
Kinematics of Motion Capture based on Quaternions

This set of notes derives a technique to estimate the displacement of a rigid body using
markers placed on the body, and a camera system to track the marker positions.

1 Least Squares Solution

Assume that a rigid body lies in position #1. A body-fixed reference frame aligns with a
fixed observing reference frame in this position. Then body then displaces by a translation
~d12 and a rotation R12 ∈ SO(3) to a position #2. Assume that at least three noncolinear
marker points can be identified in the body at the first position: (P1, P2, . . . , PN). After
displacements, the three points are located at (Q1, Q2, . . . , QN). Clearly,

Qi = ~d12 + R12Pi i = 1, 2, 3 .

In a motion capture context, the points are associated with body-fixed markers, whose
positions are readily measured with a camera system. However, we must expect some error
in the measurement of the marker locations, which we will model as zero mean noise. Our
goal is to estimate ~d12 and R12 from these measurements. We will use a least squares approach
to finding the displacement estimates from the noisy measurements.

Let an error, ei, in the ith point coordinate be defined as follows:

ei = Qi − ~d12 −R12Pi .

That is, if the location of points Pi and Qi where measured by the camera system with
no errors, and if we knew ~d12 and R12 exactly, then the error ei would be zero. Since
measurement errors must be expected, the best estimate of the displacement is found by
minimizing the following error:

E =
N∑
i=1

||ei||2 =
N∑
i=1

||Qi − ~d12 −R12Pi||2 .

That is, the best estimate of ~d12 and R12 are the ones whic minimize this error function.
To simplify the evaluation of this expression, let us introduce the following centroids of the
body-fixed points:

P̄ =
1

N

N∑
i=1

Pi Q̄ =
1

N

N∑
i=1

Qi (1)

and express the marker point coordinates with respect to these centroids:

P
′

i = Pi − P̄i Q
′

i = Qi − Q̄i .

The error term ei can be expressed in these adjusted coordinates as follows:

ei = Qi − ~d12 −R12Pi = Q
′

i + Q̄− ~d12 −R12(P
′

i + P̄i) = Q
′

i −R12P
′

i − z
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where z = −~d12 + Q̄−R12P̄ . In these adjusted coordinates, the total error takes the form:

E =
N∑
i=1

||Q′

i −R12P
′

i − z||2 =
N∑
i=1

||Q′

i −R12P
′

i ||2 − 2z · (Q′

i −R12P
′

i ) + z2 . (2)

Note that the third term, z2, can only be minimized if z = 0, which implies that:

~d12 = Q̄ − R12P̄ . (3)

That is, once R12 is known, ~d12 can be found from Equation (3), and the expression only
depends upon the centroids of the marker points.

The second term of Equation (2) vanishes since
∑N

i=1Q
′
i =

∑N
i=1 P

′
i = 0 by the definition

of centroid.

2z ·
N∑
i=1

(Q
′

i −R12P
′

i ) = 2z ·
[ N∑

i=1

Q
′

i −R12

N∑
i=1

P
′

i

]
= 0 .

Thus, R12 is found by minimizing the first term of Equation (2)

R12 = arg min
N∑
i=1

||Q′

i − R12P
′

i ||2 . (4)

Note that because rotation matrices preserve the lengths of vectors, each term Q
′
i−R12P

′
i is

minimized by aligning vector R12P
′
i with vector Q

′
i as closely as possible. Hence, Equation

(4) is equivalent to:

R12 = arg max
N∑
i=1

Q
′

i · (R12P
′

i ) . (5)

As will be shown below, it is easiest to solve this optimization problem by converting it to
use a quaternion representation of the rotation R12.

2 Quaternion Review

Recall that a quarterion, q, takes the form

q = q0 + qxi + qyj + qzk

where basis elements i, j, and k obey the rules:

i2 = j2 = k2 = −1

ij = −ji = k

ik = −ki = −j
jk = −kj = i .
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The quaternion can also be simply represented as a 4-tuple, q = (q0, qx, qy, qz), with the basis
elements implicit. When the context is clear we can interpret the 4-tuple as a 4× 1 vector.

If two quarternions, q and r, take the form:

q = q0 + qxi + qyj + qzk r = r0 + rxi + ryj + rzk

then the product of the two quarternions takes the form:

r · q = (r0q0 − rxqx − ryqy − rzqz) + (r0qx + rxq0 + ryqz − rzqy)i

+(roqy − rxqz + ryq0 + rzqx)j + (r0qz + rxqy − ryqx + rzq0)k

Note that this product can also be represented in the following way

rq =


r0 −rx −ry −rz
rx r0 −rz ry
ry rz r0 −rx
rz −ry rx r0

 q , Rq (6)

where quarternion q is treated as a 4× 1 vector. In a similar way

qr =


r0 −rx −ry −rz
rx r0 rz −ry
ry −rz r0 rx
rz ry −rx r0

 q , R̄q (7)

Also note that r∗q = RT q and qr∗ = R̄T q, where r∗ denotes the conjugate of r: r∗ =
(r0,−rx,−ry,−rz).

Finally, let� denote a dot product operator between two quaternions. That is, if we interpret
quaternion r as a 4 × 1 vector r =

[
r0 rx ry rz

]
and quaternion q as the 4 × 1 vector

q =
[
q0 qx qy qz

]
, then

r � q =


r0
rx
ry
rz

 ·

q0
qx
qy
qz

 = r0q0 + rxqx + ryqy + rzqz .

3 Estimating Displacements using Quaternions

Let q12 be the unit quaternion which represents the same rotation as R12 ∈ SO(3). Let p
′
i

be the pure or vector quaternion that represents the vector P
′
i . That is,

P
′

i =

P ′
i,x

P
′
i,y

P
′
i,z

 ⇒ p
′

i = (0, P
′

i,x, P
′

i,y, P
′

i,z) .
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Similarly, let q
′
i = (0, Q

′
i,x, Q

′
i,y, Q

′
i,x) be the vector quaternion that represents the vector Q

′
i.

Recall that the product of the rotation matrix R12 ∈ SO(3) and the vector P
′
i ∈ R3, R12P

′
i ,

can be represented in terms of quaternions as:

q12p
′

iq
∗
12 .

Hence, the least squares estimate of R12 in Equation (5) can be expressed as

q12 = arg max
N∑
i=1

q
′

i � (q12p
′

iq
∗
12) . (8)

To solve Equation (8), note that (using Equation (7)) q12p
′
iq

∗
12 can be expressed as Q̄T

12(q12p
′
i).

Hence,

q12 = arg max
N∑
i=1

q
′

i � (q12p
′

iq
∗
12) = arg max

N∑
i=1

q
′

i � (Q̄T
12q12p

′

i)

= arg max
N∑
i=1

(Q̄12q
′

i)� (q12p
′

i) = arg max
N∑
i=1

(q
′

iq12)� (q12p
′

i)

= arg max
N∑
i=1

(Q′

iq12)� (P̄ ′

iq12) = arg max qT12
[ N∑

i=1

(Q′

i)
T P̄ ′

i

]
q12

, qT12
[ n∑

i=1

Ni

]
q12 , qT12Nq12

where matrices Q̄′
i and Pi are patterned after Equations (6) and (7):

P̄ ′

i =


0 −P ′

i,x −P
′
i,y P

′
i,z

P
′
i,x 0 P

′
i,z −P ′

i,y

P
′
i,y −P

′
i,z 0 P

′
i,x

P
′
i,z P

′
i,y −P ′

i,x 0

 Q′

i =


0 −Q′

i,x −Q
′
i,y −Q

′
i,z

Q
′
i,x 0 −Q′

i,z Q
′
i,y

Q
′
i,y Q

′
i,z 0 −Q′

i,x

Q
′
i,z −Q

′
i,y Q

′
i,x 0

 (9)

and

N =


(Sxx + Syy + Szz) Syz − Szy Szx − Sxz Sxy − Syx

Syz − Syz (Sxx − Syy − Szz) Sxy + Syx Szx + Sxz

Szx − Sxz Sxy + Syx (−Sxx + Syy − Szz) Syz + Szy

Sxy − Syx Szx + Sxz Syz + Szy (−Sxx − Syy + Szz)


(10)

where the 3× 3 matrix S has the form:

S =

Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz

 =
N∑
i=1

Q
′

i(P
′

i )
T . (11)

Note that qT12Nq12 will be maximized with respect to q12 when the 4 × 1 vector q12 aligns
with the eigenvector associated with the maximum eigenvalue of N .
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4 Summary

Let (P1, P2, . . . , PN) denote the positions of a set of markers attached to a rigid body in the
first position (before a displacement). After the rigid body displaces to a second position,
the marker locations are described by positions (Q1, Q2, . . . , QN). The goal is to estimate

the rigid body displacement (~d12, R12), where ~d12 is the translation of the rigid body between
the two positions, and R12 denotes the relative orientation of the body in the second position
with respect to the first position.

Here is a brief summary of an approach that uses the derivations above:

• Compute the centroids of the points in the first and second positions from Equation
(1): P̄ and Q̄.

• Compute the coordinates of the points with respect to the centroids: P
′
i = Pi − P̄ ,

Q
′
i = Qi − Q̄, for i = 1, . . . , N .

• Compute the S-matrix in Equation (11)

• Compute the N -matrix, Equation (10)

• Find the eigenvector of N associated with the largest eigenvalue of N . Normalize the
eigenvector to ensure that it is a unit quaternion.

• Find the equivalent rotation matrix R12 to the unit quaternion found in the last step.

• Find the displacement, ~d12, using R12 found in the last step and Equation (3).
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