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Abstract

Gaussian processes allow for flexible specifi-
cation of prior assumptions of unknown dy-
namics in state space models. We present a
procedure for efficient Bayesian learning in
Gaussian process state space models, where
the representation is formed by projecting
the problem onto a set of approximate eigen-
functions derived from the prior covariance
structure. Learning under this family of
models can be conducted using a carefully
crafted particle MCMC algorithm. This
scheme is computationally efficient and yet
allows for a fully Bayesian treatment of the
problem. Compared to conventional system
identification tools or existing learning meth-
ods, we show competitive performance and
reliable quantification of uncertainties in the
model.

1 INTRODUCTION

Gaussian processes (GPs, Rasmussen and Williams
2006) have been proven to be powerful probabilis-
tic non-parametric modeling tools for static nonlin-
ear functions. However, many real-world applications,
such as control, target tracking, and time-series analy-
sis are tackling problems with nonlinear dynamical be-
havior. The use of GPs in modeling nonlinear dynam-
ical systems is an emerging topic, with many strong
contributions during the recent years, for example the
work by Turner et al. (2010), Frigola et al. (2013,
2014a,b) and Mattos et al. (2016). The aim of this
paper is to advance the state-of-the-art in Bayesian
inference on Gaussian process state space models (GP-
SSMs). As we will detail, a GP-SSM is a state space

Appearing in Proceedings of the 19th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2016, Cadiz, Spain. JMLR: W&CP volume 51. Copyright
2016 by the authors.

model, using a GP as its state transition function.
Thus, the GP-SSM is not a GP itself, but a state
space model (i.e., a dynamical system). Overviews
of GP-SSMs are given by, e.g., McHutchon (2014) and
Frigola-Alcade (2015).

We provide a novel reduced-rank model formulation of
the GP-SSM with good convergence properties both in
theory and practice. The advantage with our approach
over the variational approach by Frigola et al. (2014b),
as well as other inducing-point-based approaches, is
that our approach attempts to approximate the op-
timal Karhunen–Loeve eigenbasis for the reduced-
rank approximation instead of using the sub-optimal
Nyström approximation which implicitly is the under-
lying approximation in all inducing point methods.
Because of this we do not need to resort to varia-
tional approximations, but we can instead perform the
Bayesian computations in full. By utilizing the struc-
ture of the reduced-rank model, we construct a com-
putationally efficient linear-time-complexity MCMC-
based algorithm for learning in the proposed GP-SSM
model, which we demonstrate and evaluate on several
challenging examples. We also provide a proof of con-
vergence of the reduced-rank GP-SSM to a full GP-
SSM (in the supplementary material).

GP-SSMs are a general class of models defining a dy-
namical system for t = 1, 2, . . . , T given by

xt+1 = f(xt) + wt,

with f(x) ∼ GP(0,κθ,f (x,x′)), (1a)

yt = g(xt) + et,

with g(x) ∼ GP(0,κθ,g(x,x
′)), (1b)

where the noise terms wt and et are i.i.d. Gaussian,
wt ∼ N (0,Q) and et ∼ N (0,R). The latent state
xt ∈ Rnx is observed via the measurements yt ∈ Rny .
The key feature of this model is the nonlinear transfor-
mations f : Rnx → Rnx and g : Rnx → Rny which are
not known explicitly and do not adhere to any spe-
cific parametrization. The model functions f and g
are assumed to be realizations from a Gaussian pro-
cess prior over Rnx with a given covariance function
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Figure 1: An example illustrating how the GP-SSMs handle uncertainty. (a) The learned model from data y1:T .
The bars show where the data is located in the state space, i.e., what part of the model is excited in the data set,
affecting the posterior uncertainty in the learned model. (b) Our approach relies on a basis function expansion
of f , and learning f amounts to finding the posterior distribution of the weights f (i) depicted by the histograms.

κθ(x,x
′) subject to some hyperparameters θ. Learn-

ing of this model, which we will tackle, amounts to
inferring the posterior distribution of f , g, Q, R, and
θ given a set of (noisy) observations y1:T , {yi}Ti=1.

The strength of including the GP in (1) is its ability
to systematically model uncertainty—not only uncer-
tainty originating from stochastic noise within the sys-
tem, but also uncertainty inherited from data, such as
few measurements or poor excitation of the dynam-
ics in certain regions of the state space. An example
of this is given by Figure 1, where we learn the pos-
terior distribution of the unknown function f(·) in a
GP-SSM (see Sec. 5 for details). An inspiring real-
world example on how such probabilistic information
can be utilized for simultaneous learning and control
is given by Deisenroth et al. (2015).

Non-probabilistic methods for modeling nonlinear dy-
namical systems include learning of state space mod-
els using a basis function expansion (Ghahramani
and Roweis, 1998), but also nonlinear extensions of
AR(MA) and GARCH models from the time-series
analysis literature (Tsay, 2010), as well as nonlinear
extensions of ARX and state space models from the
system identification literature (Sjöberg et al., 1995;
Ljung, 1999). In particular, nonlinear ARX models
are now a standard tool for the system identification
engineer (The MathWorks, Inc., 2015). For probabilis-
tic modeling, the latent force model (Alvarez et al.,
2009) presents one approach for modeling dynamical
phenomena using GPs by encoding a priori known dy-
namics within the construction of the GP. Another
approach is the Gaussian process dynamical model

(Wang et al., 2008), where a GP is used to model the
nonlinear function within an SSM, that is, a GP-SSM.
However, the work by Wang et al. (2008) is, as op-
posed to this paper, mostly focused around the prob-
lem setting when ny � nx. That is also the focus for
the further development by Damianou et al. (2011),
where the EM algorithm for learning is replaced by a
variational approach.

State space filtering and smoothing in GP-SSMs has
been tackled before (e.g., Deisenroth et al. 2012;
Deisenroth and Mohamed 2012), and recent interest
has been in learning GP-SSMs (Turner et al., 2010;
Frigola et al., 2013, 2014a,b). An inherent problem
in learning the GP-SSM is the entangled relation-
ship between the states xt and the nonlinear function
f(·). Two different approaches have been proposed in
the literature: In the first approach the GP is repre-
sented by a parametrized form (Turner et al. use a
pseudo-training data set, akin to the inducing inputs
by Frigola et al. 2014b, whereas we will employ a basis
function expansion). The second approach (used by
Frigola et al. 2013, 2014a) is handling the nonlinear
function implicitly by marginalizing it out. Concern-
ing learning, Turner et al. (2010) and Frigola et al.
(2014a) use an EM-based procedure, whereas we and
Frigola et al. (2013) use an MCMC algorithm.

The main bottleneck prohibiting the use in practice of
some of the previously proposed GP-SSMs methods is
the computational load. For example, the training of
a one-dimensional system using T = 500 data points
(i.e., a fairly small example) is in the magnitude of
several hours for the solution by Frigola et al. (2013).
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Akin to Frigola et al. (2014b), our proposed method
will typically handle such an example within minutes,
or even less. To reduce the computational load, Frigola
et al. (2014b) suggests variational sparse GP tech-
niques to approximate the solution. Our approach,
however, is using the reduced-rank GP approximation
by Solin and Särkkä (2014), which is a disparate solu-
tion with different properties. The reduced-rank GP
approximation enjoys favorable theoretical properties,
and we can prove convergence to a non-approximated
GP-SSM.

The outline of the paper is as follows: In Section 2
we will introduce reduced-rank Gaussian process state
space models by making use of the representation of
GPs via basis functions corresponding to the prior co-
variance structure (Solin and Särkkä, 2014), a the-
oretically well-supported approximation significantly
reducing the computational load. In Section 3 we will
develop an algorithm for learning reduced-rank Gaus-
sian process state space models by using recent MCMC
methods (Lindsten et al., 2014; Wills et al., 2012). We
will also demonstrate it on synthetic as well as real
data examples in Section 5, and finally discuss the con-
tribution and further extensions in Section 6.

2 REDUCED-RANK GP-SSMs

We use GPs as flexible priors in Bayesian learning
of the state space model. The covariance function
κ(x,x′) encodes the prior assumptions of the model
functions, thus representing the best belief of the be-
havior of the nonlinear transformations. In the fol-
lowing we present an approach for parametrizing this
model in terms of an m-rank truncation of a basis
function expansion as presented by Solin and Särkkä
(2014). Related ideas have also been proposed by, for
example, Lázaro-Gredilla et al. (2010).

Provided that the covariance function is stationary
(homogeneous, i.e. κ(x − x′) , κ(x,x′)), the covari-
ance function can be equivalently represented in terms
of the spectral density S(ω). This Fourier duality is
known as the Wiener–Khintchin theorem, which we
parametrize as: S(ω) =

∫
κ(r) exp(−iωTr) dr. We

employ the relation presented by Solin and Särkkä
(2014) to approximate the covariance operator corre-
sponding to κ(·). This operator is a pseudo-differential
operator, which we approximate by a series of differ-
ential operators, namely Laplace operators ∇2. In
the isotropic case, the approximation of the covariance
function is given most concisely in the following form:

κθ(x,x
′) ≈

m∑

j=1

Sθ(λj)φ
(j)(x)φ(j)(x′), (2)

where Sθ(·) is the spectral density function of κθ(·),

and λj and φ(j) are the Laplace operator eigenvalues
and eigenfunctions solved for the domain Ω 3 x. See
Solin and Särkkä (2014) for a detailed derivation and
convergence proofs.

The key feature in the Hilbert space approximation
(2) is that λj and φ(j) are independent of the hyper-
parameters θ, and it is only the spectral density that
depends on θ. Equation (2) is a direct approximation
of the eigendecomposition of the Gram matrix (e.g.,
Rasmussen and Williams 2006), and it can be inter-
preted as an optimal parametric expansion with re-
spect to the given covariance function in the GP prior.

In terms of a basis function expansion, this can be
expressed as

f(x) ∼ GP(0, κ(x,x′)) ⇔ f(x) ≈
m∑

j=1

f (j)φ(j)(x),

(3)

where f (j) ∼ N (0, S(λj)). In the case nx > 1, this for-
mulation does allow for non-zero covariance between
different components of the state space. We can now
formulate a reduced-rank GP-SSM, corresponding to
(1a), as

xt+1 =




f
(1)
1 . . . f

(m)
1

...
...

f
(1)
nx . . . f

(m)
nx




︸ ︷︷ ︸
A




φ(1)(xt)
...

φ(m)(xt)




︸ ︷︷ ︸
Φ(xt)

+wt, (4)

and similarly for (1b). Henceforth we will consider a
reduced-rank GP-SSM,

xt+1 = AΦ(xt) + wt, (5a)

yt = CΦ(xt) + et, (5b)

where A and C are matrices of weights with priors for
each element as described by (3).

3 LEARNING GP-SSMs

Learning in reduced-rank Gaussian process state space
models (5) from y1:T amounts to inferring the poste-
rior distribution of A, C, Q, R, and the hyperparam-
eters θ. For clarity in the presentation, we will focus
on inferring the dynamics, and assume the observation
model (g(·) and R) to be known a priori. However,
the extension to an unknown observation model—as
well as exogenous input signals—follows in the same
fashion, and will be demonstrated in the numerical ex-
amples.

To infer the sought distributions, we will use a blocked
Gibbs sampler outlined in Algorithm 1. Although in-
volving sequential Monte Carlo (SMC) for inference in
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Algorithm 1 Learning of reduced-rank GP-SSMs.

Input: Data y1:T , priors on A, Q and θ.
Output: K MCMC-samples with p(x1:T ,Q,A,θ | y1:T ) as invariant distribution.
1: Sample initial x1:T [0],Q[0],A[0],θ[0].
2: for k = 0 to K do
3: Sample x1:T [k + 1]

∣∣Q[k],A[k],θ[k] by Algorithm 2.

4: Sample Q[k + 1]
∣∣A[k],θ[k],x1:T [k + 1] according to (10).

5: Sample A[k + 1]
∣∣ θ[k],x1:T [k + 1],Q[k + 1] according to (11).

6: Sample θ[k + 1]
∣∣ x1:T [k + 1],Q[k + 1],A[k + 1] by using MH (Section 3.3).

7: end for

state space, the validity of this approach is not rely-
ing on asymptotics (N → ∞) in the SMC algorithm,
thanks to recent particle MCMC methods (Lindsten
et al., 2014; Andrieu et al., 2010).

It is possible to learn (5) under different assumptions
on what is known. We will focus on the general (and
in many cases realistic) setting where the distributions
of A, Q and θ are all unknown. In cases when Q or θ
are known a priori, the presented scheme is straight-
forward to adapt. To be able to infer the posterior
distribution of Q and θ, we make the additional prior
assumptions:

Q ∼ IW(`Q,ΛQ), θ ∼ p(θ), (6)

where IW denotes the Inverse Wishart distribution.
For brevity, we will omit the problem of finding the
unknown initial distribution p(x1). It is possible to
treat this rigorously akin to θ, but it is of minor im-
portance in most practical situations. We will now
in Section 3.1–3.3 explain the four main steps 3–6 in
Algorithm 1.

3.1 Sampling in State Space with SMC

SMC methods (Doucet and Johansen, 2011) are a
family of techniques developed around the problem
of inferring the posterior state distribution in SSMs.
SMC can be seen as a sequential application of im-
portance sampling along the sequence of distributions
. . . , p(xt−1 | y1:t−1), p(xt | y1:t), . . . with a resampling
procedure to avoid sample depletion.

To sample the state space trajectory x1:T , conditional
on a model A, Q and data y1:T , we employ a condi-
tional particle filter with ancestor sampling, forming
a particle Gibbs Markov kernel Algorithm 2 (PGAS,
Lindsten et al. 2014). PGAS can be thought of as
an SMC algorithm for finding the so-called smoothing
distribution p(x1:T | A,Q,y1:T ) to be used within an
MCMC procedure.

3.2 Sampling of Covariances and Weights

The sampling of the weights A and the noise covari-
ance Q, conditioned on x1:T and θ, can be done ex-
actly, by following the procedure of Wills et al. (2012).
With the priors (3) and (6), the joint prior of A and
Q can be written using the Matrix Normal Inverse
Wishart (MNIW) distribution as

p(A,Q) =MNIW(A,Q | 0,V, `Q,ΛQ). (7)

Details on the parametrization of the MNIW distri-
bution we use is available in the supplementary mate-
rial, and it is given by the hierarchical model p(Q) =
IW(Q | `Q,ΛQ) and p(A | Q) = MN (A | 0,Q,V).
For our problem, the most important is the second
argument, the inverse row covariance V, a square ma-
trix with the inverse spectral density of the covariance
function as its diagonal entries:

V = diag
(
[S−1(λ1) · · · S−1(λm)]

)
. (8)

This is how the prior from (3) enters the formulation.
(Note that the marginal variance of each element in
A is also scaled Q, and thereby `Q,ΛQ. For nota-
tional convenience, we refrain from introducing a scal-
ing factor, but let it be absorbed into the covariance
function.) With this (conjugate) prior, the posterior
follows analytically by introducing the following statis-

Algorithm 2 Particle Gibbs Markov kernel.

Input: Trajectory x1:T [k], number of particles N
Output: Trajectory x1:T [k + 1]

1: Sample x
(i)
1 ∼ p(x1), for i = 1, . . . , N − 1.

2: Set xN
1 = x1[k].

3: For t = 1 to T
4: Set w

(i)
t = p(yt | x(i)

t ) = N (g(x
(i)
t ) | yt,R), for i = 1, . . . , N .

5: Sample a
(i)
t with P(a(i)t = j) ∝ w(j)

t , for i = 1, . . . , N − 1.

6: Sample x
(i)
t+1 ∼ N (f(x

a
(i)
t

t ),Q), for i = 1, . . . , N − 1.

7: Set xN
t+1 = xt+1[k].

8: Sample aNt with P(aNt = j) ∝
w

(j)
t p(xN

t+1 | x
(j)
t ) = w

(j)
t N (xN

t+1 | f(x
(j)
t ),Q).

9: Set x
(i)
1:t+1 = {xa

(i)
t

1:t ,x
(i)
t+1}, for i = 1, . . . , N .

10: End for
11: Sample J with P(J = i) ∝ w(i)

T and set x1:T [k + 1] = xJ
1:T .
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tics of the sampled trajectory x1:T :

Φ =
T∑

t=1

ζtζ
T
t , Ψ =

T∑

t=1

ζtz
T
t , Σ =

T∑

t=1

ztz
T
t , (9)

where ζt = xt+1 and zt =
[
φ(1)(xt) . . . φ

(m)(xt)
]T

. Us-
ing the Markov property of the SSM, it is possible to
write the conditional distribution for Q as (Wills et al.,
2012, Eq. (42)):

p(Q | x1:T ,y1:T ) =

IW(Q | T + `Q,ΛQ +
(
Φ−Ψ(Σ + V)−1ΨT

)
).
(10)

Given the prior (7), A can now to be sampled from
(Wills et al., 2012, Eq. (43)):

p(A | Q,x1:T ,y1:T ) =

MN (A | Ψ(Σ + V)−1,Q, (Σ + V)−1). (11)

3.3 Marginalizing the Hyperparameters

Concerning the sampling of the hyperparameters θ,
we note that we can easily evaluate the conditional
distribution p(θ | x1:T ,Q,A) up to proportionality as

p(θ | x1:T ,Q,A) ∝
p(θ) p(Q | x1:T ,Q,θ) p(A | x1:T ,Q,A,θ). (12)

To utilize this, we suggest to sample the hyperparame-
ters by using a Metropolis–Hastings (MH) step, result-
ing in a so-called Metropolis-within-Gibbs procedure.

4 THEORETICAL RESULTS

Our model (5) and learning Algorithm 1 inherits cer-
tain well-defined properties from the reduced-rank ap-
proximation and the presented sampling scheme. In
the first theorem, we consider the convergence of a se-
ries expansion approximation to the GP-SSM with an
increasing number m of basis functions. As in Solin
and Särkkä (2014), we only provide the convergence
results for a rectangular domain with Dirichlet bound-
ary conditions, but the result could easily be extended
to a more general case. Proofs for all theorems are
included in the supplementary material.

Theorem 4.1. The probabilistic model implied by the
dynamic and measurement models of the approximate
GP-SSM convergences in distribution to the exact GP-
SSM, when the size of the domain Ω and the number
of basis functions m tends to infinity.

The above theorem means that in the limit any prob-
abilistic inference in the approximate model will be
equivalent to inference on the exact model, because the
prior and likelihood models become equivalent. The
benefit of considering the m-rank model instead of a
standard GP, is the following:

Theorem 4.2. Provided the rank-reduced approxima-
tion, the computational load scales as O(m2T ) as op-
posed to O(T 3).

Furthermore, the proposed learning procedure enjoys
sound theoretical properties:

Theorem 4.3. Assume that the support of the pro-
posal in the MH algorithm covers the support of the
posterior p(θ | x1:T ,Q,A,y1:T ), and N ≥ 2 in Al-
gorithm 2. Then the invariant distribution of Algo-
rithm 1 is p(x1:T ,Q,A,θ | y1:T ).

Hence, Theorem 4.3 guarantees that our learning pro-
cedure indeed is sampling from the distribution we
expect it to, even when a finite number of particles
N ≥ 2 is used in the Monte Carlo based Algorithm 2.
It is also possible to prove uniform ergodicity for Algo-
rithm 1, as such a result exists for Algorithm 2 (Lind-
sten et al., 2014).

5 NUMERICAL EXAMPLES

In this section, we will demonstrate and evaluate our
contribution, the model (5) and the associated learning
Algorithm 1, using four numerical examples. We will
demonstrate and evaluate the proposed method (in-
cluding the convergence of the learning algorithm) on
two synthetic examples and two real-world datasets,
as well as making a comparison with other methods.

In all examples, we separate the data set into train-
ing data yt and evaluation data ye. To evaluate the
performance quantitatively, we compare the estimated
data ŷ to the true data ye using the root mean square
error (RMSE) and the mean log likelihood (LL):

RMSE =

√√√√ 1

Te

Te∑

t=1

|ŷt − ye
t |2 (13)

and

LL =
1

Te

Te∑

t=1

logN (ye
t | E[ŷt],V[ŷt]). (14)

The source code for all examples is available via the
first authors homepage.
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Table 1: Results for synthetic and real-data numerical examples.

Data / Method RMSE LL Train time [min] Test time [s] Comments

Synthetic data:
PMCMC GP-SSM Frigola et al. (2013) 1.12 −1.57 547 420 As reported by Frigola et al. (2014b).
Variational GP-SSM Frigola et al. (2014b) 1.15 −1.61 2.1 0.14 As reported by Frigola et al. (2014b).
Reduced-rank GP-SSM 1.10 −1.52 0.7 0.18 Average over 10 runs.

Damper modeling:
Linear OE model (4th order) 27.1 N/A
Hammerstein–Wiener (4th order) 27.0 N/A
NARX (3rd order, wavelet network) 24.5 N/A
NARX (3rd order, Tree partition) 19.3 N/A
NARX (3rd order, sigmoid network) 8.24 N/A
Reduced-rank GP-SSM 8.17 −3.71

Energy forecasting:
Static GP 27.7 −2.54
Reduced-rank GP-SSM 21.8 −2.41

5.1 Synthetic Data

As a proof-of-concept already presented in Figure 1,
we have T = 500 data points from the model

xt+1 = tanh(2xt) + wt, yt = xt + et, (15)

where et ∼ N (0, 0.1) and wt ∼ N (0, 0.1). We inferred
f and Q, using a GP with the exponentiated quadratic
(squared exponential, parametrized as in Rasmussen
and Williams 2006) covariance function with unknown
hyperparameters, and Q ∼ IW(10, 1) as priors. In
this one-dimensional case (x ∈ [−L,L], L = 4), the
eigenvalues and eigenfunctions are λj = (πj/(2L))2

and φ(j)(x) = 1/
√
L sin(πj(x + L)/(2L)). The spec-

tral density corresponding to the covariance function
is Sθ(ω) = σ2

√
2π`2 exp(−ω2`2/2).

The posterior estimate of the learned model is shown
in Figure 1, together with the samples of the basis
function weights f (j). The variance of the posterior
distribution of f increases in the regimes where the
data is not exciting the model.

As a second example, we repeat the numerical bench-
mark example on synthetic data from Frigola et al.
(2014b): A one-dimensional state space model xt+1 =
xt + 1 +wt, if xt < 4, and xt+1 = −4xt + 21, if xt ≥ 4
with known measurement equation yt = xt + et, and
noise distributed as wt ∼ N (0, 1) and et ∼ N (0, 1).
The model is learned from T = 500 data points, and
evaluated with Te = 105 data points. As in Frigola
et al. (2014b), a Matérn covariance function is used
(see, e.g., Section 4.2.1 of Rasmussen and Williams
2006 for details, including its spectral density). The
results for our model with K = 200 MCMC iterations
and m = 20 basis functions are provided in Table 1.

We also re-state two results from Frigola et al. (2014b):
The GP-SSM method by Frigola et al. (2013) (which
also uses particle MCMC for learning) and the varia-
tional GP-SSM by Frigola et al. (2014b). Due to the
compact writing in Frigola et al. (2013, 2014b), we
have not been able to reproduce the results, but to
make the comparison as fair as possible, we average
our results over 10 runs (with different realizations of

100 101 102 103 104

2
3

5

Number of MCMC samples K

Negative log likelihood
RMSE

Figure 2: The (negative) log likelihood and RMSE for
the second synthetic example, as a function of number
of MCMC samples K, averaged (solid lines) over 10
runs (dotted lines).

the training data). Our method was evaluated using
the provided Matlab implementation on a standard
desktop computer1.

The choice to use only K = 200 iterations of the learn-
ing algorithm is motivated by Figure 2, illustrating the
‘model quality’ (in terms of log likelihood and RMSE)
as a function of K: It is clear from Figure 2 that
the model quality is of the same magnitude after a
few hundred samples and after 10 000 samples. As we
know the sampler converges to the right distribution
in the limit K → ∞, this indicates that the sampler
converges already after a few hundred samples for this
example. This is most likely thanks to the linear-in-
parameter structure of the reduced-rank GP, allowing
for the efficient Gibbs updates (10–11).

There is an advantage for our proposed reduced-rank
GP-SSM in terms of LL, but considering the stochas-
tic elements involved in the experiment, the different
RMSE performance results are hardly outside the er-
ror bounds. Regarding the computational load, how-
ever, there is a substantial advantage for our proposed
method, enjoying a training time less only a third of
the one by the variational GP-SSM, which in turn out-
performs the method by Frigola et al. (2013).

1Intel i7-4600 2.1 GHz CPU.
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5.2 Nonlinear Modeling of a
Magneto-Rheological Fluid Damper

We also compare our proposed method to state-of-the-
art conventional system identification methods (Ljung,
1999). The problem is the modeling of input–output
behavior of a magneto-rheological fluid damper, intro-
duced by Wang et al. (2009) and used as a case study
in the System Identification Toolbox for Mathworks
Matlab (The MathWorks, Inc., 2015). The data con-
sists of 3 499 data points, of which 2 000 are used for
training and the remaining for evaluation, shown in
Figure 3a. The data exhibits some non-trivial dynam-
ics, and as the T = 2 000 data points probably not
contain enough information to determine the system
uniquely, a certain amount of uncertainty is present in
the posterior. This is thus an interesting and realis-
tic problem for a Bayesian method, as it possibly can
provide useful information about the posterior uncer-
tainty, not captured in classical maximum likelihood
methods for system identification.

We learn a three-dimensional model:

xt+1 = fx(xt) + fu(ut) + wt, (16a)

yt = [0 0 1]xt + et (16b)

where xt ∈ R3, et ∼ N (0, 5), and wt ∼ N (0,Q) with
Q unknown. We assume a GP prior with an expo-
nentiated quadratic covariance function, with separate
length-scales for each dimension. We use m = 73 =
343 basis functions2 for fx and 8 for fu, which in total
gives 1 037 basis function weights f (j) and 5 hyperpa-
rameters θ to sample.

The learned model was used to simulate a distribution
of the output for the test data, plotted in Figure 3a.
Note how the variance of the prediction changes in
different regimes of the plot, quantifying the uncer-
tainty in the posterior belief. The resulting output is
also evaluated quantitatively in Table 1, together with
five state-of-the-art maximum likelihood methods, and
our proposed method performs on par with the best of
these. The learning algorithm took about two hours
to run on a standard desktop computer.

The assumed model with known linear g and additive
form fx + fu could be replaced by an even more gen-
eral structure, but this choice seems to give a sensible
trade-off between structure (reducing computational
load) and flexibility (increasing computational load)
for this particular problem. Our proposed Bayesian
method does indeed appear as a realistic alternative
to the maximum likelihood methods, without any
more problem-specific tailoring than the rather nat-
ural model assumption (16a).

2Explicit expression for the basis functions in the mul-
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Figure 3: Data (red) and predicted distributions
(gray) for the real-data examples. It is interesting to
note how the variance in the prediction changes be-
tween different regimes in the plots.

5.3 Energy Consumption Forecasting

As a fourth example, we consider the problem of fore-
casting the daily energy consumption in Sweden 3 four
days in advance. The daily data from 2013 was used
for training, and the data from 2014 for evaluation.
The time-series was modeled as an autonomous dy-
namical system (driven only by noise), and a three di-
mensional reduced-rank GP-SSM was trained for this,
with all functions and parameters unknown. To obtain
the forecast, the model was used inside a particle filter
to find the state distribution, and the four step ahead
prediction density was computed. The data and the
predictions are shown in Figure 3b.

As a sanity check, we compare to a standard GP, not
explicitly accounting for any dynamics in the time-
series. The standard GP was trained to the mapping
from yt to yt+4, and the performance is evaluated in
Table 1. From Table 1, the gain of encoding dynamical
behavior in the model is clear.

tidimensional case is found in the supplementary material.
3Data from Svenska Kraftnät, available: http://www.

svk.se/aktorsportalen/elmarknad/statistik/.
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6 DISCUSSION

6.1 Tuning

For a successful application of the proposed algorithm,
there are a few algorithm-specific parameters for the
user to choose: The number of basis functions m and
the number of particles N in PGAS. A large number
of basis functions m makes the model more flexible
and the reduced-rank approximation ‘closer’ to a non-
approximated GP, but it also increases the computa-
tional load. With a smooth covariance function κ, the
prior is in practice f (j) ≈ 0 for moderate j, and m can
be chosen fairly small (as a rule of thumb, say, 6–15
per dimension) without making a too crude approxi-
mation. In our experience, the number of particles N
in PGAS can be chooses fairly small (say, 20), without
affecting the mixing properties of the Markov chain
heavily. This is in accordance to what has been re-
ported in the literature by Lindsten et al. (2014).

6.2 Properties of the Proposed Model

We have proposed to use the reduced-rank approxima-
tion of GPs by Solin and Särkkä (2014) within a state
space model, to obtain a GP-SSM which efficiently can
be learned using a PMCMC algorithm. As discussed
in Section 3 and studied using numerical examples in
Section 5, the linear-in-the-parameter structure of the
reduced-rank GP-SSM allows for a computationally ef-
ficient learning algorithm. However, the question if a
similar performance could be obtained with another
GP approximation method or another learning scheme
arises naturally.

Other GP approximation methods, for example
pseudo-inputs, would most likely not allow for such
efficient learning as the reduced-rank approximation
does; unless closed-form Gibbs updates are available
(requiring a linear-in-the-parameter structure, or sim-
ilar), the parameter learning would have to resort to
Metropolis–Hastings, which most likely would give a
significantly slower learning procedure. For many GP
approximation methods it is also more natural to find a
point estimate of the parameters (the inducing points,
for example) using, for example, EM, rather than in-
ferring the parameter posterior, as is the case in this
paper.

The learning algorithm, on the other hand, could prob-
ably be replaced by some other method also inferring
(at least approximately) the posterior distribution of
the parameters, such as SMC2 (Chopin et al., 2013) or
a variational method. However, to maintain efficiency,
the method has to utilize the linear-in-the-parameter
structure of the model to reach a computational load
competitive with our proposed scheme. Such an alter-

native (however only inferring MAP estimate of the
sought quantities) could possibly be the method by
Kokkala et al. (2014).

6.3 Conclusions

We have proposed the reduced-rank GP-SSM (5), and
provided theoretical support for convergence towards
the full GP-SSM. We have also proposed a theoreti-
cally sound MCMC-based learning algorithm (includ-
ing the hyperparameters) utilizing the structure of the
model efficiently.

By demonstration on several examples, the computa-
tional load and the modeling capabilities of our ap-
proach have been proven to be competitive. The com-
putational load of the learning is even less than in
the variational sparse GP solution provided by Frigola
et al. (2014b), and the performance in challenging
input–output modeling is on par with well-established
state-of-the-art maximum likelihood methods.

6.4 Possible Extensions and Further Work

A natural extension for applications where some do-
main knowledge is present, is to let the model include
some functions with an a priori known parametriza-
tion. The handling of such models in the learning al-
gorithm should be feasible, as it is already known how
to use PGAS for such models (Lindsten et al., 2014).
Further, the assumptions of the IW prior of Q (6) are
possible to circumvent by using, for example, MH, at
the cost of an increased computational load. The same
holds true for the Gaussian noise assumption in (5).

Another direction for further work is to adapt the pro-
cess to be able to sequentially learn and improve the
model when data is added in batches, by formulating
the previously learned model as the prior to the next
iteration of the learning. This could probably be use-
ful in, for example, reinforcement learning, along the
lines of Deisenroth et al. (2015).

In the engineering literature, dynamical systems are
mostly defined in discrete time. An interesting ap-
proach to model the continuous-time counterpart us-
ing Gaussian processes is presented by Ruttor et al.
(2013). A development of the reduced-rank GP-SSM
to continuous time dynamical models using stochastic
Runge–Kutta methods would be of great interest for
further research.
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