
CDS 101/110: Lecture 2.2
Dynamic Behavior

5 October 2015

Goals:
• Learn about phase portraits to visualize behavior of dynamical systems
• Understand different types of stability for an equilibrium point
• Know the difference between local/global stability and related concepts
• Introduction to Lyapunov functions

Reading: 
• Åström and Murray, Feedback Systems 2e, Sections 5.1-5.4
• Optional:  Skim FBS-2e Chapter 4
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Goal #1: Stability
• Check if closed loop response is stable

Goal #2: Performance
• Look at how the closed loop system 

behaves, in a dynamic context

Goal #3: Robustness (later)

system input
control law

Response 
depends on 

choice of control
(all are stable)

Sense
Vehicle Speed

Compute
Control “Law”

Actuate
Gas Pedal

Dynamic Behavior (and Stability)



3

Phase Portraits (2D systems only)
Phase plane plots show 2D dynamics as vector fields & stream functions
•
• Plot F(x) as a vector on the plane; stream lines follow the flow of the arrows

phaseplot(‘dosc’, ...

[-1 1 10], [-1 1 10], 0.1, ...

boxgrid([-1 1 10], [-1 1 10]));



Equilibrium points represent stationary conditions for the dynamics

The equilibria of the system ݔሶ ൌ ݂ሺݔሻ are the points xe such that f(xe) = 0.
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Equilibrium Points



Stability of Equilibrium Points
An equilibrium point is:

Stable if initial conditions that start 
near the equilibrium point, stay near
• Also called “stable in the sense 

of Lyapunov
• For all ߝ ൐ 0, there exists ߜ	ݏ. .ݐ

Asymptotically stable if all nearby 
initial conditions converge to the 
equilibrium point
• Stable + converging

Unstable if some initial conditions 
diverge from the equilibrium point
• May still be some initial 

conditions that converge

56
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Example #1: Double Inverted Pendulum

Stability of equilibria
• Eq #1 is stable
• Eq #3 is unstable
• Eq #2 and #4 are unstable, but 

with some stable “modes”

Two series coupled pendula
States: pendulum angles (2), velocities (2)
Dynamics: F = ma (balance of forces)
 Dynamics are very nonlinear

Eq #1 Eq #2

Eq #3 Eq #4



Linear dynamical system with state             :

Stability determined by the eigenvalues
• Simplest case: diagonal A matrix (all eigenvalues are real)

• Block diagonal case (complex eigenvalues)

• Theorem linear system is asymptotically stable if and only if 

Stability of Linear Systems
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• System is asy stable if  

• System is asy stable if  
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Local Stability of Nonlinear Systems
Asymptotic stability of the linearization implies local asymptotic stability of 
equilibrium point 
• Linearization around equilibrium point captures “tangent” dynamics

• If linearization is unstable, can conclude that nonlinear system is locally unstable
• If linearization is stable but not asymptotically stable, can’t conclude anything about 

nonlinear system:

• If linearization is asymptotically stable, nonlinear system is locally asymptotically 
stable

Local approximation particularly appropriate for control systems design
• Control often used to ensure system stays near desired equilibrium point
• If dynamics are well-approximated by linearization near equilibrium point, can use this 

to design the controller that keeps you there (!)

• linearization is stable (but not asy stable)
• nonlinear system can be asy stable or unstable

linearize

0
approx



Example: Stability Analysis of Inverted Pendulum
System dynamics

Upward equilibrium:  

• Eigenvalues: 

Downward equilibrium:
• Linearize around x1 = π + z1:
• Eigenvalues: 
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Basic idea: capture the behavior of a system by tracking “energy” in system
• Find a single function that captures distance of system from equilibrium
• Try to reason about the long term behavior of 

all solutions

Example: spring mass system
• Can we show that all solutions return 

to rest w/out explicitly solving ODE?
• Idea: look at how energy evolves in time

- ܸ ݔ ൐ 0 and V(0)=0 in ܤ௥, 
- ሶܸ ൏ 0	 ሶܸ ൑ 0 	in	ܤ௥

• Start by writing equations in state space form
• Compute energy and its derivative

• Energy is positive ⇒ x2 must eventually go to zero
• If x2  goes to zero, can show that x1 must also approach zero (Krasovskii-Lasalle)
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Reasoning about Stability using Lyapunov Functions
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Local versus Global Behavior
Stability is a local concept
• Equilibrium points define the local behavior of the dynamical system
• Single dynamical system can have stable and unstable equilibrium points

Region of attraction
• Set of initial conditions that converge to a given equilibrium point



Continuous time (ODE) version of predator prey dynamics:

Equilibrium points (2)
• ~(20.5, 29.5): unstable 
• (0, 0): unstable

Limit cycle
• Population of each species 

oscillates over time
• Limit cycle is stable (nearby

solutions converge to limit cycle)
• This is a global feature of the 

dynamics (not local to an equilibrium 
point)
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Example #2: Predator Prey (ODE version) 

 Continuous time (ODE) model
 MATLAB: predprey.m (from web page)

unstable

stable



Dynamics: • Note that limit cycle is an invariant set
• From simulation, x(t+T) = x(t)

Stability of invariant set

Simpler Example of a Limit Cycle
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Summary: Stability and Performance
Key topics for this lecture
• Stability of equilibrium points

• Eigenvalues determine stability 
for linear systems

• Local versus global behavior


