CDS 101/110: Lecture 4.2
State Feedback

October 19, 2016

Goals:
* Review state feedback controllers for linear/linearized systems
* Review reachability of a control system
* |Introduce Reachable Canonical Form

Reading:
e Astrém and Murray, Feedback Systems 2e, Ch 7



Reachability of Input/Output Systems

i=f(r,u) = €R" x(0) given Xq
y = h(z) veR, yeR \ @
|/

Defn An input/output system is reachable if for any
r,. ry € R" and any time I'> 0 there exists an input
up, 11 € R such that the solution of the dynamics starting Note: the term “controllable”

from x(0) = x, and applying input «(7) gives x(7) = x,. 's also commonly used to
(0) =X, pplying input u(7) g (D) =x describe this concept

Remarks:
* X, Xr need not be equilibria, and reachability is independent of output
e For LTI control systems,
x = Ax + Bu, xeR™, AeR™"  BeR™7" ueR"
y = Cx + Du, yeR™, AeR™" BeR™"

controllability can be assessed from the rank of:

W,=[B AB ... A" 'B]
l.e., if W,. has full rank (rank n), then the system is controllable.
e MATLAB: ctrb(A,B) constructs W,.. Test rank with det(.) or rank(.)



Example

Consider
X = [1 1] x + [1] u unstable poles at s=1, s=2
O 2 0 V4 p ?
Can we use feedback to stabilize? u=—-Kx=—|k{ky]x

1 1—ky 1k
Ao =A=BK=[o of=[o] e =[1 " 17

Characteristic equation of closed loop system:
det(sl —A)=(—-1+k)(s—-2)=0

Feedback can modify pole at s=1, but not pole at s=2.

Why? Choose invertible coordinate change z=Tx which diagonalizes A.

Y N I 1

Clearly, the second “mode” is not controllable



State space controller design for linear systems

it =Ar+ Bu = €R", x(0) given

T
x(T)=e'"x. + (e’ Bur)dt
y=Cuz ueR, yelR (T) 0 {[0 ©)

Goal: find a linear control law = -K x + & r Controller
such that the closed loop system

= Ar+ Bu=(A— BK)x + Bk,r .
is stable at equilibrium point x. with y. = 7. é= |
k.. only affects steady state gain : :

Process

X = Ax + Bu
y=Cx+ Du

Theorem: If (A,B) is reachable, then the eigenvalues of (A-BK) can be set to any
desired values.

Proof: (with a few limitations)
e Suppose A, B for single input/output system are in reachable canonical form:

(—adqy —Q; v —Ap—q1  —0ap] 1]
1 0 0 0 0
A= 1 0 0 B=]|: C=1[c1 ¢ - cq]
: : 0
1 0 . 10




Proof: (continued)

e Can show that characteristic polynomial of A takes the form:
A(s) =det(sl —A) =s"+a;s" 1 +-+a,_;s+a,=0

e Let gain matrix, K, take the form:

K = [kl kz kn—l kn]
e Then
(—a; —ky —ay—ky - —apq—kpq —ay—ky] R
1 0 0 0 r
(A—BK) = 1 0 0 B=|9
1 0 ] 0]

which yields a closed-loop characteristic polynomial of:
Aa-ry(8) = s™ + (a;+ky)s™ T + -+ (ap_1+kn—1)s + (aytk,) =0
* If desired eigenvalues are A4, 4,,-*+, A,,, then desired characteristic polynomial is:
2a(s) = (s = 2)(s = A2) (5 — A) = S" + pys™ L+ o pp = 0
e Choose: ki =py—aq, ko =p,—a,, .., k, =p, —a,

* Ackermann’s method (1972). MATLAB: acker. But place is better conditioned.



Reference Trajectory Tracking

e |f the desired reference is constant at 7 = 0, then the system is a regulator, and we
need only choose K to stabilize. Else, we need to determine k;..

_____ (_Zt._n}tl_'o_ll_c! o Process
* |f we want zero reference error at zero | IS O
frequency, for r # 0, then: TS T E T oo |
x=((A—-BK)x+Bk,r,y=Cx - | _K | |
(A—BK)x, + Bk, r=0, y,=Cx, E | *

e ~y,=—C(A—BK) 'Bk,r
* If wewanty, =r,then
k, = —[C(A—BK)"1B]
Check: Is x, stable?
e Let z=x—Xo. Then
z=x=(A—-BK)x+ Bk,r
=(A—BK)(z+ x,) + Bk,r = (A—BK)z+ (A — BK)x, + Bk,r
= (A—BK)z + (A— BK)|—(A — BK)™'Bk,r| + Bk,7 = (A — BK)z



Converting to Reachable Canonical Form

Given: x = Ax + Bu, y = Cx + Du, how do we convert to reachable canonical form?

e |ntroduce a coordinate transformation: z = Tx, with T invertible
z =Tx = T(Ax + Bu) =Q4r’1:jlz+@1
B

eQ: Can we find T such that 4 is in reachable canonical form?

(1 —a; af—a, *
_ _ - 3 _ 0 1 _al cee %k
W,=[B AB - A" 'Bl=|o0 o 1 *
5 . L0 0 0 e 0
e B=TB,AB=TAT 'TB =TAB '\ J
* Azli: TA’B Known from A,4(s) = s™ + a;s" 1 + -+ a,
e« >W,=T[B AB ... A" 1B]
=TW,

+ ST =W
* Note: T exists if (A,B) reachable. Hence, any reachable system can be converted
This proves that eigenvalue placement is possible for any reachable system



Implementation Detalls

How to choose closed loop Eigenvalues?
® Find coordinate transformation of A such that

Real eigenvalues —_|
A=

Complex conjugate _~
eigenvalues

/ Jordan Block

® |.e., open loop system is a collection of first order systems, second order systems,
and possibly Jordan block systems. Then design feedback (i.e., assignment of
closed loop eigenvalues) for 15t and 2"d order systems (and possibly Jordan block)

For 2"d Order System 2 ~ c
® Each eigenvalue A;=0; + jw,, get a contribution L
of the form Y “\\ _
y; () = e 7t (asin(w;t) + bcos(wt-t)) 05 ,/ s
y,

® s2+ 2(wes +wg =0, A1, =—{wyt we/{?—1



Implementation Detalls

Use observer to determine the current state if you can’t measure it

" up d " *Estimator looks at inputs and
l outputs of plant and estimates
y

the current state

*d € State
@) Feedback ® ® Process - eCan show that if a system is

observable then you can
£ - construct and estimator

—1 f=— Observer *Use the estimated state as the
feedback

u=Kx

* Next week: basic theory of state estimation and observability
* CDS 112: Kalman filtering and theory of optimal observers



Example #2: Predator prey

(From FBS Section 4.7)

System\dynamics
ﬁ: ?“+’u)H(1—H)— aH L H > 0.

(growth rate)

dt k c+H'
Q — aH L _dL. prey consump- -y 5,
dt c+H tion rate)
e Stable limit cycle with unstable equilibrium point —_
at H.=20.6, L.=29.5 ol —— s - - |
) - t
e Can we design the dynamics of the system by Fuy /F'J'., "f ” f'“ f“" fﬂ|['- :
modulating the food supply (“#” in “r + " term) 51?0- ..' ’ll r v
AL L./u/m/ u

Q1: can we move from a given initial population AR
of lynxes and rabbits to a specified one intime 7 %7,
by modulation of the food supply?

/stable

Q2: can we stabilize the lynx population around
a desired equilibrium point (eg, Ls; = ~30)?
e Try to keep lynx and hare population in check

Lynxes

—t=lnstable

Approach: try to stabilize using state feedback law




Example #2: Problem setup

Equilibrium point calculation

f = inline('predprey(0, x)', 'X');
dH H (IHL Xeq = fsolve(f, [20, 30])'; He = xeq(l); Le = xeq(2);
dt — (’}“ T U-)H (1 o }) o c 4 H % Generate the linearization around the eq point
i v - App — [
dl. aHL -((a*c*k*Le + (c + He)"2*(2*He - k)*r)/((c + He)" 2%
— = —dL (a*b*c*Le)/(c + He)"2, -d + (a*b*He)/(c + He)
dt c+H 1;
Bpp = [He*(1 - He/k); 0];
® Xe = (2061 295)1 Ue = 01 [‘9 = 295 % Check reachability
if (det(ctrb(App, Bpp)) ~= 0) disp “reachable”; end

Linearization
e Compute linearization around equilibrium point, x.:

Y

dx highe
i Alx —x.) + B(u —ue) + Hene

ox (o) ou 5at) dt order terms
e Redefine local variables: z=x-x., v =u-u.
acl, 2H . r __ _aH, __ H.
d 21 | (c+H.)? o k - c+H, 21 H‘e' (1 k ) .
E ~o | T abel . abH. d s + U
b2 (c+H.)? c+He -2 0

e Reachable? YES, if a, » # 0 (check [B AB]) = can locally steer to any point



Example #2: Stabilization via eigenvalue assignment

acL, 2H.r _ aH, _ H.
i A | (e+H)Z T Tk T c+H. “1 + H. (1 k ) 1
dIL ~ o M % — d s t
b [*2 (ot M. )° —+a., @ [*2 0
Control design: 70 ‘ - )
.'\\ are
vV = _KZ — _kl(H - He) - kQ(L - L‘B) 60 ; \\‘ _____ Lynx
c 5011 1
U = Ue + B (I — Ie) _Zi o ! \‘1\
Place poles at stable values < 50 /L ___________________
e Choose A=-0.1,-0.2 20§
* MATLAB: Kpp = place(App, Bpp, [-0.1; -0.2]); % 2 40 e s 100
Key principle: design of dynamics 100
e Use feedback to create a stable equilibrium point “
More advanced: control to desired value r =L, . col
a
I Controller ‘I l ‘ Process - a0l
: E N Y| k=Ax+Bu , ) .
r _E_h kr ) ! \&/ y=Cx+ Du ) 20\ N = - P
-~ — T T~ ==

100

: Hares
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