
         868

State-Space Inference and Learning with Gaussian Processes

Ryan Turner1 Marc Peter Deisenroth1,2 Carl Edward Rasmussen1,3

1Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK
2Department of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA

3Max Planck Institute for Biological Cybernetics, Spemannstraße 38, 72076 Tübingen, Germany

Abstract

State-space inference and learning with
Gaussian processes (GPs) is an unsolved
problem. We propose a new, general metho-
dology for inference and learning in nonlinear
state-space models that are described prob-
abilistically by non-parametric GP models.
We apply the expectation maximization al-
gorithm to iterate between inference in the
latent state-space and learning the parame-
ters of the underlying GP dynamics model.

Inference (filtering and smoothing) in linear dynami-
cal systems (LDS) and nonlinear dynamical systems
(NLDS) is frequently used in many areas, such as
signal processing, state estimation, control, and fi-
nance/econometric models. Inference aims to estimate
the state of a system from a stream of noisy measure-
ments. Imagine tracking the location of a car based on
odometer and GPS sensors, both of which are noisy.
Sequential measurements from both sensors are com-
bined to overcome the noise in the system and to ob-
tain an accurate estimate of the system state. Even
when the full state is only partially measured, it can
still be inferred; in the car example the engine tem-
perature is unobserved, but can be inferred via the
nonlinear relationship from acceleration. To exploit
this relationship appropriately, inference techniques in
nonlinear models are required; they play an important
role in many practical applications.

LDS and NLDS belong to a class of models known
as state-space models. A state-space model assumes
that there exists a time sequence of latent states xt
that evolve over time according to a Markovian process
specified by a transition function f . The latent states
are observed indirectly in yt through a measurement
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function g. We consider state-space models given by

xt = f(xt−1) + ε , xt ∈ RM ,
yt = g(xt) + ν , yt ∈ RD .

(1)

Here, the system noise ε ∼ N (0,Σε) and the mea-
surement noise ν ∼ N (0,Σν) are both Gaussian. In
the LDS case, f and g are linear functions, whereas
the NLDS covers the general nonlinear case.

The goal in inference is to find a posterior distribu-
tion on the latent states x using measurements y only.
Bayesian inference of the hidden states (smoothing)
in LDS with Gaussian noise can be done exactly via
Kalman smoothing (Rauch et al., 1965). In learning,
the goal is to infer f and g from observations yt.

Linear dynamical systems can only model a limited
set of phenomena. As a result, there has been in-
creasing interest in studying NLDS for the last few
decades. Since exact inference and (parameter) learn-
ing in NLDS is generally analytically intractable, ap-
proximate methods are required.

Examples of approximate inference in nonlinear dy-
namical systems include the extended Kalman filter
(EKF) (Maybeck, 1979), the unscented Kalman filter
(UKF) (Julier and Uhlmann, 1997), and the assumed
density filter (ADF) (Opper, 1998). Typically, a para-
metric form for the transition dynamics is assumed.
General forms of the dynamics model for inference and
learning were proposed in terms of radial basis func-
tions (RBF) (Ghahramani and Roweis, 1999) and neu-
ral networks (Honkela and Valpola, 2005). In the con-
text of modeling human motion, Gaussian processes
(GPs) have been used for inference (Wang et al., 2008;
Ko and Fox, 2009b). Recently, GPs were used for fil-
tering in the context of the UKF, the EKF (Ko and
Fox, 2009a), and the ADF (Deisenroth et al., 2009).

For nonlinear systems these methods encounter prob-
lems: The local linearizations of the EKF and the UKF
can lead to overfitting. Neural network (Honkela and
Valpola, 2005) and RBF (Ghahramani and Roweis,
1999) approaches have a constant level of uncertainty
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in the dynamics and measurement functions, which
means they do not appropriately quantify uncertainty
in f and g. Although probabilistic GPs are used
in Wang et al. (2008); Ko and Fox (2009b), the MAP
estimation (point estimate) of the latent states can
lead to overconfident predictions because the uncer-
tainty in the latent states is not accounted for. Other
GP approaches proposed solely for filtering (Deisen-
roth et al., 2009; Ko and Fox, 2009a) do take the state
uncertainty into account, but require ground truth ob-
servations of the latent states during training, typically
a strong assumption in many applications.

In this paper, we address the shortcomings of the
methods above by proposing the GPIL algorithm for
inference and learning in NLDS. Our flexible frame-
work uses non-parametric GPs to model both the tran-
sition function and the measurement function. The
GPs naturally account for three kinds of uncertainties
in the real dynamical system: system noise, measure-
ment noise, and model uncertainty. Our model inte-
grates out the latent states unlike Wang et al. (2008);
Ko and Fox (2009b), where a MAP approximation to
the distribution of the latent state is used. At the same
time, it does not require any ground truth observations
of the latent states x. We propose to learn parame-
terized GPs for the dynamics and measurement func-
tions using expectation maximization (EM) (Dempster
et al., 1977).

The main contributions of this paper are twofold: We
propose a tractable algorithm for approximate infer-
ence (smoothing) in GP state-space models. Using
GP models for f and g, see eq. (1), we propose learn-
ing without the need of ground truth observations xi
of the latent states.

1 Model and Algorithmic Setup

We consider an NLDS, where the stochastic Marko-
vian transition dynamics of the hidden states and
the corresponding measurement function are given by
eq. (1). The transition function f and the measure-
ment function g, eq. (1), are both unknown. In or-
der to make predictions, we have to learn them solely
given the information of T sequential observations
Y := [y1, . . . ,yT ].

We use GPs to model both the unknown transition
function f and the unknown measurement function g,
and write f ∼ GPf , g ∼ GPg , respectively. A GP
is a distribution over functions and is specified by a
mean function and a covariance function, also called a
kernel, (Rasmussen and Williams, 2006). Throughout
this paper, we use the squared exponential kernel and
a prior mean of zero. Independent GPs are used for
each target dimension of f and g.

−2 −1 0 1 2

−2

−1

0

1

2

α
1

β
1

α
2

β
2

α
3

β
3

α
4

β
4

α
5

β
5

α
6

β
6

α
7

β
7

Figure 1: An example of a function distribution in-
ferred from a pseudo training set. The αi are the
pseudo training inputs, while the βi are the pseudo
training targets. The shaded area is the 95% confi-
dence region around the mean function (blue, solid).

Since the latent states x are unobserved, we cannot
learn GPf and GPg directly; instead, we apply the
EM algorithm to learn their free parameters. Let us
have a look at the “parameters” of a GP. In a stan-
dard GP setup, the GP can be considered effectively
parameterized by the hyper-parameters, the training
inputs, and the training targets. In the considered
state-space model, eq. (1), the training inputs can
never be observed directly. Therefore, in this paper,
we explicitly specify these parameters and parameter-
ize a GP by a pseudo training set, which is considered
a set of free parameters for learning. These parame-
ters are related to the pseudo training inputs used for
sparse GP approximations (Snelson and Ghahramani,
2006). The pseudo inputs that parameterize the tran-
sition function f are denoted by α = {αi ∈ RM}Ni=1

and the corresponding pseudo targets are denoted by
β = {βi ∈ RM}Ni=1. Intuitively, the pseudo inputs
αi can be understood as the locations of the means
of the Gaussian basis functions (SE kernel), whereas
the pseudo targets βi are related to the function value
at this location. We interpret the pseudo training set
as N pairs of independent observations of transitions
from xt−1 to xt. Note that the pseudo training set
does not form a time series. To parameterize the mea-
surement function g, we follow the same approach and
use the pseudo inputs ξ = {ξi ∈ RM}Ni=1 and pseudo
outputs υ = {υi ∈ RD}Ni=1. We use υ instead of train-
ing to Y directly since often N � T .

The pseudo training sets are learned jointly with the
kernel hyper-parameters. Unlike the sparse GP model
in Snelson and Ghahramani (2006), we do not in-
tegrate the pseudo training targets out, but opti-
mize them instead since integration is analytically in-
tractable in our model. An example of a pseudo train-
ing set and the corresponding GP model is in Fig. 1.
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Figure 2: The free parameters α,β and ξ,υ serve as
a pseudo training set for GPf and GPg, respectively.
GPf and GPg are not full GPs, but rather sparse GPs
that impose the condition xt+1 ⊥⊥ xt−1|xt,α,β.

Once the pseudo training set, α and β, is deter-
mined, predicting xt from xt−1 is a GP prediction us-
ing GPf (Deisenroth et al., 2009; Quiñonero-Candela
et al., 2003). Here, xt−1 serves as the (uncertain) test
input, while α and β are used as a standard GP train-
ing set. Likewise, predicting yt from xt corresponds
to a GP prediction at uncertain inputs with xt as the
test input and a training set defined through ξ and υ.
The model setup for predictions (conditioned on the
pseudo training set) is

xti ∼ GPf (xt−1|α,βi) , ytj ∼ GPg(xt|ξ,υj) ,

where xti is the ith dimension of xt and ytj is the jth di-
mension of yt. Note that xt+1 ⊥⊥ xt−1|xt,α,β, which
preserves the Markovian property in eq. (1). The cor-
responding graphical model of our model is shown in
Fig. 2. Without conditioning on the pseudo training
set, the conditional independence property would be
xt+1 ⊥⊥ xt−1|xt, f , which requires conditioning on the
infinite dimensional object f . This makes it difficult to
design practical inference algorithms that exploit the
Markovian property.

The initial state distribution is also learned during
training. The hyper-parameters for the dynamics GP
and the measurement GP are denoted by θf and θg,
respectively. Just as with the LDS, the prior on the
initial state is a Gaussian with mean µ0 and covariance
Σ0. The entire parameter space can be summarized
as Θ := {α,β, ξ,υ, θf , θg,µ0,Σ0}.
GPIL applies the EM algorithm in the NLDS for in-
ference and learning. EM iterates between two steps,
the E-step and the M-step. In the E-step (or inference
step), GPIL finds a posterior distribution p(X|Y,Θ)
on the hidden states for a fixed parameter setting Θ.
In the M-step, GPIL finds the parameters of the dy-
namical system Θ that maximize the expected log-
likelihood Q := EX [log p(X,Y|Θ)], where the expec-
tation is taken with respect to the E-step distribution

on the hidden state sequence X. Optimizing Q con-
verges to a maximum likelihood solution in p(Y|Θ).
Both the E-step and the M-step require approxima-
tions when we model the transition dynamics f and
the measurement function g with GPs.

2 Inference (E-step)

The E-step infers a posterior distribution
p(x1:T |y1:T ,Θ) of the sequence of latent states
X given the observation sequence Y. In the following,
we omit the explicit conditioning on Θ for notational
brevity. Due to the Markov assumption, the joint
distribution of the data is given by

p(x1:T ,y1:T ) = p(y1|x1)p(x1)
T∏
t=2

p(yt|xt)p(xt|xt−1) .

To determine the marginal posterior distributions
p(xt|y1:T ), we apply the forward-backward algo-
rithm (Rabiner, 1989). The forward-backward al-
gorithm requires solving three sub-problems: time
update (Section 2.1.1), measurement update (Sec-
tion 2.1.2), and the backward sweep (Section 2.2) to
complete smoothing. Our use of forward-backward ex-
plicitly incorporates the uncertainties and the nonlin-
earities in the models of the transition dynamics and
measurements through GP models GPf and GPg.

2.1 Forward Sweep (Filtering)

The forward sweep comprises time update and mea-
surement update. They typically alternate in a
predictor-corrector setup: First, the time update pre-
dicts the hidden state at time t given past observations
from time 1 to t−1. Second, the measurement update
refines the prediction by incorporating new evidence
from the current observation at time t.

2.1.1 Time Update

The time update corresponds to computing the one-
step-ahead predictive distribution of the hidden state
p(xt|y1:t−1) using p(xt−1|y1:t−1) as a (Gaussian) prior
on xt−1. Propagating a density on xt−1 to a density on
xt corresponds to GP prediction (under model GPf )
with uncertain inputs, (Quiñonero-Candela et al.,
2003). The exact mean µpt and covariance Cp

t of the
predictive distribution can be computed analytically.1

The predictive distribution on xt can therefore be ap-
proximated by a Gaussian N (µpt ,C

p
t ) using exact mo-

ment matching.
1We use the notation µp

t and Cp
t to indicate a one-

step-ahead prediction within latent space (with uncertain
inputs) from time step t − 1 to t using the dynamics GP,
GPf , given y1:t−1.
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Analogously, we can approximate the predictive distri-
bution in observed space, p(yt|y1:t−1), by a Gaussian
N (µy,Cyy

)
with the exact mean and the exact covari-

ance using the above prediction p(xt|y1:t−1) as a prior
on xt. Detailed expressions are given in Deisenroth
et al. (2009).

2.1.2 Measurement Update

The measurement update computes a posterior distri-
bution p(xt|y1:t) by refining the predictive distribution
p(xt|y1:t−1) by incorporating the most recent measure-
ment yt. Reporting the results from Deisenroth et al.
(2009), the updated state distribution (filter distribu-
tion) is determined as

p(xt|y1:t) = N (µet ,C
e
t ) , (2)

µet = µpt + CxyC−1
yy (yt − µy) , (3)

Ce
t = Cp

t −CxyC−1
yy Cyx . (4)

New evidence from the observation yt is incorpo-
rated in eq. (3). The cross-covariance Cxy =
Cov

[
xt,yt|y1:t−1

]
is determined exactly. The matrix

CxyC−1
yy plays the role of the Kalman gain for linear

dynamical systems. However, Cxy and Cyy are based
upon predictions with nonlinear GP models for a) the
transition dynamics and b) the measurement function.

2.2 Backward Sweep

The backward sweep is required for the M-step of the
EM algorithm and corresponds to seeking

γ(xt) := p(xt|y1:T ) , (5)

that is, the posterior distribution of the hidden state
given on all (previous, current, and future) observa-
tions. We present a new algorithm for smoothing in
NLDS. We initialize γ(xT ) by the last step of the for-
ward sweep, that is, the filter distribution p(xT |y1:T ).
The distributions of the smoothed states γ(xt−1) are
computed recursively from t = T to 2 according to

γ(xt−1) =
∫
p(xt−1|xt,y1:T )γ(xt) dxt (6)

=
∫
p(xt−1|xt,y1:t−1)γ(xt) dxt (7)

by integrating out the smoothed hidden state at time
step t. Evaluating eq. (7) has two steps. First, we
calculate the conditional p(xt−1|xt,y1:t−1) in a “back-
ward inference” step. Second, we solve the integral
of this conditional distribution multiplied with γ(xt)
to determine the marginal p(xt−1|y1:T ) Additionally,
learning in the M-step requires the computation of the
cross-covariances p(xt−1,xt|y1:T ). In the following, we
discuss these steps in detail.

Backward inference. We compute the conditional
distribution p(xt−1|xt,y1:t−1) by first approximating
the joint distribution p(xt−1,xt|y1:t−1) with

p(xt−1,xt|y1:t−1)=N
([

µet−1

µpt

]
,

[
Ce
t−1 Cep

CT
ep Cp

t

])
(8)

and then conditioning on xt. This approximation
implicitly linearizes the transition dynamics f (see
eq. (1)) globally, in contrast to the local lineariza-
tion of the EKF. We can compute all of the variables
in eq. (8) from three sources: First, µet−1 and Ce

t−1

are given by the filter distribution, eq. (3), at time
t − 1. Second, µpt and Cp

t are the mean and the co-
variance of the predictive distribution p(xt|y1:t−1) =
N (µpt ,C

p
t ) at time t. Third, the cross-covariance

Cep = Cov
[
xt−1,xt|y1:t−1

]
can be computed analyt-

ically in the forward sweep. We omit the exact equa-
tions, but refer to Deisenroth et al. (2009), where sim-
ilar computations are performed to compute the cross-
covariance Cxy = Cov

[
xt,yt|y1:t−1

]
.

Finally, with Jt−1 := Cep(C
p
t )−1, we obtain the de-

sired conditional

p(xt−1|xt,y1:t−1) = N (xt−1 |m,S
)
, (9)

m = µet−1 + Jt−1(xt − µpt ) , S = Ce
t−1 − Jt−1CT

ep .

Smoothed state distribution. We compute the
integral in eq. (7) by exploiting the mixture property
of Gaussians (Gelman et al., 2004): Since

p(xt−1|xt,y1:t−1) (10)

= N (Jt−1xt + µet−1 − Jt−1µ
p
t ,C

e
t−1 − Jt−1CT

ep

)
,

and p(xt|Y) = N (µst ,C
s
t ), the mixture property leads

to the smoothed state distribution

p(xt−1|y1:T ) = γ(xt−1) = N (xt−1 |µst−1,C
s
t−1

)
,

µst−1 = µet−1 + Jt−1(µst − µpt ) ,

Cs
t−1 = Ce

t−1 + Jt−1(Cs
t −Cp

t )J
T
t−1 . (11)

Cross-covariances for learning. Parameter learn-
ing using EM or variational methods requires the full
distribution p(x1:T |Y). Due to the Markov assump-
tion, E [xt|Y], Cov [xt|Y], and

Cov [xt−1,xt|Y]

= Ext−1,xt [xt−1xT
t |Y]− Ext−1 [xt−1|Y] Ext [xt|Y]T

=
∫

Ext−1 [xt−1|xt,Y]xT
t p(xt|Y) dxt − µst−1(µst )

T .

are sufficient statistics for the entire distribution. Mul-
tiplying eq. (8) with γ(xt) and integrating over xt,
yields the desired cross-covariance

Cov [xt−1,xt|Y] = Jt−1Cs
t . (12)

Alg. 1 summarizes the E-step.
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Algorithm 1 Forward-backward algorithm for GPIL
1: function NLDSsmoother
2: p(x1)←N (µ0,Σ0) . init. forward sweep
3: for t = 1 : T do . forward sweep
4: compute p(xt|y1:t) = N (µet ,C

e
t ) . eq. (3)

5: end for
6: p(xT |Y)←N (µeT ,C

e
T ) . init. backward sweep

7: for t = T − 1 : 1 do . backward sweep
8: compute p(xt|Y) = N (µst ,C

s
t ) . eq. (11)

9: . cross-covariance between xst+1,x
s
t , eq. (12)

10: Rs
t+1←Cs

t+1J
T
t

11: end for
12: . return sufficient statistics for p(x1:T |y1:T ,Θ)
13: return µs1:T , Cs

1:T , Rs
2:T

3 Learning (M-step)

In the following, we derive the M-step for gradient-
based optimization of the parameters Θ. In the M-
step, we seek the parameters Θ that maximize the like-
lihood lower-bound Q = EX [log p(X,Y|Θ)] where the
expectation is computed under the distribution from
the E-step, meaning X is treated as random. The
factorization properties of the model yield the decom-
position Q into

Q=EX [log p(X,Y|Θ)] = EX[log p(x1|Θ)] (13)

+EX

 T∑
t=2

log p(xt|xt−1,Θ)︸ ︷︷ ︸
Section 3.1

+
T∑
t=1

log p(yt|xt,Θ)︸ ︷︷ ︸
Section 3.2

 .
In the following, we use the notation µi(x) = Efi

[fi(x)]
to refer to the expected value of the ith dimension of
f when evaluated at x. Likewise, σ2

i (x) = Varfi [fi(x)]
refers to the variance of the ith dimension of f(x).

3.1 Contribution from Transition Model

We focus on finding a lower-bound approximation to
the contribution from the transition function, namely,

EX [log p(xt|xt−1,Θ)]

=
M∑
i=1

EX

[
logN (xti|µi(xt−1), σ2

i (xt−1))
]
, (14)

= −1
2

M∑
i=1

EX

[
(xti − µi(xt−1))2

σ2
i (xt−1)

]
︸ ︷︷ ︸

Data Fit Term

+EX

[
log σ2

i (xt−1)
]︸ ︷︷ ︸

Complexity Term

.

Eq. (14) amounts to an expectation over a nonlin-
ear function of a normally distributed random vari-
able since X is approximate Gaussian (E-step). The
expectation in eq. (14) corresponds to an intractable
integral, which is due to the state-dependent variances
in our model.

Data fit term. We first consider the data fit term in
eq. (14), which is an expectation over the square Ma-
halanobis distance. For tractability, we approximate
the expectation of the ratio

EX

[
(xti − µi(xt−1))2

σ2
i (xt−1)

]
≈ EX

[
(xti − µi(xt−1))2

]
EX [σ2

i (xt−1)]

=: M̃f (xti,xt−1) . (15)

Complexity term. We next approximate the com-
plexity penalty in eq. (14), which penalizes uncer-
tainty. The contribution from the logarithm in the
expectation can be lower bounded by

EX

[
log σ2

i (xt−1)
] ≤ log EX

[
σ2
i (xt−1)

]
, (16)

where we used Jensen’s inequality. Eq. (16) also serves
as a Taylor approximation centered at EX

[
σ2
i (xt−1)

]
,

which is accurate to first order for symmetry reasons.

3.2 Contribution from Measurement Model

The measurement function g in eq. (1) is unknown
and modeled by GPg. GPIL allows for joint training
of the dynamics GP and the measurement GP. An ex-
pression M̃g(yti,xt) nearly identical to eq. (15) (con-
tribution from the dynamics model) can be computed
for the observation model. We can also find a nearly
identical measurement model version of eq. (16).

In summary, we approximate the exact objective func-
tion Q by

Q̃ := − 1
2

T∑
t=2

M∑
i=1

log EX

[
σ2
fi

(xt−1)
]

+ M̃f (xti,xt−1)

− 1
2

T∑
t=1

D∑
i=1

log EX

[
σ2
gi

(xt)
]

+ M̃g(yti,xt) (17)

− 1
2 log|Σ0| − EX

[
1
2 (x1 − µ0)TΣ−1

0 (x1 − µ0)
]
.

The partial derivatives of Q̃ with respect to Θ can be
computed analytically, which allows for gradient-based
parameter optimization.

3.3 Summary of Algorithm

The manifestation of EM in the NLDS is summarized
by Alg. 2. The function NLDSsmoother implements
the E-step. The maximization routine implements the
M-step.

4 Results

We evaluated our approach on both real and synthetic
data sets using one-step-ahead prediction. We com-
pared GPIL predictions to eight other methods, the
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Algorithm 2 EM using GPIL
1: init Θ
2: repeat
3: . E-step: Section 2, Alg. 1
4: µs1:T , Cs

1:T , Rs
2:T ← NLDSsmoother(Y, Θ)

5: . M-step: Section 3, eq. (17)
6: Θ← maximize Q̃(Θ, µs1:T , Cs

1:T , Rs
2:T ) wrt Θ

7: until convergence
8: return Θ, µs1:T , Cs

1:T , Rs
2:T

time independent model (TIM) with yt ∼ N (µc,Σc),
where c denotes constant values, the Kalman filter,
the UKF, the EKF, the autoregressive GP (ARGP)
trained on a set of pairs (yi,yi+1), the GP-UKF (Ko
and Fox, 2009a), and the neural network/EKF based
nonlinear dynamical factor analyzer (NDFA) (Honkela
and Valpola, 2005).2 For the synthetic data, we also
compared to the Gaussian process dynamical model
(GPDM) (Wang et al., 2008). For the real data set,
however, GPDM was not tested due to the computa-
tional demand when running on the large test data
set. Note that the EKF, the UKF, and the GP-UKF
required access to the true functions f and g. For syn-
thetic data, f and g were known. For the real data
set, we used functions for f and g that resembled the
mean functions of the learned GP models using the
GPIL algorithm.

The Kalman filter, the EKF, and the UKF are stan-
dard state-space approaches to time series analysis.
We compared against the ARGP because it is a pow-
erful non-parametric Bayesian approach to time series
prediction; one-step-ahead predictions with ARGP can
be done analytically, but multi-step predictions require
moment matching approximations. We tested ARGP
on orders of 1 to 20 and selected the one with the best
performance, order 10 for the real data set and order
1 for the synthetic data set. The ARGP and the TIM
have no notion of a latent space and cannot be used
for estimation of the latent state, that is, they cannot
be applied in a typical tracking and/or control setup.

The evaluation metrics were the negative log-
predictive likelihood (NLL) and the root mean squared
error (RMSE) between the mean of the prediction and
the true value. Note that unlike the NLL, the RMSE
does not account for uncertainty.

Synthetic data. We considered an illustrative ex-
ample where the hidden state followed sinusoidal dy-

2Implementations of the Kalman filter and the UKF are
based on the software available at http://www.cs.ubc.ca/

~murphyk/Software and http://www.cs.ubc.ca/~nando/
software, respectively.
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Figure 3: True (red) and learned (blue) transition
function with histogram of the inputs xt in the test
set. Both the red error bars and the shaded area repre-
sent twice the standard deviation of the system noise.
Pseudo targets are represented by black crosses.

namics specified by

xt = 3 sin(3xt−1) + ε , ε ∼ N (0, σ2
ε

)
, σ2

ε = 0.12 .

Furthermore, we considered a linear measurement
model, yt = xt + ν, with ν ∼ N (0, σ2

ν

)
, σ2

ν = 0.12.

The results were produced using a pseudo training set
of size N = 50, T = 100 training observations and
10,000 test observations. Quantitative results for the
sinusoidal dynamics are shown in Table 1. The true
dynamics model is compared to the learned dynamics
model GPf in Fig. 3. The error bars (shaded area) on
the learned dynamics model include both system noise
and model uncertainty. Note that the histogram does
not represent a uniform distribution since the state of
the system spends more time around the stable equi-
librium points of the sine function, namely x = ±3.
By contrast, not many states are distributed around
the unstable equilibrium point x = 0.

The UKF and the EKF required access to the true
generating process. Having the true dynamics model
gives the UKF and the EKF a distinct advantage over
the competing methods. However, GPIL could still
outperform them since both the UKF and GP-UKF
had trouble with the high curvature in the dynam-
ics model, which caused them to predict future ob-
servations with unreasonably high certainty (overcon-
fidence). The GP-UKF used the same pseudo train-
ing set during test as the GPIL algorithm; given that
the GP-UKF performed worse than GPIL we specu-
late that the filtering/prediction (E-step) method is
better in GPIL than the GP-UKF confirming the re-
sults from Deisenroth et al. (2009). Although the EKF
performs better than the UKF, its linearizations of the



         874

Ryan Turner, Marc Peter Deisenroth, Carl Edward Rasmussen

Table 1: Comparison of GPIL with six other methods on the sinusoidal dynamics example and the Whistler snowfall

data. We trained on daily snowfall from Jan. 1 1972–Dec. 31 1973 and tested on next day predictions for 1974–2008. We

report the NLL per data point and the RMSE as well as the NLL 95% error bars.

Method NLL synth. RMSE synth. NLL real RMSE real
general TIM 2.21±0.0091 2.18 1.47±0.0257 1.01

Kalman 2.07±0.0103 1.91 1.29±0.0273 0.783
ARGP 1.01±0.0170 0.663 1.25±0.0298 0.793
NDFA 2.20±0.00515 2.18 14.6±0.374 1.06
GPDM 3330±386 2.13 N/A N/A
GPIL ? 0.917± 0.0185 0.654 0.684± 0.0357 0.769

requires UKF 4.55±0.133 2.19 1.84±0.0623 0.938
prior EKF 1.23±0.0306 0.665 1.46±0.0542 0.905
knowledge GP-UKF 6.15±0.649 2.06 3.03±0.357 0.884

dynamics appear to be worse than all approximations
made by the GPIL algorithm. The ARGP was disad-
vantaged because it had no notion of a latent state-
space. A state-space allows models to capture longer-
order correlations without increasing the dimension-
ality of the parameter space. However, ARGP was
still competitive with the state-space models. The an-
alytic nature of the Kalman filter did not make up
for its inappropriate modeling assumptions, that is,
the linearity of the dynamics model. It is not able
to predict with appropriate variances, resulting in a
high NLL. The flexibility of GPIL allowed it to out-
perform the simpler analytic models despite its ap-
proximations. The approximations in our model are
at least as good as the approximations used in EKF,
UKF, GPDM, etc.

The values in Table 1 indicate that some models ei-
ther find the signal in the data (ARGP, GPIL, EKF)
or they do not. The NLL-values of the GPDM are
high since the predicted variances are consistently un-
derestimated.

Real data. We used historical snowfall data in
Whistler, BC, Canada3 to evaluate GPIL and other
methods on real data. The models were trained on
two years of data; GPIL used a pseudo training set of
size N = 15; we evaluated the models’ ability to pre-
dict next day snowfall using 35 years of test data. The
results are shown in Table 1.

GPIL learned a GP model for a scalar close-to-linear
stochastic latent transition function. A possible inter-
pretation of the results is that the daily precipitation is
nearly linear. Note that for temperatures above freez-
ing no snow occurs, which resulted in a hinge measure-
ment model. GPIL learned a hinge-like function for
the measurement model, Fig. 4, which allowed for pre-
dicting no snowfall the next day with high probability.

3http://www.climate.weatheroffice.ec.gc.ca/
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Figure 4: Learned measurement GP (right) and log
histogram of the observations (left) during testing, real
data set. The gray area is twice the predictive stan-
dard deviation (model uncertainty plus measurement
noise). Pseudo targets are represented by crosses.

The Kalman filter was incapable of such predictions
since it assumes linear functions f and g.

5 Discussion and Conclusions

In GPIL, the latent states xt are never observed di-
rectly. Solely observations yt can be accessed to train
the latent dynamics and measurement functions. Con-
trarily, direct access to ground truth observations of a
latent state sequence was required in Deisenroth et al.
(2009); Ko and Fox (2009a) for training. Parameter-
izing a GP using the pseudo training set is one way
to train a GP with unknown inputs. In principle, we
would train the model by integrating the pseudo train-
ing set out. However, this approach is analytically in-
tractable.

In contrast to Wan and van der Merwe (2001), the
“backward” conditional distribution in eq. (9) requires
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only a forward model. Our inference method is ro-
bust against numerical problems for high measurement
noise, problems reported in Ypma and Heskes (2005)
in the context of inference in NLDS using the UKF
and expectation propagation (Minka, 2001).

It is possible to compute the expectations in eqs. (13)
and (14) by sampling X from the E-step distribution.
If we sample xt−1 then xti can be integrated out an-
alytically providing a lower variance estimator than
sampling xti as well. The sampling approach can give
a slightly better performance over the deterministic
approximations discussed in this paper.

With GPIL we introduced a general method for in-
ference and learning in nonlinear state-space models
using EM. Both the transition function between the
hidden states and the measurement function are mod-
eled by GPs allowing for quantifying model uncer-
tainty and flexible modeling. GPIL exploits the prop-
erties of GPs and allows for approximate smoothing
in closed form (E-step). The free parameters of the
GPs are their hyper-parameters and a pseudo train-
ing set, which are jointly learned using a gradient-
based optimizer (M-step). We demonstrated that
GPIL successfully learned nonlinear (latent) dynam-
ics based on noisy measurements only. Moreover,
our algorithm outperformed standard and state-of-
the-art approaches for time series predictions and in-
ference. GPIL MATLAB code will be available at
http://mlg.eng.cam.ac.uk/rdturner/.
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