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THE POINT SPECTRUM OF FROBENIUS-PERRON

AND KOOPMAN OPERATORS

J. DING

(Communicated by Palle E. T. Jorgensen)

Abstract. We present some results on the point spectrum of the Frobenius-
Perron operator P : L1 → L1 and the Koopman operator U : L∞ → L∞
associated with a nonsingular transformation S : X → X on a σ-finite measure
space (X,Σ, µ).

1. Introduction

Let (X,Σ, µ) be a complete σ-finite measure space, let L1 ≡ L1(Σ) be the Ba-
nach space of all µ-integrable complex functions defined on X with the L1-norm
‖f‖1 =

∫ |f | dµ, and let L∞ ≡ L∞(X) be the Banach space of all bounded almost
everywhere complex Σ-measurable functions on X with the L∞-norm ‖g‖∞ =
ess sup |g|.

Let a Σ-measurable transformation S : X → X be nonsingular, i.e., (µ◦S−1)(A)
≡ (S−1(A)) = 0 for all A ∈ Σ such that µ(A) = 0. The operator P : L1 → L1

defined by ∫
A

Pfdµ =

∫
S−1(A)

fdµ, A ∈ Σ,

and the operator U : L∞ → L∞ defined by Ug = g ◦ S are called the Frobenius-
Perron operator and the Koopman operator associated with S, respectively. ‖P‖1 =
‖U‖∞ = 1, and U is the dual of P in the sense that

∫
(Pf)gdµ =

∫
fUgdµ forf ∈ L1

and g ∈ L∞.
A positive weak contraction P : L1 → L1 is often called a Markov process. The

Frobenius-Perron operator is not only a Markov process, but also keeps the norm of
nonnegative functions from its definition. An excellent book on the ergodic theory
of Markov processes is [12], in which the asymptotic behavior of the iterates of
the process was studied. However, the spectrum including the point spectrum of
Markov processes has not been explored.

The motivation for studying Frobenius-Perron operators and Koopman opera-
tors associated with nonsingular transformations is to investigate the asymptotic
behavior of a chaotic deterministic dynamical system from the statistical point of
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view. It is well-known [14] that f ∈ L1 is a fixed point of P if and only if the
complex measure µf defined by

µf (A) =

∫
A

fdµ, A ∈ Σ,

which is absolutely continuous with respect to µ, is invariant under S, that is,
µf (S

−1(A)) = µf (A) for A ∈ Σ. For the importance of this problem and many
applications, see the monographs [2], [14].

Recently, motivated by the convergence rate analysis (see [3], [6], [8], [13]) of
Ulam-type numerical methods ([18], [15]) for computing fixed points of P based on
spectral approximation techniques and the Cauchy integral of operators [9], some
general properties and a partial spectral analysis of Frobenius-Perron operators
and Koopman operators have been given in [4], [5], [7]. In this paper we further
study the point spectrum problem of such operators, based on the decomposition
theorems for Frobenius-Perron operators [7] and for Koopman operators [4]. Our
results in the next two sections are new, and results in Section 3 will extend the
known ones for measure-preserving transformations to more general nonsingular
ones.

The spectral theory for Frobenius-Perron operators and Koopman operators
gives various generalizations of the Frobenius-Perron theory for nonnegative ma-
trices to the infinite dimensional case. In [1], the cyclic structure of eigenvalues of
irreducible nonnegative matrices has been extended to the case of positive linear
maps of von Neumann algebra semigroups of such maps. Spectral properties of irre-
ducible positive linear maps of a finite-dimensional C∗-algebra into itself have been
described in [10], in which a version of the Frobenius-Perron theorem was given. An
ergodic decomposition theory for C∗-finitely correlated translation invariant states
on a quantum spin chain has been developed in [11], giving the group structure of
the peripheral point spectrum of some ergodic positive linear map. From Theorem
V.4.4 in [16], the spectrum of any Koopman operator, and thus the spectrum of
any Frobenius-Perron operator, is a cyclic subset of the closed unit disk. Hence
the peripheral spectrum has a group structure. While this has not been proved for
the peripheral point spectrum for Frobenius-Perron operators, the peripheral point
spectrum of Koopman operators associated with ergodic onto transformations does
have the group structure, which generalizes known results for measure-preserving
transformations (see Section 3).

General properties of eigenfunctions and eigenvalues of ergodic measure-preserv-
ing transformations have been studied based on the spectral property of unitary
operators on a Hilbert space (see, for example, [17], [19]). However, the eigen-
problem for general Frobenius-Perron operators and Koopman operators has not
been seriously investigated to the knowledge of the author. S : X → X pre-
serves µ if and only if the constant function f(x) ≡ 1 is a fixed point of the
corresponding Frobenius-Perron operator P : L1 → L1. The spectrum problem for
measure-preserving transformations plays a key role in the classification of dynam-
ical systems, and by definition it is defined as the spectrum of the restriction of
the Koopman operator, U |L2 , which is an isometric (unitary) operator for the (in-
vertible) measure-preserving transformation. The spectrum problem for Koopman
operators is more difficult, since its domain is L∞, and only when S is onto, U is
isometric (see Theorem 2.1 below). The spectrum problem of general Frobenius-
Perron operators is also difficult. In fact, it is still an open problem, and so is the
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spectrum of general Markov processes. In this paper we give a partial solution to
this difficult problem, and the introduction of the nested sequence of sub-σ-algebras
{S−kΣ} in the next section seems a right approach toward proving a conjecture in
[5] on the spectrum of general Frobenius-Perron operators.

2. The point spectrum of P

Throughout the paper we assume that the measure space (X,S−1Σ, µ) is also
σ-finite, where S−1Σ = {S−1(A) : A ∈ Σ}. Then the Radon-Nikodym derivative
h ≡ dµ ◦ S−1/dµ is finite valued µ-a.e. Let the support of h be supph = {x ∈ X :
h(x) 6= 0}. Denote by D and ∂D the closed unit disk and the unit circle of the
complex plane, respectively.

The analysis of the point spectrum of P and U is based on the following result
whose proof can be found in [4], [5], and [7].

Theorem 2.1. (i) L1 is the topological sum of R(E) = L1(S−1Σ) which is the
range of the conditional expectation E : L1 → L1 corresponding to the sub-σ-algebra
S−1Σ and the null space N(P ) of P . Moreover, N(P ) = N(E), and P is isometric
on R(E).

(ii) L∞ is the topological sum of N(U) = L∞((supp h)c) and L∞(supph), and
U is isometric on L∞(supph).

(iii) The following conditions are equivalent : (a) P is injective; (b) U is surjec-
tive; (c) S−1Σ = Σ; (d) E : L1 → L1 is the identity operator.

(iv) The following conditions are equivalent : (a) U is injective; (b) P is surjec-
tive; (c) µ ◦ S−1 ∼= µ; (d) supph = X.

(v) If P is injective, then σ(P ), the spectrum of P , is either D or a cyclic subset
of ∂D, depending on whether 0 ∈ σ(P ) or not.

(vi) If U is injective, then σ(U) is either D or a cyclic subset of ∂D, depending
on whether 0 ∈ σ(U) or not.

Now we begin to investigate the point spectrum of P and U . First we have the
following lemma which was also given in [3].

Proposition 2.1. If Pf = λf with λ 6= 1, then
∫
fdµ = 0.

Proof. By the definition of P ,∫
fdµ =

∫
Pfdµ = λ

∫
fdµ.

Since λ 6= 1, the conclusion follows.

The next result shows that for an injective P , there is no eigenvalue λ with
|λ| < 1. Let σp(P ) ⊂ σ(P ) be the point spectrum of P .

Proposition 2.2. If P is injective, then σp(P ) ⊂ ∂D.

Proof. Pf = λf . By Theorem 2.1(i), P is isometric. Hence

0 = ‖Pf − λf‖1 ≥ ‖Pf‖1 − |λ| ‖f‖1 = (1− |λ|)‖f‖1.
Now f 6= 0 and |λ| ≤ 1 imply that |λ| = 1.

From Theorem 2.1(iii), the condition of the above proposition is equivalent to
S−1Σ = Σ. Now we consider a possible generalization. For k = 0, 1, . . . , let
Σk = S−kΣ. Then S−1Σk = Σk+1 and {Σk}∞k=0 is a decreasing sequence of sub-σ-
algebras of Σ. Either Σk+1 6= Σk for all k or Σk+1 = Σk for some k which implies
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that Σi+1 = Σi for all i ≥ k. Denote Σ∞ =
⋂∞
k=0 Σk. Note that if (X,Σk, µ) is

σ-finite, so is (X,Σi, µ) for any i < k.
Let 0 ≤ k ≤ ∞. Since S is nonsingular with respect to Σ, so is S with respect

to Σk. Thus the corresponding Frobenius-Perron operator

Pk : L1(Σk) → L1(Σk)

is well-defined. Sometimes we denote P = P0 for convenience. If (X,Σk, µ) is σ-
finite, and if we let Ek : L1 → L1 be the conditional expectation operator (see, for
example, [7]) corresponding to Σk, then Pk = EkPi on L1(Σk) for i = 0, 1, . . . , k
since for any f ∈ L1(Σk) and A ∈ Σk,∫

A

Pkfdµ =

∫
S−1(A)

fdµ =

∫
A

Pifdµ =

∫
A

EkPifdµ.

Since Ek is identity on L1(Σk), it follows that

PkEk = EkPiEk, i = 0, 1, . . . , k.(1)

Furthermore, by Theorem 2.1(i), if (X,Σk+1, µ) is σ-finite, then L1(Σk) is the
topological sum of R(Ek+1) = L1(Σk+1) and N(Ek+1|L1(Σk)) = N(Pk) and Pk is

isometric on L1(Σk+1). If Σk+1 = Σk and (X,Σk, µ) is σ-finite for some k <∞, by
Theorem 2.1(iii), Pk is injective, hence σp(Pk) ⊂ ∂D.

Proposition 2.3. If Σk+1 = Σk for some k < ∞ and (X,Σk, µ) is σ-finite, then
σp(P ) ⊂ ∂D ∪ {0}.
Proof. Suppose Pf = λf for some λ 6= 0 and f 6= 0. Let f = f1 + f1 with
f1 ∈ L1(Σ1) and f1 ∈ N(P ) = N(E1) by Theorem 2.1(i). It is obvious that f1 6= 0.
Then Pf1 = λf1 + λf1 which implies that

P1f1 = E1Pf1 = E1(λf1 + λf1) = λf1.

Now let f1 = f2 + f2 with f2 ∈ L1(Σ2) and f2 ∈ N(P1) = N(E2|L1(Σ1)). Then
f2 6= 0. Thus,

P2f2 = E2P1f2 = E2(λf2 + λf2) = λf2.

Repeating the above process P1, P2, . . . , Pk−1 successively, we have Pkfk = λfk
for some nonzero fk ∈ L1(Σk). Since Pk is injective, Proposition 2.2 implies that
|λ| = 1.

More generally we have the following result. Suppose (X,Σ∞, µ) is σ-finite.
Then E∞ and Ek are well-defined for all k’s. A lemma is given first.

Lemma 2.1. The operator Pi maps N(Ek) into itself for every i and k satisfying
0 ≤ i ≤ k. Thus,

EkPi = EkPiEk = PkEk.(2)

Proof. Let f ∈ N(Ek). Then for any A ∈ Σk,∫
A

EkPifdµ =

∫
A

Pifdµ =

∫
S−1(A)

fdµ =

∫
S−1(A)

Ekfdµ = 0.

Hence, EkPi = 0 on N(Ek). Since Ek is identity on R(Ek) and L1(Σi) = R(Ek)⊕
N(Ek|L1(Σi)), (2) follows.

Proposition 2.4. If Ek → E∞ strongly, then σp(P ) ⊂ ∂D ∩ {0}.
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Proof. Suppose Pf = λf for some λ 6= 0 and f 6= 0 in L1. Then EkPf = λEkf .
Letting fk = Ekf and using Lemma 2.1, we have

Pkfk = λfk, k = 1, 2, . . . .

Let f∞ = E∞f . Then limk→∞ fk = f∞. It follows that limk→∞ Pkfk = P∞f∞
since from Lemma 2.1,

‖Pkfk − P∞f∞‖1 ≤ ‖Pkfk − Pkf∞‖1 + ‖Pkf∞ − P∞f∞‖1
≤ ‖fk − f∞‖1 + ‖EkPf∞ − E∞Pf∞‖1.

Therefore, P∞f∞ = λf∞. The same argument as in the proof of Proposition 2.3
implies that f∞ 6= 0. Since S−1Σ∞ = Σ∞, from Theorem 2.1(iii), P∞ is injective.
Hence |λ| = 1 by Proposition 2.2

Here is a sufficient condition for Σk+1 = Σk. Let hk = dµ ◦ S−k/dµ and Σhk =
{A ∩ supphk : A ∈ Σ}.
Proposition 2.5. If Σhk ⊂ Σ1, then Σk+1 = Σk.

Proof. S−k(supphk) = X since

µ((S−k(supphk))
c) = µ(S−k((supp hk)

c)) =

∫
(supphk)c

hk dµ = 0.

Given B = S−k(A) for some A ∈ Σ,

B = S−k(A ∩ supphk) ∈ S−kΣhk ⊂ S−kΣ1 = Σk+1.

Hence ΣK+1 = Σk.

3. The point spectrum of U

Now we study the point spectrum of the Koopman operator. Similar to Propo-
sition 2.1, we have

Proposition 3.1. Suppose S preserves µ. If Ug = λg with λ 6= 1 and g ∈ L∞∩L1,
then

∫
gdµ = 0.

Proof. Since µ is S-invariant,∫
gdµ =

∫
Ugdµ = λ

∫
gdµ

which implies that
∫
gdµ = 0 since λ 6= 1.

Proposition 3.2. If U is injective, then σp(U) ⊂ ∂D.

Proof. By Theorem 2.1(ii), U is isometric. Hence

0 = ‖Ug − λg‖∞ ≥ ‖Ug‖∞ − |λ| ‖g‖∞ = (1− |λ|)‖g‖∞.
Now f 6= 0 and |λ| ≤ 1 imply that |λ| = 1.

It is possible that σp(U) = ∂D as the following examples show.

Example 3.1. Let S : (−∞,∞) → (−∞,∞) be defined by S(x) = x + 1. Then
the Lebesgue measure is invariant and S−1Σ = Σ. Thus, σ(U) ⊂ ∂D by Theorem
2.1(iii) and (vi). It is easy to see that eir is an eigenvalue of U with the eigenfunction
eirx. Thus σ(U) = σp(U) = ∂D.
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The next example indicates that if U is not injective, there may be eigenvalues
λ with |λ| < 1.

Example 3.2. Let Sα : [0, 1] → [0, 1] be defined by Sα(x) = αx with 0 < α < 1.
Then U is not injective and σ(U) = D. For g(x) = xn, we have

Ug(x) = (αx)n = αnxn = αng(x).

Hence {αn}∞n=0 ⊂ σp(U). Since limα→1 Sα = I, the identity mapping of [0, 1], we
see that not only the spectrum but also the point spectrum of U is not continuous,
but only upper semicontinuous.

Proposition 3.3. Suppose S is ergodic and U is injective. Then any unit eigen-
function g of U satisfies that |g| = 1.

Proof. By Proposition 3.2, |λ| = 1. Since

U |g| = |Ug| = |λ| |g| = |g|,
the ergodicity of S implies that |g| = 1.

Proposition 3.4. If S is ergodic and U is injective, then σp(U) is a subgroup of
∂D and each eigenvalue is simple.

Proof. Suppose Ug1 = λ1g1 and Ug2 = λ2g2 with ‖g1‖∞ = ‖g2‖∞ = 1. By
Proposition 3.2, |λ1| = |λ2| = 1. From

U(g1g2) = Ug1Ug2 = λ1g1λ2g2 = λ1λ2g1g2

and |g1g2| = |g1| |g2| = 1 by Proposition 3.3, λ1λ2 ∈ σp(U). Similarly, from

U
g1
g2

=
Ug1
Ug2

=
λ1g1
λ2g2

=
λ1

λ2

g1
g2

and |g1/g2| = |g1|/|g2| = 1, we see that λ1/λ2 ∈ σp(U).
Let g1, g2 be eigenfunctions of U with the same eigenvalue λ. Then

U
g1
g2

=
Ug1
Ug2

=
λg1
λg2

=
g1
g2
.

Since S is ergodic, g1/g2 is a constant function. Hence λ is simple.

Since U is injective if µ is S-invariant [5], we immediately have the following
corollary whose proof can be found in [17] when U is unitary on L2.

Corollary 3.1. If S preserves µ, then σp(U) ⊂ ∂D. If in addition S is ergodic,
then σp(U) is a subgroup of ∂D and each eigenvalue is simple with the corresponding
unit eigenfunction g satisfying |g| = 1.

Finally, I thank the editor for help in extending the introduction.
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