L,(U. 1)
distance. In the next section, we give conditions on
G and U ensuring that single hidden layer feedfor-
ward networks are indeed p;’-dense in W;'(U). Con-
sequently, single hidden layer feedforward networks
are capable of approximating an unknown mapping
and its generalized derivatives to any degree of ac-
curacy under general conditions, provided that suf-
ficiently many hidden units are available.

The conditions to be placed on U are that U is an
open bounded subset of R” and that the set of re-
strictions to U of functions in C7(R") is p;'-dense in
W(U). This places further restrictions on U that
have practical consequences for the construction of
feedforward networks approximating an unknown
mapping and its derivatives. The reason for this is
that when U is such that Cj(R") is not p7-dense in
W(U), then it is easy to construct examples of func-
tions belonging to Wy(U) which are impossible to
approximate arbitrarily well with any feedforward
network (or indeed with any smooth function).

For example, take r = 1 and let U = (a, b) U
(b,c)ya<b<c,a,b,cER. Letf(x) = 0, x € (a,
b) and let f(x) = 1, x € (b, c¢). Now f belongs to
C*(U). but no function g in C*(R) (recall that ele-
ments of X(G) are defined on R) can approximate f
in S{(U. 2). Because U lies locally on both sides of
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the boundary point b we can have a jump in f with
no corresponding jump in Df. No function g in C*(R)
can exhibit this behavior, even approximately. To
obtain an artibrarily accurate approximate using only
one feedforward network is thus impossible. How-
ever, two networks, one for the region U, = (a, b)
and the other for the region U, = (b, ¢) can deliver
the desired approximations. This strategy of parti-
tioning the domain U and applying a different feed-
forward net separately to each subdomain satisfying
our regularity conditions is often feasible. It is im-
portant in practice to examine the input domain to
see if this strategy is necessary.

Necessary and sufficient conditions ensuring that
U is sufficiently regular that Cii(R") is pr-dense in
Wi(U) arc not presently known. However. there are
a number of useful sufficient conditions available, all
ruling out the possibility that U lies locally on both
sides of its boundary. We give two examples: that U
possess the “‘segment property,” or that U is “‘star-
shaped with respect to a point.™

Let U denote the complement of U in R" and let
the boundary of U be defined as aU = ¢l U N ¢l U-.
The open set U has the segment property if for every
xin dU there exist a neighborhood of x, denoted N,
and a nonzero vector y, in R such that if z belongs
to ol U M N, then the segment z + v, 0 <1< |
belongs to U. A domain possessing the segment
property must have an (» — 1)-dimensional boundary
and cannot lie locally on both sides of any part of its
boundary.

THEOREM 2.1 (Adams, 1975. Theorem 3.18) If U
has the segment property, then C;(R") is pr-dense in
WiU)forl=p<=m=0,1.2..... 0O

‘The domain U is starshaped with respect to a point
when there exists x in U such that any ray with origin
x has a unique intersection with the boundary aU.

THEOREM 2.2 (Maz’ja, 1985, Theorem 1.1.6.1). If
U is a bounded domain starshaped with respect to a
point, then Ci(R") is py'-dense in Wi'(U) for 1 < p <
x.m=0,1,2,.... w

Our results make fundamental use of one last
function space, the space C7|(R’) of rapidly decreas-
ing functions in C*(R’). C7(R") is defined as the
set of all functions in C*(R’) such that for multi-in-
dices a and f3, x’D*f(x) — 0 as |x| — =, where
x/=x{xk .. x} and x| = max,. .., |x|. Note that
Gi(R) C C(R).

To summarize, the spaces of functions within
which we study the approximation capabilities of
multilayer feedforward networks are: (1) C* (R"): (2)
S#(U. 1) (functions in C"(U) having derivatives up
to order m being L, (U, u)-integrable) for particular
choices of U and y: (3) S7'(loc) (functions in C™(R")
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with derivatives up to order m being L, (U, 4)-in-
tegrable for all bounded subsets U of R"); and (4)
Wr(U) (functions having generalized derivatives up
to order m being L,(U, 2) integrable). Associated
with each of these spaces is an appropriate metric
measuring distance between functions in a way that
takes into account the closeness of derivatives of up
to a specified order. Thus we consider the metric
spaces (C(R"), p%), (Sp(U. w), pr). (Sp(loc).
Priec), and (W(U), py). We seek conditions on G
and U ensuring that multilayer feedforward networks
have approximation capabilities (i.e.. a denseness
property) in these spaces. For the case of W7(l/).
the restrictions on U have practical consequences for
the possibility of approximation by multilayer feed-
forward networks.

3. MAIN RESULTS

All our results flow straightforwardly from our first
result. We make use of a Fourier integral represen-
tation for single hidden layer feedforward networks
with a continuum of hidden units proposed by lrie
and Miyake (1988).

THEOREM 3.1. Let G # O belong to 87 (R, \) for
some mteger m = 0. Then 2(G) is m-uniformly dense
on compacta in C° (R"). ©

Thus, as long as the hidden layer activation function
G belongs to S7(R, 2) and does not vanish every-
where, then 2(G) can approximate any function be-
longing to €7 (R") and its derivatives up to order m
arbitrarily well on compact sets.

The conclusion of this result is in fact strong enough
to deliver all desired corollaries regarding approxi-
mation in the spaces S7(U, w). S;'(loc). and Wji(U).
This follows, roughly speakmg, from the denseness
of (’{(R’) in these spaces. However, the condition
that G belong to SP(R, 4) is uncomfortably strong.
In particular, this condition rules out the familiar
logistic or hyperbolic tangent squashing functions be-
cause these are not even members of SY(R, /). In-
deed. no sigmoid choice for G is allowed by the
present condition. Fortunately, the conditions on G
can be considerably weakened. We use the following
definition.

DEFINITION 3.2. Let | € {0} U N be given. G is [-
finite if G € C'(R) and 0 < [ |D'G] d\ < =. ©

The practical significance of G being /finite is es-
tablished by the following lemma.

LEMMA 3.3. If G is I-finite then for all 0 = m = [
there exists H € ST(R, \), H # 0, such that 2(H) C

3(G). o
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Consequently, it will suffice in Theorem 3.1 that &
be [finite. It follows that 2(G) contains a subset
namely X(H), m-uniformly dense on compacta in
Cl(R)for0=m = [

From this all our desired corollaries follow. Before
stating them. however. it is useful 1o examine the
content of the condition that (& be [finite. First note
that the logistic and hvperholic tangent squashers are
{-finite tor any / € M. so that these familiar hidden
layer activation funulons arc covered by our theo-
rems. Next. note that if we have already that & <
SR, 2) then for 1 = k = m it follows that | DY
ds = ) (a consequence of the fundamental theorein
of caleulus). More generally. if (¢ & (UNE)Y and |
DGl d7 =< = then { D'V oy 4 while I
DG dsexists and is not equal to sero then | DG
dz = = To summarize. /-finite activation functions
Gowith [ DG dio# 0 have [ D7 di o= % for all
m < [ and for m > Fall [-finite activation {unctions
G have [ DG ods = O (provided D7 exists).

It 1s informative to examine cises not satisfying
the conditions of the theorems  For cxample. if
G = sinthen (G £ C(R). but for «il/ FDIGHds
z. tGisa polvnomidl of dggru mothen again & €
C7(R). but for [ = m we have | DG ds - = al-
though [ |D'G| d/ = 0 for ! - m Consequently,
neither trigonometric tumtmns noi polynomials are
[-finite: the approximation results obtained here for
{-tinite activation functions thus have a character dis-
tinct from Fourier analysis (e.g.. Edmunds and Mos-
catelli, 1977) and Nachbin’'s extension of the Stone-
Weierstrass theorem (Llavona. 1979).

From Theorem 3.1 and Lemma 3.3 we obtain the
following corollaries.

C()RUL LARY 3.4. If G is lfinite, then for all O =
= [ 2(G) s m-uniformly dense on compacta in

(R [

Let U be an open subset of R and let ¢ C (/).
By Corollary 3.4 we know that if G is /finite then
2(G) is pg-dense in 7 (R") for any compact set K.
From this it follows that if the set of restrictions of
elements of C° (R") to U is p¥-dense-in C* then 2(G)
is p'i-dense in C*. The next corollary is an application
of this technique. There are many others.

COROLLARY 3.5, If G is I-finite. O = m = [, und U
is an open subset of R" then 2(G) ism-umformly dense
on compacta in ST(U, \) for 1 =p <%

COROLLARY 3.6. If G is I-finite and u is compactly
supported, then for all 0 = m = [, V(G) C SR )
and 3(G) is py ,-dense in SR’ w).  ©
COROLLARY 3.7. If G is l-finite. then for all-0-=
m < [ 3(G) is p7-dense in Sp(lac). ©
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COROLLARY 3.8. If G is I-finite, 0 = m = [, U is an
open bounded subset of R" and Ci(R’) is p}-dense in
Wr(U) then 3(G) is also pj-dense in W'(U).

Theorems 2.1 and 2.2 can be applied to provide con-
ditions on U ensuring that Ci(R) is p;'-dense as re-
quired.

These results rigorously establish that sufficiently
complex multilayer feedforward networks with as few
as a single hidden layer are capable of arbitrarily
accurate approximation to an unknown mapping and
its (generalized) derivatives in a variety of precise
senses. The conditions imposed on ( are relatively
mild: the conditions required of U have practical
implications.

The fact that 2(G) is m-uniformly dense on com-
pacta in C7%(R’) (hence C7(R’)) has further conse-
quences that we now note. but do not elaborate on.
Specifically, it follows from Theorem 7.40 of Adams
(1975) that 3(G) contains a subset dense in the frac-
tional Sobolev space Wi(U) fors = m + g, m €
N. 0 << g < 1, provided there exists a “'strong (m +
1)-extension operator £ for U. Further, Theorem
8.28 of Adams (1975) applies to imply that %(G)
contains a subset dense in Orlicz~-Sobolev spaces.
The reader is referred to Chapters 7 and 8 of Adams
(1975) for background and details.

In concluding this section we note that it follows
trivially that all of the foregoing results hold for multi-
output networks defined by letting f; be a vector
rather then a scalar. Also, identical conclusions hold
for feedforward networks with more than one hidden
layer under the same conditions on G, by arguments
analogous to those of HSW (Corollary 2.7).

4. NETWORK IMPLEMENTATION AND
SOME REMARKS ON LEARNING

Figure 1 provides a schematic representation of a
single hidden layer feedforward network with two
inputs. two hidden units and one output. We consider
this architecture for the sake of simplicity and be-
cause it suffices to illustrate the relevant concepts.
Figure 2 presents an augmentation of this network
that possesses additional output nodes on which reg-
ister the values of the first partial derivatives (with
respect to inputs x, and x,), denoted g, and g, of the
network output function g. The connections of the
original feedforward network have been drawn in
dashed lines in Figure 2 to emphasize the additional
connections required by this augmentation. Two fea-
tures are noteworthy: (1) the addition of the deriv-
ative activation elements (to compute DG) at the
hidden layer; and (2) the direct “connections” of the
input to hidden weights y to the multiplication ele-
ments above the hidden layer.

X T Yo Yo Y X2

FIGURE 1. Feedforward Network. O input unit, @ muitipli-
cation unit, GO activation unit, © addition unit. Note: biases
not shown.

The treatment of network connection strengths as
“inputs” in these figures is motivated in part by a
desire to make clear the nature of the relation be-
tween the original network and its augmentation.
However, it turns out that practical implementations
of the augmented network may benefit from pre-
cisely this sort of architecture. The reason is that
weights obtained from any suitable learning proce-
dure can be loaded directly into this network for use
in applications.

Learning procedures delivering connection
strengths implementing the approximations shown
here to be possible are obtainable from results of
Gallant (1987); see Gallant and White (1989) for
details.

5. SUMMARY AND CONCLUDING
REMARKS

Multilayer feedforward networks with as few as a
single hidden layer and an appropriately smooth hid-
den layer activation function are capable of arbi-
trarily accurate approximation to an arbitrary func-
tion and its derivatives. In fact, these networks can

o O o
X 711 Yz1 sz Yzz X

FIGURE 2. Derivative network. O input unit, ® muitiplication
unit, GO activation unit, © addition unit, DGO activation
derivative unit. Note: Biases not shown.
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approximate functions that are not differentiable in
the classical sense, but possess only a generalized
derivative, as is the case for certain piecewise dif-
ferentiable functions. These approximation results
provide a previously missing theoretical justification
for the use of multilayer feedforward networks in
applications requiring approximation of a function
and its derivatives.
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MATHEMATICAL APPENDIX

[n the proof of Theorem 3.1 we shall make use of Fourier trans-
forms and some of their propertics. An vxcellent exposition of
these techniques is given by Dym and McKean {1972): Most of
their theorems deal only with the univariate'case explicitly; how-
ever, extensions to the multivariate case are straightforward.
Let f belong to C(R"). The Fourier transtorm { — f with

flay = | e "itade. & 8.

maps C (R onto C (R7). (See Chapter 2.2 10 Dym and McKean,
1972.) In particular, for all multi-indices o both Def and D*f (the
Fourier transtorm of Df ) are in L (R"). Tntegration by parts gives

Dejla) = Qriayfia

and, by the Fourier inversion theorem.

D4 {xy = ‘ l""""]‘) [ i e,

Similarly, as D¢ & L.(R) for ¢ - moowe may take Fourier
transforms

D'G(by = J ¢ DGR dp

and again.
DeGby = 2ribyGin

In particular, if we had G(b) = U for all b then G(b) = 0 by the

uniqueness theorem. This is ruled out by assamption in Theorem

3.1. Thus, by continuity of G, we can always find*bs # 0 such that

G(b) # 0.

Proof of Theorem 3.1. The proot is accomplished in four-steps
Step 1: Let f € C{(R") and fix b # 0 such that G(b) 5 (1

Then

Def) = | { @D*Gla'x - 0yK.(a, 0) da do.

JEE L
where

|blf(Bajes " \
G(BY ’

K,(a, ) = Re [
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Proof. We have, using Fubini's Theorem,

bl f (baye

- di) d
&) a

‘ l a'DGla'x = 1)

|
J wlbif (ba) H D Gla'x — O)e "“d(/] du
Gl b)
abl'f (ba) ‘ . N —l
pll b R DG s Smdppubaly i
’ (;(h) ’ (p)e ¢ dp | du
, @ \b\‘ { (ba) D Glb)e s da
G(b)
I @b f (ba)(2mib) o™ da
’ (2riba) [ (ba)e* “|bt da
[ DI (bare™"s d(ba)

whence Step | by taking real parts.

Step 2: Let K be a compact subset of R'. k' = x(K) = supf|y|.

¥ € K} < xand let ;= xr — 1. Put

fytx) = J J Gla's - OKa. 0) dadi). M€ N.
[IAERY i M
Then for all « such that |a] = m.

Dfulx) = ] J @ D*Gla'x — MK,(a. 0) da do),
Ji mJo u

and. as M — =, D*f,, — D*f uniformly on K.
Proof. The formula for D*f, is obtained by differentiating the
representation of fy, with respect to x under the integral sign. Now

Df(x) = Doflx) = J f aDG(a'x — 0)K,(a. V) da di

a M Jk

+ J f aDGla'x — NK(a. ) da di).
w M " M

The absolute value of the first integral is less than or equal to

~ . b lacf (ba)l
1D I e A
j, ] “ D" Gla's (/)\d()] Gy

) [(ba)"f (ba)|
= DGl 4, 1G] bl
<D Gll ﬁ » [ G(b)| [b]

_ 1D Clix

- GO W“/' f ) la"f (a)] du.

] d(ba)

To obtain an upper bound for the second integral. notice that if
lal = M. x € K., and |0] > 7M. we have |a'x] < xrM and thus

la'x = 0 = (0] ~ la'x|| > M = xkrM = M.

It follows that. for x € K. the absolute value of the second integral
is less than

: T bt (ba)
J” ) U IpeGta'x = o) (m] Gy e

_ i,

EOIEE f D" G(w)| du.
oM

Combining both inequalities. we obtain

sup |[)"f(‘) l)“_'.w(/\')‘ =
VR

I
|G(h)| bl

Gl | wi@lda sl [0 Goold)

Jao b M

which tends to 0 as M — = by integrability of a*f and D" G,
Step 3: For fixed M. consider the following Riemann sum
approximations to f,,. Let

and

Suvflx) = }: Puv. Glal v hans) € X0,

withay, v = (v .. .. VHMIN Oy o= vy MUN, fly . = (MY
NY U Kulay oo ). Then for all « such that o = m. as N —
. DSy f ~ D*fy uniformly on K.

Proof. Introduce the notations

Hix a0y = a'D "Glu'x - K, (a. 0.
Byv, = {a. 0y vy M/N =0 = (v, + 1) MIN:
yMIN =a = (v + DMIN T =1, ..., r}.
Observe that [Ty = #vin Ty = (2N) 7 and that

U Byv =fla.Oya€l-M M. 0€|- M M,

T

da dti = y(MIN) ",

RELAYEN
[t tollows that

DSy flx) = X o(MINY ay

Ty
x D “G(u(,‘\ = Oy K dy s (hin )
= ’ Hx.ay .ty ) dado
ELANR VAN

and that

Defylx) = Y J H(x. a. 0) da d).

EEANRE VAN

For all |a| = m. the map (a. x. ) — H.(x. a, (1) 1s continuous and
therefore uniformly continuous for (x. . ) € K x [-M.
MY x [~3M. »M]. In particular.

oun(d) = sup {Hx.a 0y - H(x. a i

oo R
Wa. €(~-M M |a —a =600
E[— M Ml — 4 =

tends to 0 as ¢ — 0. Hence. for all x € K.

‘D“fw(-\") - D"Sw.\f(/\')‘

= 2 " |H"(’\" a. 0) = Hx.dy,. Oy, )| da di
AT

=X J @y (MIN) da d)
TN By

= Oux(MIN)CN) y(MIN)+
= 72M) gy (MIN)
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and therefore
52? D fu(x) — DSy nf(x)| =
yCMY "y f(MIN) > 0 as N — =

Step 4: The result follows from Steps 2 and 3. first taking
N-> < and then M —» ». O

Proof of Lemma 3.3. For any function f mapping R to R and any
n = 0, define a new function from R to R, the n-shifted difference
of f, A*(f), recursively as follows. For all x € R A f)(x) = f(x).
and forali n = 1 and all x € R A*(f)(x) = A" (fYx + a) -
A" '( f)(x) where a > 0 is some fixed real number. The proof will
consist of showing that if G is I-finite then AY(G) # 0 and belongs
to SP(R, M) forall 0 = m < [

We first record some useful properties of A"(f): (1) For
all n = 0, A"(f) € 2(f); (2) If f € C*(R) then for all n > 0,
A(f) € CR); B) If f € CYR) and 0 = m =< [, then for all
n =0, A(D"f) = D"A(f).

We now proceed to the proof. When [ = 0 the result is trivial.
For [ = 1 we show that if G is [-finite then AY{G) is (! — 1)-finite
(i.e., 0 < [JAYD"'G)| di < =),

By assumption 0 < [ |D'G| di < =. For x € R let D'G*(x) =
max(D'G(x), 0) and D'G~(x) = —min(D'G(x), 0) so that D'G =
D'G* — D'G-. Further, let M*(x) = [, D'G() dt and M
(x) = [~. D'G~(t) dt. M* and M~ are continuous, nondecreasing
functions bounded above by [ D'G* di and [ D'G- dl. By
the fundamental theorem of calculus, D'"'G(x) = M*(x) -
M~(x) + k for some constant &. Thus, A(D""'G) = M*(1 +
ay — M*(t) — (M~(t + a) — M~(0)), so [A(D'"'G)| = (M*(r +
a) — M*(t)) + (M~(t + a) -~ M~(1)). Integrating, we obtain

f|A‘(D"‘G)| di<a H DG* di + ! DG d/“.] -~ a ] DGl

where the inequality follows from Billingsley (1979, Ex. 18.10, p.
205). Thus, [ |A(D'"'G)| d4 < «. All that is left is to show that
0 < [ |A(D'"'G)| di. If [ |AY(D'-'G)| di = 0 then AYD'"'G)
(x) = 0 for all x € R. But this implies that D'"!G is periodic
with period a, which in turn implies that D'"!G = 0, contradict-
ing the assumption that G is /finite.

Inductive application of this argument shows that 0 < [ |A{(G)|
dA < . This implies that [ D"A{(G) dA = Ofor 1 = m <[, proving
that A(G) € ST(R, 7). O

Proof of Corollary 3.4. By Lemma 3.3 there is an H in 2(G)

=

satisfying the assumptions of Theorem 3.1. =

The proof of Corollary 3.5 uses the following lemma, which
closely resembles the Arzela—Ascoli theorem (e.g., Dugundji,
1966, Theorem XII. 6.4). The Arzela-Ascoli theorem would allow
us to prove that pointwise convergence implies uniform conver-
gence on compacta. Our Lemma establishes that almost every-
where-4 convergence, generally not a topological concept, implies
uniform convergence on compacta.

LEMMA A.1. Let U be a nonempty open subset of R'. If {f,: U—
R} is equicontinuous on every compact subset of U and f,— fa.e.-
i, f € C(U), then f, — f uniformly on compact subsets of U. ©

Proof. Pick arbitrary compact K C U and ¢ > 0. We show
that there exists N € N such that for all n = N max,cx| f.(x) —

Fl < e,

K. Hornik, M. Stinchcombe. and H. White

Let A = {x € U f.(x) — f(x)}. Because j, — f a4, A is
densein U. Forany > 0, let K, = {x € B |x = yi < p for some
v € K}. Because K is compact and U is open there exists n >
such that the compact set cl K, is d subset of U. Pick such an s
Because {f,} is equicontinuous on cl K. hence K. and s
continuous, there exists & > 0 such that

SUPee uin,n PSUDL ek, o s e glE e gl e a8
Because K, is open and A is dense in (. te collection of sets
{B(x.3) N Ky,]x € K, 1 A} is an open cever-of ¢l K, where B{x.
) =iy € R |y - x| < d}. Let {B(x,. HN Ky} be a finite
subcover. Because x, € A, we can pick A sufficiently large that
for all n = N|fAx) — f(x)| < ¢/3. For every i € T we have

SUP e s, | fl0) = FOOL = SUPasegs, - £L0) - i

L) = fll g oS Merd) e
for all n = N. Because K CUAB(x,. o} 7+ A,,), the result fol-
lows. O

Proof of Corollary 3.5. 1t suffices to show that the set of restric-
tions of C*} (R') to U is p¥-dense in $7(U. ). Let K be a compact
subset of U and g an arbitrary element of $7(U, 4). Again, put
K, = {x €R||x — y] < nforsomey € K}. Because K is compact
and Uis open, K C K, C K,, C U for all 4 > ¢ sufficiently small.
Pick such an 5 and let ¢ € C5(R') satisfy & = = 1, p(x) = Lif
x € K, and ¢(x) = 0if x &€ K,,. Then h =7 - ¢ belongs to CF(RE)
and h(x) = g(x) forx € K,.

For ¢ > 0, set ¥i(x) = exp(jxf® -- '3 "4 1x) < ¢ and ¥(x) =
0if |x} = . Define ¢ = (f ¥ dA)"' ¥ and set A<(x) = f-h{x -
¥)w(y) dv. By the boundedness of K,, and Maz'ja {1985, 1.1.5,
1)=-3), pp. 11-12) #* € C5(R") and p2(h*. h) ~= 0-as & — 0. Taking
subsequences if necessary, we have for all lal < m that D*h° —
Deh ae.-ion K,

It is easy to check that for all ¢ <7  we have that for all g =
mandall § > 0

SUP, ek, oo |[DHHx) = DR (y)]

= SUP, ok, L s DCREX) - DRy
Because 4 vanishes outside of K,,, this implies that {D= A} is an
equicontinuous family of functions on K,. Lemma A.1 thus ap-
plies, and the result follows. ©

Proof of Corollary 3.6. Because u has compact support £, S7(R’,
u) = C"(R"). Thus £(G) C C(R") C CR) = SR, u).

Let U be a bounded open set containing K. Let C*(U) denote
the set of restrictions of functions-in C*(R") te U. Now C(U) C
S™MU, 4}, so Corollary 3.5 implies that X(G) is m-uniformly dense
on compact subsets of U in C(U). In particular, every element
of SAR', i) can be m-uniformly approximated on K = suppu. 0O

Proof of Corollary 3.7. This follows from the definition of p7,.
and Corollary 3.6. ©

Proof of Corollary 3.8. Because C5(R") <. ({(R7) and C3(R) 13
py-dense in W(U), it is sufficient to show that Z(G)-s p;-dense
in C7(R"). Because U is bounded, cl{{J) is compact. By Corollary
3.4, %(G) is m-uniformly dense on compacta-in-C7(R"). In par-
ticular, for-every f € C{(R’) and for every ¢ > 0, theré isa g €
3(G) such that maxye,sup,e; |D?ffx) = Dglx) | < & Thus p(f,
&80) = Ziam (&P - HUN'P < MUY (m + 1)e. Because ¢ is ar-
bitrary, the proof is complete. O



