CDS 101/110: Lecture 2.2
Dynamic Behavior

5 October 2015

Goals:
* Learn about phase portraits to visualize behavior of dynamical systems
* Understand different types of stability for an equilibrium point
* Know the difference between local/global stability and related concepts
* Introduction to Lyapunov functions

Reading:
 Astrom and Murray, Feedback Systems 2e, Sections 5.1-5.4
* Optional: Skim FBS-2e Chapter 4



Dynamic Behavior (and Stability)
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Goal #1: Stability %= o) u=k(x)
® Check if closed loop response is stable ’ I
control law
system input

Goal #2: Performance

® Look at how the closed loop system Response
behaves, in a dynamic context ] depends on

choice of control
(all are stable)

Goal #3: Robustness (later)




Phase Portraits (2D systems only)

Phase plane plots show 2D dynamics as vector fields & stream functions

* & = f(z,u(z)) = F(z)

® Plot F(x) as a vector on the plane; stream lines follow the flow of the arrows

dx] [ x
dt | x, —X; = X, |

phaseplot(“dosc”, ...
[-1 1 10], [-1 1 10], O.1, ...
boxgrid([-1 1 10], [-1 1 10]));

0.5

1

0.5




Equilibrium Points

Equilibrium points represent stationary conditions for the dynamics

The equilibria of the system x = f(x) are the points X, such that f(x,) = 0.
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Stability of Equilibrium Points

An equilibrium point is:

Stable if initial conditions that start
near the equilibrium point, stay near -~

q

® Also called “stable in the sense -4

of Lyapunov
® For all € > 0, there exists § s.t.
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Asymptotically stable if all nearby
initial conditions converge to the
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equilibrium point B
® Stable + converging

Unstable if some initial conditions
diverge from the equilibrium point

® May still be some initial
conditions that converge -5
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Example #1: Double Inverted Pendulum

Two series coupled pendula
eStates: pendulum angles (2), velocities (2
*Dynamics: F = ma (balance of forces)

e Dynamics are very nonlinear

Eq #1 Eq #2

| Eq #3 Eq#4
Stability of equilibria
® Eq #1 is stable

® Eq #3 is unstable

® Eq #2 and #4 are unstable, but
with some stable “modes”




Linear dynamical system with state = € R™:

dz

& e Az

di

Stability of Linear Systems

z(0) = zp,

Stability determined by the eigenvalues A{A) = {a € C: dat(s7 — A) =0}
® Simplest case: diagonal A matrix (all eigenvalues are real)

& &

® Block diagonal case (complex eigenvalues)
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By = M2y
z,(t) = e**z(0)

* System is asy stable if Ay <0

zy-1(£) = 77" (z:(0) coswyt + myy1 (0) sinwyt)
%a;(t) = e”** (2, (0) sinw,t — 2.1 (0) cosw;t)

* Systemis asy stable if ReA; =0y < 0

® Theorem linear system is asymptotically stable if and only if Re,As <0 VA € A(A)



Local Stability of Nonlinear Systems

Asymptotic stability of the linearization implies local asymptotic stability of
equilibrium point

® Linearization around equilibrium point captures “tangent” dynamics
0

SF

b= Fl)+ 5

® If linearization is unstable, can conclude that nonlinear system is locally unstable

Z=CT—%,
=!(m—m.)+hlghornrdertarmn approx 3= Az

® If linearization is stable but not asymptotically stable, can’t conclude anything about
nonlinear system:

. .3 linearize . 0 * linearization is stable (but not asy stable)
==X x= « nonlinear system can be asy stable or unstable

® If linearization is asymptotically stable, nonlinear system is locally asymptotically
stable

Local approximation particularly appropriate for control systems design

® Control often used to ensure system stays near desired equilibrium point

® If dynamics are well-approximated by linearization near equilibrium point, can use this
to design the controller that keeps you there (!)



Example: Stability Analysis of Inverted Pendulum

System dynamics

dz

dt |sinz; —'m]'

2

1
x207 :
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2

Upward equilibrium:
=z, €1 = sing, sz ®

® Eigenvalues: —E"fﬂ: -\/4+q=

Downward equilibrium:
® Linearize around xi = +z;: 8in{® + 21) = —sinz, & —3
® Eigenvalues:

e T @ lalea) = [ 2
Z3 = %3 dt |~A—7Tx 1 —

—%q:l:%\/—4+'r’



Reasoning about Stability using Lyapunov Functions

Basic idea: capture the behavior of a system by tracking “energy” in system
® Find a single function that captures distance of system from equilibrium

[ Try to reason about the IOng term behavior of 4(t)
all solutions

Example: spring mass system

® Can we show that all solutions return
to rest w/out explicitly solving ODE?

® Idea: look at how energy evolves in time
= V(x) > 0and V(0)=0in B,,
-V <0(V<0)inB, da Tq z, =g
® Start by writing equations in state space form  d# - [—ﬁ;m — ;E;mg] Zg =(
® Compute energy and its derivative

¢
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m - 1(1)
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mi+eg+kg=0

1 1 ﬂ = kﬁli], + m::ﬁg
V(z) = ika:f + §m§ it . .
= kx123 +m=(—f—n‘-’~"n — T—Rf-"l) = —ca}
® Energy is positive = x, must eventually go to zero

® If x, goes to zero, can show that x; must also approach zero (Krasovskii-Lasalle)
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Local versus Global Behavior

Stability is a local concept
® Equilibrium points define the local behavior of the dynamical system
® Single dynamical system can have stable and unstable equilibrium points

Region of attraction
® Set of initial conditions that converge to a given equilibrium point
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Example #2: Predator Prey (ODE version)

Continuous time (ODE) version of predator prey dynamics:

% =rH (1 - %) — “Hf'f H>0 ° Continuous time (ODE) model
dL aH L ot * MATLAB: predprey.m (from web page)
w = _ > 0.
dt bc +H aL Lz0
100

Equilibrium points (2)
® ~(20.5, 29.5): unstable A0
® (0, 0): unstable

stable

e

. g 60
Limit cycle = .

° : : E _
Populatlon of egch species = 40 L unstable
oscillates over time .

® Limit cycle is stable (nearby 20|
solutions converge to limit cycle) I

® This is a global feature of the DD T T g e
dynamics (not local to an equilibri Hires

point)
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Simpler Example of a Limit Cycle
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Dynamics: ® Note that limit cycle is an invariant set

&z
di
dzg
at

2]l =1

— = —gg—ax,(l —2? -

—= =g, —ag(l —2? — ).

® From simulation, x(t+T) = x(t)
V(z) = 7(1-af - 2})?
Stability of invariant set
V() = (z181 +z2%2)(1 — 2} — z5)

= (@ + 21—t - o)’



Summary: Stability and Performance
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Key topics for this lecture
® Stability of equilibrium points

® Eigenvalues determine stability
for linear systems

® Local versus global behavior
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