CDS 101/110: Lecture 4.2 State Feedback # October 19, 2016 ### Goals: - Review state feedback controllers for linear/linearized systems - Review reachability of a control system - Introduce Reachable Canonical Form # Reading: Åström and Murray, Feedback Systems 2e, Ch 7 # Reachability of Input/Output Systems $$\dot{x} = f(x, u)$$ $x \in \mathbb{R}^n$, $x(0)$ given $y = h(x)$ $u \in \mathbb{R}$, $y \in \mathbb{R}$ **Defn** An input/output system is *reachable* if for any $x_o, x_f \in \mathbb{R}^n$ and any time T > 0 there exists an input $u_{[0,T]} \in \mathbb{R}$ such that the solution of the dynamics starting from $x(0) = x_0$ and applying input u(t) gives $x(T) = x_f$. Note: the term "controllable" is also commonly used to describe this concept ### **Remarks:** - x_0 , x_f need not be equilibria, and reachability is independent of output - For LTI control systems, $$\dot{x} = Ax + Bu, \qquad x \in \mathbb{R}^n, \ A \in \mathbb{R}^{nxn}, \ B \in \mathbb{R}^{nxr}, \ u \in \mathbb{R}^r$$ $$y = Cx + Du, \qquad y \in \mathbb{R}^m, \ A \in \mathbb{R}^{mxn}, \ B \in \mathbb{R}^{mxr}$$ controllability can be assessed from the rank of: $$W_r = \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}$$ I.e., if W_r has full rank (rank n), then the system is controllable. • MATLAB: **ctrb**(A,B) constructs W_r . Test rank with **det**(.) or **rank**(.) # **Example** Consider $$\dot{x} = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$$, unstable poles at s=1, s=2 Can we use feedback to stabilize? $u = -Kx = -[k_1 \ k_2]x$ $$u = -Kx = -[k_1 \ k_2]x$$ $$A_{cl} = A - BK = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} - \begin{bmatrix} 1 \\ 0 \end{bmatrix} [k_1 \ k_2] = \begin{bmatrix} 1 - k_1 & 1 - k_2 \\ 0 & 2 \end{bmatrix}$$ Characteristic equation of closed loop system: $$\det(sI - A) = (s - 1 + k_1)(s - 2) = 0$$ Feedback can modify pole at s=1, but not pole at s=2. Why? Choose invertible coordinate change z=Tx which diagonalizes A. $$W_r = \begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \qquad \dot{z} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} z + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$$ Clearly, the second "mode" is not controllable # State space controller design for linear systems $$\dot{x} = Ax + Bu$$ $x \in \mathbb{R}^n$, $x(0)$ given $y = Cx$ $x(T) = e^{AT}x_0 + \int_{\tau=0}^T e^{A(T-\tau)}Bu(\tau)d\tau$ $$x(T) = e^{AT}x_0 + \int_{\tau=0}^{T} e^{A(T-\tau)}Bu(\tau)d\tau$$ **Goal:** find a linear control law $u = -Kx + k_r r$ such that the closed loop system $$\dot{x} = Ax + Bu = (A - BK)x + Bk_r r$$ is stable at equilibrium point x_e with $y_e = r$. k_r only affects steady state gain **Theorem:** If (A,B) is reachable, then the eigenvalues of (A-BK) can be set to any desired values. **Proof:** (with a few limitations) • Suppose A, B for single input/output system are in reachable canonical form: $$A = \begin{bmatrix} -a_1 & -a_2 & \cdots & -a_{n-1} & -a_n \\ 1 & 0 & \cdots & 0 & 0 \\ & 1 & \cdots & 0 & 0 \\ & & \ddots & \vdots & & \vdots \\ & & 1 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix} \qquad C = \begin{bmatrix} c_1 & c_2 & \cdots & c_n \end{bmatrix}$$ ### **Proof:** (continued) • Can show that characteristic polynomial of A takes the form: $$\lambda_A(s) = \det(sI - A) = s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n = 0$$ • Let gain matrix, *K*, take the form: $$K = \begin{bmatrix} k_1 & k_2 & \cdots & k_{n-1} & k_n \end{bmatrix}$$ Then $$(A - BK) = \begin{bmatrix} -a_1 - k_1 & -a_2 - k_2 & \cdots & -a_{n-1} - k_{n-1} & -a_n - k_n \\ 1 & 0 & \cdots & 0 & 0 \\ & 1 & \cdots & 0 & 0 \\ & & \ddots & \vdots & & \vdots \\ 1 & & 0 \end{bmatrix} \quad B = \begin{bmatrix} k_r \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$ which yields a closed-loop characteristic polynomial of: $$\lambda_{(A-BK)}(s) = s^n + (a_1 + k_1)s^{n-1} + \dots + (a_{n-1} + k_{n-1})s + (a_n + k_n) = 0$$ • If desired eigenvalues are λ_1 , λ_2 ,..., λ_n , then desired characteristic polynomial is: $$\lambda_d(s) = (s - \lambda_1)(s - \lambda_2) \cdots (s - \lambda_n) = s^n + p_1 s^{n-1} + \cdots + p_n = 0$$ - Choose: $k_1 = p_1 a_1$, $k_2 = p_2 a_2$, ..., $k_n = p_n a_n$ - Ackermann's method (1972). MATLAB: acker. But place is better conditioned. # **Reference Trajectory Tracking** - If the desired reference is constant at r=0, then the system is a **regulator**, and we need only choose K to stabilize. Else, we need to determine k_r . - If we want zero reference error at zero frequency, for $r \neq 0$, then: $$\dot{x} = (A - BK)x + Bk_r r, y = Cx \rightarrow (A - BK)x_e + Bk_r r = 0, \quad y_e = Cx_e$$ - $\therefore y_{\rho} = -C(A BK)^{-1}Bk_{r}r$ - If we want $y_e = r$, then $k_r = \big[C(A BK)^{-1} B \big]^{-1}$ Check: Is x_e stable? • Let $$z = x - x_e$$. Then $$\dot{z} = \dot{x} = (A - BK)x + Bk_r r$$ $$= (A - BK)(z + x_e) + Bk_r r = (A - BK)z + (A - BK)x_e + Bk_r r$$ $$= (A - BK)z + (A - BK)[-(A - BK)^{-1}Bk_r r] + Bk_r r = (A - BK)z$$ # Converting to Reachable Canonical Form **Given:** $\dot{x} = Ax + Bu$, y = Cx + Du, how do we convert to reachable canonical form? • Introduce a coordinate transformation: z = Tx, with T invertible $$\dot{z} = T\dot{x} = T(Ax + Bu) = TAT^{-1}z + TBu$$ • Q: Can we find T such that \tilde{A} is in reachable canonical form? $$\tilde{W}_r = [\tilde{B} \quad \tilde{A}\tilde{B} \quad \cdots \quad \tilde{A}^{n-1}\tilde{B}] = \begin{bmatrix} 1 & -a_1 & a_1^2 - a_2 & \cdots & * \\ 0 & 1 & -a_1 & \cdots & * \\ 0 & 0 & 1 & \cdots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix}$$ $$\bullet \quad \tilde{B} = TB, \tilde{A}\tilde{B} = TAT^{-1}TB = TAB$$ • $$\widetilde{A}^2\widetilde{B} = TA^2B$$ • $\widetilde{A}^2\widetilde{B} = TA^2B$ • $\rightarrow \widetilde{W}_r = T[B \quad AB \quad \cdots \quad A^{n-1}B]$ $= TW_r$ Known from $\lambda_A(s) = s^n + a_1s^{n-1} + \cdots + a_n$ - $\rightarrow T = \widetilde{W}_r W_r^{-1}$ - **Note:** T exists if (A,B) reachable. Hence, any reachable system can be converted This proves that eigenvalue placement is possible for any reachable system # **Implementation Details** ### How to choose closed loop Eigenvalues? Find coordinate transformation of A such that • I.e., open loop system is a collection of first order systems, second order systems, and possibly Jordan block systems. Then design feedback (i.e., assignment of closed loop eigenvalues) for 1st and 2nd order systems (and possibly Jordan block) ## For 2nd Order System • Each eigenvalue $\lambda_i = \sigma_i + j\omega_i$, get a contribution of the form $$y_i(t) = e^{-\sigma_i t} (a \sin(\omega_i t) + b \cos(\omega_i t))$$ # **Implementation Details** ### Use observer to determine the current state if you can't measure it - Estimator looks at inputs and outputs of plant and estimates the current state - Can show that if a system is observable then you can construct and estimator - •Use the *estimated* state as the feedback $$u = K\hat{x}$$ - Next week: basic theory of state estimation and observability - CDS 112: Kalman filtering and theory of optimal observers # **Example #2: Predator prey** (growth rate) (From FBS Section 4.7) System dynamics $$\begin{split} \frac{dH}{dt} &= (r+u)H\left(1-\frac{H}{k}\right) - \frac{aHL}{c+H}, \qquad H \geq 0, \\ \frac{dL}{dt} &= b\frac{aHL}{c+H} - dL, \qquad \text{(prey consump-tion rate)} \quad L \geq 0. \end{split}$$ - Stable limit cycle with unstable equilibrium point at $H_e = 20.6$, $L_e = 29.5$ - Can we design the dynamics of the system by modulating the food supply ("u" in "r + u" term) **Q1:** can we move from a given initial population of lynxes and rabbits to a specified one in time T by modulation of the food supply? **Q2:** can we stabilize the lynx population around a desired equilibrium point (eg, $L_d = \sim 30$)? Try to keep lynx and hare population in check Approach: try to stabilize using state feedback law # Example #2: Problem setup ### Equilibrium point calculation $$\begin{split} \frac{dH}{dt} &= (r+u)H\left(1-\frac{H}{k}\right) - \frac{aHL}{c+H}\\ \frac{dL}{dt} &= b\frac{aHL}{c+H} - dL \end{split}$$ • $$x_e$$ = (20.6, 29.5), u_e = 0, L_e = 29.5 # f = inline('predprey(0, x)', 'x'); xeq = fsolve(f, [20, 30])'; He = xeq(1); Le = xeq(2); % Generate the linearization around the eq point App = [-((a*c*k*Le + (c + He)^2*(2*He - k)*r)/((c + He)^2* (a*b*c*Le)/(c + He)^2, -d + (a*b*He)/(c + He)]; Bpp = [He*(1 - He/k); 0]; % Check reachability if (det(ctrb(App, Bpp)) ~= 0) disp "reachable"; end ### Linearization Compute linearization around equilibrium point, x_e: $$A = \frac{\partial f}{\partial x}\Big|_{(x_e, u_e)} \qquad B = \frac{\partial f}{\partial u}\Big|_{(x_e, u_e)} \qquad \frac{dx}{dt} \approx A(x - x_e) + B(u - u_e) + \frac{\text{higher}}{\text{order terms}}$$ • Redefine local variables: $z = x - x_e$, $v = u - u_e$ $$\frac{d}{dt} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} -\frac{acL_e}{(c+H_e)^2} - \frac{2H_er}{k} + r & -\frac{aH_e}{c+H_e} \\ \frac{abcL_e}{(c+H_e)^2} & \frac{abH_e}{c+H_e} - d \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} + \begin{bmatrix} H_e \left(1 - \frac{H_e}{k} \right) \\ 0 \end{bmatrix} v$$ • Reachable? YES, if $a, b \neq 0$ (check [B AB]) \Rightarrow can locally steer to any point # Example #2: Stabilization via eigenvalue assignment $$\frac{d}{dt} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} -\frac{acL_e}{(c+H_e)^2} - \frac{2H_er}{k} + r & -\frac{aH_e}{c+H_e} \\ \frac{abcL_e}{(c+H_e)^2} & \frac{abH_e}{c+H_e} - d \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} + \begin{bmatrix} H_e \left(1 - \frac{H_e}{k} \right) \\ 0 \end{bmatrix} v$$ ### Control design: $$v = -Kz = -k_1(H - H_e) - k_2(L - L_e)$$ $u = u_e + K(x - x_e)$ ### Place poles at stable values - Choose $\lambda = -0.1, -0.2$ - MATLAB: Kpp = place(App, Bpp, [-0.1; -0.2]); # Key principle: design of dynamics Use feedback to create a stable equilibrium point ### More advanced: control to desired value $r = L_d$