Kinematics of Motion Capture based on Quaternions

This set of notes derives a technique to estimate the displacement of a rigid body using *markers* placed on the body, and a camera system to track the marker positions.

1 Least Squares Solution

Assume that a rigid body lies in position #1. A body-fixed reference frame aligns with a fixed observing reference frame in this position. Then body then displaces by a translation \vec{d}_{12} and a rotation $R_{12} \in SO(3)$ to a position #2. Assume that at least three noncolinear marker points can be identified in the body at the first position: (P_1, P_2, \ldots, P_N) . After displacements, the three points are located at (Q_1, Q_2, \ldots, Q_N) . Clearly,

$$Q_i = \vec{d}_{12} + R_{12}P_i \qquad i = 1, 2, 3.$$

In a motion capture context, the points are associated with body-fixed markers, whose positions are readily measured with a camera system. However, we must expect some error in the measurement of the marker locations, which we will model as zero mean noise. Our goal is to estimate \vec{d}_{12} and R_{12} from these measurements. We will use a least squares approach to finding the displacement estimates from the noisy measurements.

Let an error, e_i , in the i^{th} point coordinate be defined as follows:

$$e_i = Q_i - \vec{d}_{12} - R_{12}P_i$$
.

That is, if the location of points P_i and Q_i where measured by the camera system with no errors, and if we knew \vec{d}_{12} and R_{12} exactly, then the error e_i would be zero. Since measurement errors must be expected, the best estimate of the displacement is found by minimizing the following error:

$$E = \sum_{i=1}^{N} ||e_i||^2 = \sum_{i=1}^{N} ||Q_i - \vec{d}_{12} - R_{12}P_i||^2.$$

That is, the best estimate of \vec{d}_{12} and R_{12} are the ones whic minimize this error function. To simplify the evaluation of this expression, let us introduce the following *centroids* of the body-fixed points:

$$\bar{P} = \frac{1}{N} \sum_{i=1}^{N} P_i \qquad \bar{Q} = \frac{1}{N} \sum_{i=1}^{N} Q_i$$
 (1)

and express the marker point coordinates with respect to these centroids:

$$P_i' = P_i - \bar{P}_i \qquad Q_i' = Q_i - \bar{Q}_i \ .$$

The error term e_i can be expressed in these adjusted coordinates as follows:

$$e_{i} = Q_{i} - \vec{d}_{12} - R_{12}P_{i} = Q'_{i} + \bar{Q} - \vec{d}_{12} - R_{12}(P'_{i} + \bar{P}_{i}) = Q'_{i} - R_{12}P'_{i} - z$$

where $z = -\vec{d}_{12} + \bar{Q} - R_{12}\bar{P}$. In these adjusted coordinates, the total error takes the form:

$$E = \sum_{i=1}^{N} ||Q_{i}' - R_{12}P_{i}' - z||^{2} = \sum_{i=1}^{N} ||Q_{i}' - R_{12}P_{i}'||^{2} - 2z \cdot (Q_{i}' - R_{12}P_{i}') + z^{2}.$$
 (2)

Note that the third term, z^2 , can only be minimized if z=0, which implies that:

$$\vec{d}_{12} = \bar{Q} - R_{12}\bar{P} . {3}$$

That is, once R_{12} is known, \vec{d}_{12} can be found from Equation (3), and the expression only depends upon the centroids of the marker points.

The second term of Equation (2) vanishes since $\sum_{i=1}^{N} Q_i' = \sum_{i=1}^{N} P_i' = 0$ by the definition of centroid.

$$2z \cdot \sum_{i=1}^{N} \left(Q_{i}^{'} - R_{12} P_{i}^{'} \right) = 2z \cdot \left[\sum_{i=1}^{N} Q_{i}^{'} - R_{12} \sum_{i=1}^{N} P_{i}^{'} \right] = 0.$$

Thus, R_{12} is found by minimizing the first term of Equation (2)

$$R_{12} = \arg\min \sum_{i=1}^{N} ||Q_i' - R_{12}P_i'||^2.$$
 (4)

Note that because rotation matrices preserve the lengths of vectors, each term $Q'_i - R_{12}P'_i$ is minimized by aligning vector $R_{12}P'_i$ with vector Q'_i as closely as possible. Hence, Equation (4) is equivalent to:

$$R_{12} = \arg\max \sum_{i=1}^{N} Q_i' \cdot (R_{12} P_i') . \tag{5}$$

As will be shown below, it is easiest to solve this optimization problem by converting it to use a quaternion representation of the rotation R_{12} .

2 Quaternion Review

Recall that a quarterion, q, takes the form

$$q = q_0 + q_x i + q_y j + q_z k$$

where basis elements i, j, and k obey the rules:

$$i^{2} = j^{2} = k^{2} = -1$$

$$ij = -ji = k$$

$$ik = -ki = -j$$

$$jk = -kj = i$$

The quaternion can also be simply represented as a 4-tuple, $q = (q_0, q_x, q_y, q_z)$, with the basis elements implicit. When the context is clear we can interpret the 4-tuple as a 4×1 vector.

If two quarternions, q and r, take the form:

$$q = q_0 + q_x i + q_u j + q_z k$$
 $r = r_0 + r_x i + r_u j + r_z k$

then the product of the two quarternions takes the form:

$$r \cdot q = (r_0 q_0 - r_x q_x - r_y q_y - r_z q_z) + (r_0 q_x + r_x q_0 + r_y q_z - r_z q_y)i + (r_0 q_y - r_x q_z + r_y q_0 + r_z q_x)j + (r_0 q_z + r_x q_y - r_y q_x + r_z q_0)k$$

Note that this product can also be represented in the following way

$$rq = \begin{bmatrix} r_0 & -r_x & -r_y & -r_z \\ r_x & r_0 & -r_z & r_y \\ r_y & r_z & r_0 & -r_x \\ r_z & -r_y & r_x & r_0 \end{bmatrix} q \triangleq \mathcal{R}q$$
 (6)

where quarternion q is treated as a 4×1 vector. In a similar way

$$qr = \begin{bmatrix} r_0 & -r_x & -r_y & -r_z \\ r_x & r_0 & r_z & -r_y \\ r_y & -r_z & r_0 & r_x \\ r_z & r_y & -r_x & r_0 \end{bmatrix} q \triangleq \bar{\mathcal{R}}q$$
 (7)

Also note that $r^*q = \mathcal{R}^T q$ and $qr^* = \bar{\mathcal{R}}^T q$, where r^* denotes the *conjugate* of r: $r^* = (r_0, -r_x, -r_y, -r_z)$.

Finally, let \odot denote a dot product operator between two quaternions. That is, if we interpret quaternion r as a 4×1 vector $r = \begin{bmatrix} r_0 & r_x & r_y & r_z \end{bmatrix}$ and quaternion q as the 4×1 vector $q = \begin{bmatrix} q_0 & q_x & q_y & q_z \end{bmatrix}$, then

$$r \odot q = \begin{bmatrix} r_0 \\ r_x \\ r_y \\ r_z \end{bmatrix} \cdot \begin{bmatrix} q_0 \\ q_x \\ q_y \\ q_z \end{bmatrix} = r_0 q_0 + r_x q_x + r_y q_y + r_z q_z .$$

3 Estimating Displacements using Quaternions

Let q_{12} be the unit quaternion which represents the same rotation as $R_{12} \in SO(3)$. Let p'_i be the *pure* or *vector* quaternion that represents the vector P'_i . That is,

$$P'_{i} = \begin{bmatrix} P'_{i,x} \\ P'_{i,y} \\ P'_{i,z} \end{bmatrix} \qquad \Rightarrow \qquad p'_{i} = (0, P'_{i,x}, P'_{i,y}, P'_{i,z}) \ .$$

Similarly, let $q'_i = (0, Q'_{i,x}, Q'_{i,y}, Q'_{i,x})$ be the vector quaternion that represents the vector Q'_i . Recall that the product of the rotation matrix $R_{12} \in SO(3)$ and the vector $P'_i \in \mathbb{R}^3$, $R_{12}P'_i$, can be represented in terms of quaternions as:

$$q_{12}p_{i}^{\prime}q_{12}^{*}$$
.

Hence, the least squares estimate of R_{12} in Equation (5) can be expressed as

$$q_{12} = \arg\max \sum_{i=1}^{N} q_i' \odot (q_{12} p_i' q_{12}^*) . \tag{8}$$

To solve Equation (8), note that (using Equation (7)) $q_{12}p'_iq^*_{12}$ can be expressed as $\bar{Q}_{12}^T(q_{12}p'_i)$. Hence,

$$q_{12} = \arg \max \sum_{i=1}^{N} q_{i}^{'} \odot (q_{12}p_{i}^{'}q_{12}^{*}) = \arg \max \sum_{i=1}^{N} q_{i}^{'} \odot (\bar{\mathcal{Q}}_{12}^{T}q_{12}p_{i}^{'})$$

$$= \arg \max \sum_{i=1}^{N} (\bar{\mathcal{Q}}_{12}q_{i}^{'}) \odot (q_{12}p_{i}^{'}) = \arg \max \sum_{i=1}^{N} (q_{i}^{'}q_{12}) \odot (q_{12}p_{i}^{'})$$

$$= \arg \max \sum_{i=1}^{N} (\mathcal{Q}_{i}^{'}q_{12}) \odot (\bar{\mathcal{P}}_{i}^{'}q_{12}) = \arg \max \ q_{12}^{T} \left[\sum_{i=1}^{N} (\mathcal{Q}_{i}^{'})^{T} \bar{\mathcal{P}}_{i}^{'}\right] q_{12}$$

$$\triangleq q_{12}^{T} \left[\sum_{i=1}^{n} N_{i}\right] q_{12} \triangleq q_{12}^{T} N q_{12}$$

where matrices \bar{Q}'_i and \mathcal{P}_i are patterned after Equations (6) and (7):

$$\bar{\mathcal{P}}_{i}' = \begin{bmatrix} 0 & -P_{i,x}' & -P_{i,y}' & P_{i,z}' \\ P_{i,x}' & 0 & P_{i,z}' & -P_{i,y}' \\ P_{i,y}' & -P_{i,z}' & 0 & P_{i,x}' \\ P_{i,z}' & P_{i,y}' & -P_{i,x}' & 0 \end{bmatrix} \qquad \mathcal{Q}_{i}' = \begin{bmatrix} 0 & -Q_{i,x}' & -Q_{i,y}' & -Q_{i,z}' \\ Q_{i,x}' & 0 & -Q_{i,z} & Q_{i,y}' \\ Q_{i,y} & Q_{i,z}' & 0 & -Q_{i,x}' \\ Q_{i,z} & -Q_{i,y}' & Q_{i,x}' & 0 \end{bmatrix}$$
(9)

and

$$N = \begin{bmatrix} (S_{xx} + S_{yy} + S_{zz}) & S_{yz} - S_{zy} & S_{zx} - S_{xz} & S_{xy} - Syx \\ S_{yz} - S_{yz} & (S_{xx} - S_{yy} - S_{zz}) & S_{xy} + S_{yx} & S_{zx} + S_{xz} \\ S_{zx} - S_{xz} & S_{xy} + S_{yx} & (-S_{xx} + S_{yy} - S_{zz}) & S_{yz} + S_{zy} \\ S_{xy} - S_{yx} & S_{zx} + S_{xz} & S_{yz} + S_{zy} & (-S_{xx} - S_{yy} + S_{zz}) \end{bmatrix}$$

$$(10)$$

where the 3×3 matrix S has the form:

$$S = \begin{bmatrix} S_{xx} & S_{xy} & S_{xz} \\ S_{yx} & S_{yy} & S_{yz} \\ S_{zx} & S_{zy} & S_{zz} \end{bmatrix} = \sum_{i=1}^{N} Q_i'(P_i')^T .$$
 (11)

Note that $q_{12}^T N q_{12}$ will be maximized with respect to q_{12} when the 4×1 vector q_{12} aligns with the eigenvector associated with the maximum eigenvalue of N.

4 Summary

Let $(P_1, P_2, ..., P_N)$ denote the positions of a set of markers attached to a rigid body in the first position (before a displacement). After the rigid body displaces to a second position, the marker locations are described by positions $(Q_1, Q_2, ..., Q_N)$. The goal is to estimate the rigid body displacement (\vec{d}_{12}, R_{12}) , where \vec{d}_{12} is the translation of the rigid body between the two positions, and R_{12} denotes the relative orientation of the body in the second position with respect to the first position.

Here is a brief summary of an approach that uses the derivations above:

- Compute the centroids of the points in the first and second positions from Equation (1): \bar{P} and \bar{Q} .
- Compute the coordinates of the points with respect to the centroids: $P_i^{'} = P_i \bar{P}$, $Q_i^{'} = Q_i \bar{Q}$, for $i = 1, \dots, N$.
- Compute the S-matrix in Equation (11)
- Compute the N-matrix, Equation (10)
- Find the eigenvector of N associated with the largest eigenvalue of N. Normalize the eigenvector to ensure that it is a unit quaternion.
- Find the equivalent rotation matrix R_{12} to the unit quaternion found in the last step.
- Find the displacement, \vec{d}_{12} , using R_{12} found in the last step and Equation (3).