CDS 101/110: Lecture 2.1 _
Feedback Characteristics (continued)
Intro to Modeling

Joel Burdick
October 3, 2016

Goals:

Conclude hands-on investigation of Feedback Characteristics
Review basic concepts on systems modeling (Chapter 3)
Define a “model” and use it to answer questions about a system
Introduce concepts of state, dynamics, inputs, and outputs

Reading:
e Astrom and Murray, Feedback Systems (2" ed. Beta)
- Sections 2.1-2.4 (feedback characteristics)
- Sections 3.1-3.2, (review of modeling for control)

- Optional: Sections. 3.3-3.4 (more advanced modeling topics)



Some Characteristics of Feedback

To get a “first look™ at some of the issues in feedback control, last
time we looked at a simple inverted pendulum example
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« Dynamical Equation:
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* QOur feedback analysis from last time:
* Proportional feedback stabilizes, but slow response |
« Proportional + Derivative allows arbitrary pole placement ¥ —= *

What can go wrong? Unmodeled dynamics @

é+a9—[39=yu—%sin<pzyu+d




Unmodeled Dynamics " @

What happens with proportional feedback?
6+ab+£'6=d
- At equilibrium, not possible for (8,0,8) = 0

» There is a solution (6,6) = 0, and 6,, = % = _nleSiz¢z
—p

* Note: —mgsing+ yu#0 - base Is always moving

Solution: Feedforward
mgsing
— = k,0

 not robust, since m, g, [, ¢ must be known

.u:

Solutions: Integral Feedback
t t
»u=—kp0 —k; [[(0(7) = Opep)dr = —kp0 — k; [ 6(x)dT
» Key ldea: integrator will estimate the required bias
- System can stabilize to (8,0,8) = 0, even though fote(r)dr +0
» Value of integral will converge to mgsing/lk; without knowing m, g,l,p s



Feedback Characteristics: Take-away

Feedback is used for
« Regulation: maintain an output variable at a fixed value
 Disturbance Rejection:
» Trajectory (Command) Tracking: (see FBS-2e, Section 2.3)

Feedback characteristics
* Feedback one or more dynamical states
« Can set behavior of feedback controlled system
« possibly set poles of closed loop system

« Can overcome unmodeled dynamics or imprecisely known system
parameters



Model-Based Analysis of Feedback Systems

Analysis and design based on models

® A model can predict how a system will behave

® Feedback can give counter-intuitive behavior;
models help sort out what is going on

® For control design, models don’t have to be
exact: feedback provides robustness

Control-oriented models: inputs and outputs

The model you use depends on the questions
you want to answer

® A single system may have many models

® Time and spatial scale must be chosen to suit
the questions you want to answer

® Formulate questions before building a model

Weather Forecasting

* Question 1: how much will it rain
tomorrow?

* Question 2: will it rain in the next
5-10 days?

 Question 3: will we have a
drought next summer?

Different questions ®
different models




Example #1: Spring Mass System
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Applications
® Flexible structures (many apps)
® Suspension systems (eg, “Bob”)
® Molecular and quantum dynamics

Questions we want to answer

® How much do masses move as a
function of the forcing frequency?

® What happens if | change the values
of the masses?

® Will Bob fly into the air if | take that
speed bump at 25 mph?

Modeling assumptions

® Mass, spring, and damper constants
are fixed and known

® Springs satisfy Hooke’s law

® Damper is (linear) viscous force,
proportional to velocity



Modeling a Spring Mass System

u(y)

s

Convert to state space form

eConstruct a vector of variables that
specify the system’s evolution

*\Write dynamics as a system of first order

differential equations:
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Model: rigid body physics
® Sum of forces = mass *
acceleration

® Hooke’s law: /= k(x — X,og)
® Viscous friction: F =c v

m1§1 = kalga — q1) — by
mads = ka(u —ga) — (s — q1) —cda

. d1
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gl _ Fey ky
g1 s E(ﬁ —,:1)—541 .
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@) - —a) - —d)
v= g; “State space form”

y=[1 1 0 0]x=Cx



Simulation of a Mass Spring System
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Steady state frequency response
® Force the system with a sinusoid

® Plot the “steady state” response, after
transients have died out

® Plot relative magnitude and phase of
output versus input (more later)

Matlab simulation (see handout)
function dydt = f(t, vy, -..)
u = 0.00315*cos(omega*t);
dydt = [
y(@3);
y(4);
-(k1+k2)/m1*y (1) + k2/ml*y(2);
k2/m2*y(1) - (k2+k3)/m2*y(2)
- ¢c/m2*y(4) + k3/m2*u ];

[t.y] = ode45(dydt, tspan,yO0,[],
ki, k2, k3, ml, m2, c, omega);



More General Forms of Differential Equations

State space form

%:j(glu) %=Aﬂ:+3ﬂ zeR*, ucRF
vy = h(z,u) y=Cz+ Du yER
General form Linear system «x = state: nth order
] . «u = input; will usually set p = 1
Higher order, linear ODE _ o _
) «y = output; will usually set q = 1
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Modeling Terminology

State captures effects of the past

® independent physical quantities that
determines future evolution (absent
external excitation)

Inputs describe external excitation

® Inputs are extrinsic to the system
(externally specified)

Dynamics describes state evolution
® update rule for system state

® function of current state and any
external inputs

Outputs describe measured quantities

® Outputs are function of state and
inputs = not independent variables

® Outputs are often subset or mixture of
state

2

u()

q2

qd1 J

7

Example: spring mass system
» State: position and velocities of each
mass: 41,4,:41,9,
Input: position of spring at right end of
chain: u(?)
* Dynamics: basic mechanics

e Output: measured positions of the
masses: 4,9,
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Modeling Properties

Choice of state is not unique d
® There may be many choices of l
variables that can act as the state r —&) © C(s) . O—| P(s) .y
® Trivial example: different choices
of units (scaling factor)

® Less trivial example: sums and
differences of the mass positions

Choice of inputs, outputs depends on point of view Can also have different

® Inputs: what factors are external to the model that types of models
you are building ® Ordinary differential

- Inputs in one model might be outputs of another equahtior?s for rigid body
model (eg, the output of a cruise controller . mechanics |
provides the input to the vehicle model) Finite state machines for

® Outputs: what physical variables (often states) .m?nufa?tungg, Internet,
can you measure InNformation Tiow

o . . .
= Choice of outputs depends on what you can sense Partmj[\.l dlff?re?ltlgé ;
and what parts of the component model interact eqllljj lonsh or Hul tOW’
with other component models solid mechanics, elc
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Differential Equations

Differential equations model continuous evolution of state variables

® Describe the rate of change of the state variables dx
® Both state and time are continuous variables . S (x,u)
y = h(x)

Swing equations

8, + D16y = wo(P, — Bsin(3, — &) + Geos(d; — &2
3+ Dby = wo(Ps + Bein(3, — &) + Goos(3, — &,
: ,I | «Describe how generator rotor angles (™) interact

¢ through the transmission line (G, B) and power

load P;

#8 « Stability of these equations determines how
loads on the grid are accommodated

Inputs: power loading on the grid ( P;)
Outputs: voltage levels and frequency (based on rotor speed)
Parameters: additional constants required to describe dynamics (B, G, wo)
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Difference Equations

Difference equations model discrete transitions between continuous variables

® “Discrete time” description (clocked transitions)
® New state is function of current state + inputs z(k +_1] = f(z[k], u[4])
® State is represented as a continuous variable k| = h(z[k])

Example: predator prey dynamics

 ogs
A rl Tlz
" r| Pl
Li- . | |
hl-l I r I Ill W I Il‘
fl_- |. 1 W I I .j i [ |

L | |
ol |I ’ : L ) ' I. ! i I II : I

. 1 1 -y
- _‘h| Il'.1 |I -rl I. .| .l' l!-_;._l| b ll-,‘_,l ] 3

L
LG

mih [Hao add ISR EKD DXL owod BMIER 2D DN

Questions we want to answer

® Given the current population of hares and
lynxes, what will it be next year?

® If we hunt down lots of lynx in a given
year, how will the populations be affected?

® How do long term changes in the amount
of food available affect the populations?

Modeling assumptions
® Track population annually (discrete time)

® The predator species is totally dependent
on the prey species as its only food supply

® The prey species has an external food
supply and no threat to its growth other
than the predator.



Example #2: Predator Prey Modeling

Discrete Lotka-Volterra model
® State

= H[k] # of rabbits in period k

= L[k] # of foxes in period k
® Inputs (optional)

- u[k]  amount of rabbit food
® Qutputs: # of rabbits and foxes

® Dynamics: Lotka-Volterra eqgs

H[k + 1] = H[K] + bs() H[k] — aL{K]H[K],
L{k + 1] = L[¥] + cL{K H[k| — d, L[],

® Parameters/functions

= b(u) hare birth rate (per period);
depends on food supply

= d; lynx mortality rate (per period)

- a,cC interaction terms

MATLAB simulation

e Discrete time model, “simulated”
through repeated addition
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