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Goals:
• Conclude hands-on investigation of Feedback Characteristics 
• Review basic concepts on systems modeling (Chapter 3) 
• Define a “model” and use it to answer questions about a system
• Introduce concepts of state, dynamics, inputs, and outputs

Reading: 
• Åström and Murray, Feedback Systems (2nd ed. Beta)

- Sections 2.1-2.4                       (feedback characteristics) 
- Sections 3.1-3.2,                      (review of modeling for control)
- Optional: Sections. 3.3-3.4       (more advanced modeling topics)
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Some Characteristics of Feedback

To get a “first look” at some of the issues in feedback control, last
time we looked at a simple inverted pendulum example

• Dynamical Equation:
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• Our feedback analysis from last time:
• Proportional feedback stabilizes, but slow response
• Proportional + Derivative allows arbitrary pole placement

What can go wrong? Unmodeled dynamics
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Unmodeled Dynamics

What happens with proportional feedback?
ሷߠ ൅ ሶߠߙ ൅ ߠᇱߚ ൌ ݀

• At equilibrium, not possible for ,ߠ ሶߠ , ሷߠ ൌ 0
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• Note: െ݉݃߮݊݅ݏ ൅ ݑߛ	 ് 0				 → base is always moving

Solution: Feedforward
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• not robust, since ݉,݃, ݈, ߮ must be known

Solutions: Integral Feedback
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• Key Idea: integrator will estimate the required bias
• System can stabilize to ,ߠ ሶߠ , ሷߠ ൌ 0, even though ׬ ሺ߬ሻ݀߬௧ߠ

଴ ് 0
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Feedback Characteristics: Take-away

Feedback is used for
• Regulation: maintain an output variable at a fixed value
• Disturbance Rejection:
• Trajectory (Command) Tracking: (see FBS-2e, Section 2.3)

Feedback characteristics
• Feedback one or more dynamical states
• Can set behavior of feedback controlled system

• possibly set poles of closed loop system
• Can overcome unmodeled dynamics or imprecisely known system 

parameters
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Model-Based Analysis of Feedback Systems

Analysis and design based on models
• A model can predict how a system will behave
• Feedback can give counter-intuitive behavior; 

models help sort out what is going on
• For control design, models don’t have to be 

exact: feedback provides robustness

Control-oriented models: inputs and outputs

The model you use depends on the questions 
you want to answer
• A single system may have many models
• Time and spatial scale must be chosen to suit 

the questions you want to answer
• Formulate questions before building a model

Weather Forecasting

• Question 1: how much will it rain 
tomorrow?

• Question 2: will it rain in the next 
5-10 days?

• Question 3: will we have a 
drought next summer?

Different questions 
different models
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Example #1: Spring Mass System
Applications
• Flexible structures (many apps)
• Suspension systems (eg, “Bob”)
• Molecular and quantum dynamics

Questions we want to answer
• How much do masses move as a 

function of the forcing frequency?
• What happens if I change the values 

of the masses?
• Will Bob fly into the air if I take that 

speed bump at 25 mph?

Modeling assumptions
• Mass, spring, and damper constants 

are fixed and known
• Springs satisfy Hooke’s law 
• Damper is (linear) viscous force, 

proportional to  velocity
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Model: rigid body physics
• Sum of forces = mass * 

acceleration
• Hooke’s law: F = k(x – xrest)
• Viscous friction: F = c v
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Modeling a Spring Mass System

Convert to state space form
Construct a vector of variables that 
specify the system’s evolution
Write dynamics as a system of first order 
differential equations:

“State space form”
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Simulation of a Mass Spring System
Steady state frequency response
• Force the system with a sinusoid
• Plot the “steady state” response, after 

transients have died out
• Plot relative magnitude and phase of 

output versus input (more later)

Matlab simulation (see handout)
function dydt = f(t, y, ...)

u = 0.00315*cos(omega*t);

dydt = [ 

y(3); 
y(4);

-(k1+k2)/m1*y(1) + k2/m1*y(2);

k2/m2*y(1) - (k2+k3)/m2*y(2)

- c/m2*y(4) + k3/m2*u ];

[t,y] = ode45(dydt,tspan,y0,[], 
k1, k2, k3, m1, m2, c, omega);

Frequency Response
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More General Forms of Differential Equations
State space form

Higher order, linear ODE

•x = state; nth order
•u = input; will usually set p = 1
•y = output; will usually set q = 1

General form Linear system
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Modeling Terminology
State captures effects of the past
• independent physical quantities that  

determines future evolution (absent 
external excitation)

Inputs describe external excitation 
• Inputs are extrinsic to the system 

(externally specified)

Dynamics describes state evolution
• update rule for system state 
• function of current state and any 

external inputs

Outputs describe measured quantities
• Outputs are function of state and 

inputs ⇒ not independent variables
• Outputs are often subset or mixture of 

state

Example: spring mass system
 State: position and velocities of each 

mass: 
Input: position of spring at right end of 
chain: u(t)
Dynamics: basic mechanics
Output: measured positions of the 

masses: 
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Modeling Properties
Choice of state is not unique
• There may be many choices of 

variables that can act as the state
• Trivial example: different choices 

of units (scaling factor)
• Less trivial example: sums and 

differences of the mass positions

Choice of inputs, outputs depends on point of view
• Inputs: what factors are external to the model that 

you are building
- Inputs in one model might be outputs of another 

model (eg, the output of a cruise controller 
provides the input to the vehicle model)

• Outputs: what physical variables (often states) 
can you measure

- Choice of outputs depends on what you can sense 
and what parts of the component model interact 
with other component models

Can also have different 
types of models
• Ordinary differential 

equations for rigid body 
mechanics

• Finite state machines for 
manufacturing, Internet, 
information flow

• Partial differential 
equations for fluid flow, 
solid mechanics, etc
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Differential Equations
Differential equations model continuous evolution of state variables 
• Describe the rate of change of the state variables
• Both state and time are continuous variables

Example: electrical power grid

State:
Inputs:

Outputs:

rotor angles, velocities (         )

Swing equations

Describe how generator rotor angles (i) interact 
through the transmission line (G, B) and power 
load Pi
 Stability of these equations determines how 

loads on the grid are accommodated

power loading on the grid ( Pi )
voltage levels and frequency (based on rotor speed)

Parameters: additional constants required to describe dynamics (B, G, ω0)
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Difference Equations
Difference equations model discrete transitions between continuous variables
• “Discrete time” description (clocked transitions)
• New state is function of current state + inputs
• State is represented as a continuous variable

Example: predator prey dynamics Questions we want to answer
• Given the current population of hares and 

lynxes, what will it be next year?
• If we hunt down lots of lynx in a given 

year, how will the populations be affected?
• How do long term changes in the amount 

of food available affect the populations?

Modeling assumptions
• Track population annually (discrete time)
• The predator species is totally dependent 

on the prey species as its only food supply 
• The prey species has an external food 

supply and no threat to its growth other 
than the predator. 
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Example #2: Predator Prey Modeling
Discrete Lotka-Volterra model
• State

- H[k] # of rabbits in period k
- L[k] # of foxes in period k

• Inputs (optional)
- u[k] amount of rabbit food

• Outputs: # of rabbits and foxes
• Dynamics: Lotka-Volterra eqs

• Parameters/functions
- br(u) hare birth rate (per period);

depends on food supply
- df lynx mortality rate (per period)
- a, c interaction terms

MATLAB simulation
 Discrete time model, “simulated” 

through repeated addition

Comparison with data


