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Motivation: human baseline
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https://www.youtube.com/watch?v=NsxyV-kgfio&t=4s



Human feedback loop
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Autonomous feedback loop

Video Feed

RC Commands

Feedback 
Loop

Prediction

-
C P

4



Overview

• Background on planning

• World representation & planning strategy

• Collision avoidance with instantaneous pointclouds

• Adding history to world representation

• Model predictive control & robustness



Background - planning

• Classical planning problem (A→B) focused on new 
algorithms and reduced computation time

• Unrealistic expectation of perception quality
• Assumes: Infinite horizon, no uncertainty, sensor 

data easily transformed into useful form
• Reality: Finite horizon, state/measurement 

uncertainty

• Difficult to extend existing planner into receding 
horizon framework

• Issue: Which world representation and planning 
technique?
• Need techniques to integrate real-world 

perception into planners of varying 
complexity/timescales  
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Planning in Unknown Environments

• Problem: Navigate through unknown environment as fast as possible

• Challenge: World only partially known due to limited perception

• Two Tasks:

1. Transform sensor data into usable world model

2. Use world model to find path

• Constraint: Emphasize fast perception and planning ⇒minimize reaction time

• Issue: Planning & perception designed independently⇒ slow reaction time
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World representations

• Occupancy grid map

• Raw sensor measurements

• Other
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Path planning strategies

• Graph/tree search

• Optimization-based

• Motion primitives

• Hybrid
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Hierarchical planning architecture
• Issue: Limited computation power ⇒ limit planning horizon or reduce model fidelity

• Solution: Long horizon, simple model global planner + short horizon, complex model local planner
⇒ Hierarchical planning

• Insight: Global planner guides local planner
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Triple Integrator Planner

• Goal: Efficient perception/planning pipeline for aggressive obstacle avoidance
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• Approach
1. Use instantaneous perception data for 

collision avoidance
2. Generate motion primitives online with 

approximate but accurate vehicle model
3. Check for collisions efficiently

• Result: 5ms computation time is ≈10x faster than previous state-of-the-art  
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World representation revisited

• Goal: Low overhead, avoid sensor fusion/costly perception processing

• Approach: Construct simple world representation from instantaneous point cloud 

• k-d tree: convenient data structure for nearest neighbor search 

• 2 transformations: depth image → pointcloud→ k-d tree

• Limitations: 

• No history of previously seen obstacles ⇒ tradeoff computation time/knowledge 

• Constrained to travel in sensor FOV ⇒ unknown space is occupied space
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Minimum-time motion primitives

• Goal: Generate collision avoidance maneuvers with minimal computation time 

⇒Motion primitives 
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Local

• Formulation:

• Triple integrator model to approximate 
vehicle dynamics, including attitude

• Min-time decoupled state/input 
constrained optimal control problem, 
with jerk as control input

• Key idea: Plan in velocity space to reduce comp. complexity

• Closed-form solution ⇒ 3-D primitives generated online in 4.7µs

• Primitive generated from current state to desired speed and direction

• Result: Bang-(off)-bang solution in jerk ⇒ highly agile maneuvers 
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State- vs. control-based motion primitives
• Control-based: Satisfy control constraints but violate state constraints

• Sate-based: Satisfy state constraints but require solving TPBVP ⇒ time consuming

• Key Insight: Planning in velocity space allows TPBVP to be solved with minimal 
comp. time ⇒ state/control input constraints guaranteed satisfied

• Sample over speed and direction
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State-based primitives trivially 
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Local

FOV



Primitive sorting
• Goal: Construct cost function independent of world model 

• Idea: Calculate primitive cost using heading information and primitive length

• Cost of primitive MPi: 
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Local

Stage Cost Terminal Cost

• Stage cost: Prioritize “similar” primitives

• Terminal cost: Prioritize “long” primitives in direction of goal 



Efficient collision checking
• Issue: Collision checking typically expensive 

• Existing methods finely sample path or further process sensor data ⇒ slow 
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• Key idea: Estimate next possible time t*

based on top speed and closest obstacle

• Procedure: 
1. Estimate t*

2. Evaluate primitive at t*

3. Repeat until collision or sensing 
horizon reached  

• Check small # of points along primitive 
⇒ Low computation time
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Indoor Flight Experiments [Lopez ‘17]
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Outdoor tests: good day
Wall seen ~3.5m away



Outdoor tests: good day
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Adding history to world model

• Advantages of instantaneous pointclouds:

• Robust to state estimation uncertainty

• No temporal fusion ⇒ little required computation

• Issue: No history of previously observed obstacles ⇒myopic

• Possible solutions:

• Primitive/trajectory history

• Pointcloud history without fusion

• Sliding occupancy map
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More outdoor test: good day
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• World model: Instantaneous pointcloud + local map



More outdoor test: good day
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• World model: Instantaneous pointcloud + local map
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Outdoor tests: bad day

Ad-hoc design of planning/control architecture ⇒ no performance guarantees



Model Predictive Control

Optimizer

Plant

• MPC: Repeatedly solve constrained, multivariable 
optimal control problem
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MPC with tracking controller
• MPC + tracking controller ⇒ compensate for model 

error & disturbance

• Standard architecture in many fields (e.g., robotics, aerospace, etc.)

• Issue: Ad-hoc feedback controller design ⇒ no performance guarantees
• Tube MPC ⇒ performance guarantees
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Tube MPC

• MPC: Open-loop execution of optimal control solution

• Little robustness to unmodeled dynamics/disturbances

• Tube MPC: Generate open-loop reference that is tracked by ancillary controller

• Controller bounds tracking error ⇒ tube around desired trajectory

• Issue: Constructing controller/tube non-trivial for nonlinear systems

• Existing methods overly conservative, expensive to compute, & not generalizable

• Very active area of research for nonlinear systems



Planning needs for subterranean challenge 

• Less emphasis on speed, more emphasis on autonomy

• Frontier exploration

• Active search

• Perception-degraded environment 

• Planning needs resiliency to state estimation errors/failures

• Accurate SLAM 

• Return to previously visited areas to improve SLAM accuracy

• Multi-robot coordination



Summary

• Plethora of planning approaches

• Select based on available sensors, computation, & domain

• Coupled perception & planning design for max performance

• Perception/localization-aware planning 

• Resiliency to perception/localization errors & failures

• Testing in the wild crucial!



Questions?

Presenter: Brett T. Lopez

Contact: brett.t.lopez@jpl.nasa.gov
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