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A majority of methods from dynamical system analysis, especially those in applied settings, rely

on Poincar�e’s geometric picture that focuses on “dynamics of states.” While this picture has fueled

our field for a century, it has shown difficulties in handling high-dimensional, ill-described, and

uncertain systems, which are more and more common in engineered systems design and analysis of

“big data” measurements. This overview article presents an alternative framework for dynamical

systems, based on the “dynamics of observables” picture. The central object is the Koopman

operator: an infinite-dimensional, linear operator that is nonetheless capable of capturing the full

nonlinear dynamics. The first goal of this paper is to make it clear how methods that appeared in

different papers and contexts all relate to each other through spectral properties of the Koopman

operator. The second goal is to present these methods in a concise manner in an effort to make the

framework accessible to researchers who would like to apply them, but also, expand and improve

them. Finally, we aim to provide a road map through the literature where each of the topics was

described in detail. We describe three main concepts: Koopman mode analysis, Koopman

eigenquotients, and continuous indicators of ergodicity. For each concept, we provide a summary

of theoretical concepts required to define and study them, numerical methods that have been

developed for their analysis, and, when possible, applications that made use of them. The

Koopman framework is showing potential for crossing over from academic and theoretical use to

industrial practice. Therefore, the paper highlights its strengths in applied and numerical contexts.

Additionally, we point out areas where an additional research push is needed before the approach is

adopted as an off-the-shelf framework for analysis and design. VC 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4772195]

A majority of methods from dynamical systems analysis,

especially those in applied settings, rely on Poincar�e’s geo-

metric picture that focuses on “dynamics of states.” While

this picture has fueled our field for a century, it has shown

difficulties in handling high-dimensional, ill-described, and

uncertain systems, which are more and more common in

engineered systems design and analysis of “big data”

measurements. This overview article presents an alterna-

tive framework for dynamical systems, based on the

“dynamics of observables” picture. We present an over-

view of several approaches to studying dynamical systems

using the Koopman operator, which holds promise to

resolve these issues. The dynamics are analyzed by looking

at evolutions of functions on the state space, rather than

directly at state space trajectories. The evolution can be

understood by expanding the function into a basis of eigen-

functions of the Koopman operator. The first approach is

based on the Koopman modes (KMs), which generalize

linear mode analysis from linear systems to nonlinear sys-

tems, while preserving global nonlinear features of the sys-

tem, unlike, e.g., linearizations based on Taylor- and

Fourier-expansions. The second approach identifies coher-

ent structures in flows. An equivalence relation between

points in the state space can be defined using spectral

properties of the Koopman operator, where equivalent

points correspond to initial conditions that behave statisti-

cally the same with respect to any observable. The third

approach we present introduces continuous quantifications

of ergodicity and mixing, concepts existing in ergodic

theory are traditionally treated as binary notions.

Throughout the paper, we highlight examples from the lit-

erature using each of these concepts. Examples are taken

from diverse areas such as fluid mechanics, fluid mixing,

energy efficiency of buildings, power systems, and

unmanned aerial vehicle (UAV) path-planning for search-

and-rescue. A common trait of all the methods is that they

do not require access to an analytical model of the system;

the spectral properties of the Koopman operator can be

constructed from measured or simulated data.

I. INTRODUCTION

Currently, dynamical system analysis and design pri-

marily use the geometric picture, as put forth by Poincar�e in

his work on the three body problem. Much of the framework

is built around notions from differential geometry, trajecto-

ries, and invariant manifolds. Such an approach has met with

success in a variety of settings and, at this point, one hardly

needs to justify the use of geometric theory when working

on a particular problem.

However, the geometric viewpoint is ill-suited to many

of the situations that are of interest in real systems. For

example, for systems possessing hyperbolic regimes, the

unstable manifolds give rise to locally exponentially diver-

gent trajectories. Any noise or uncertainty in the system will

a)We dedicate this paper to the memory of Jerrold E. (Jerry) Marsden whose

support of our research was invaluable.
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lead to multiple possible trajectories for an initial condition,

with the width of the set trajectories initially expanding

exponentially. In such cases, questions about the behavior of

a specific trajectory are difficult to answer.

Systems with a large number of dimensions can be prob-

lematic as well, since many of the geometric arguments are

only valid in a low number of dimensions, e.g., Bendixson’s

Criterion for determining the non-existence of periodic orbits

in the plane. In some cases, these arguments can be

extended, with difficulty, to an arbitrary number of dimen-

sions. Even in these cases, however, a practical implementa-

tion limits them to a moderate number of dimensions. To

handle high-dimensional systems, special symmetries or

other conditions are required in order to effectively reduce

the dimension to a manageable size. Furthermore, without

access to explicit ordinary differential equations (ODEs),

even basic geometric analysis is difficult to apply. If dynami-

cal systems theory is to become an important field in the con-

text of pressing problems such as “big data,” tools need to be

developed that are capable of handling high-dimensional,

uncertain, and ill-described systems, as well as systems for

which past time-evolution data is available, but for which no

simple mathematical description can be determined.20

This article presents a viewpoint that is at the intersection

of applied ergodic theory and operator theory. These two

fields can be used in applied settings to analyze and design dy-

namical systems, with many of the aforementioned difficulties

being handled with a certain amount of elegance. In fact,

when we study dynamical systems through certain linear oper-

ators, the full nonlinear dynamics can be captured within a
linear setting. This linear setting allows the power of spectral

analysis to be brought to bear on a (nonlinear) problem with-

out sacrificing any information as required by other lineariza-

tion techniques. Contrast this with the traditional spectral

approach that only determines geometry locally in the state

space. Additionally, in theory, the operator-theoretic approach

works equally well whether the original state-space is low- or

high-dimensional; the same techniques apply to both cases.

The framework is also well suited to studying noisy systems

because the primary object of interest is no longer the trajec-

tory. Finally, and perhaps most significantly, the operators

involved can be constructed, approximated, or analyzed using

only simulation or experimental measurement data. This

allows a certain black-box approach to the analysis which is

quite useful in real problems where the practitioner may not

have full knowledge of the system’s internals.

As with any technique, however, there is a tradeoff in

order to gain the above advantages. The operator-theoretic

picture has no immediate connection to our physical intu-

ition, making its meaning more difficult to comprehend.

One’s viewpoint must change from considering the evolu-

tion of points in the state space to considering the evolution

of functions. Additionally, the new approach is inherently

infinite-dimensional, even when the state space is finite-

dimensional. This sacrifice is what allows the full informa-

tion of a nonlinear system to be contained within a linear

setting. Because of this, the implementation of any approxi-

mation is a more delicate issue. Finally, the associated

numerical techniques are underdeveloped. Most of our

approaches employ direct computations which are little

more than numerical implementations of proofs.

The two main candidates for the study of systems via

operators are the Koopman operator and the Perron-

Frobenius operator. In appropriate function spaces, they are

duals to each other, so theoretically there should not be any

distinction in working with one as opposed to the other.

However, as mentioned previously, we must always include

applied considerations. Questions arise such as how do we

construct or represent the chosen operator from the problem

description and given data? How well does a finite approxi-

mation represent the ideal theoretical picture? What part of

intuition gained is due to numerical artifacts and what is

real?

The Perron-Frobenius operator represents a “dynamics of

densities” picture; it looks at groups of trajectories. One can

think of this as watching the evolution of a mass distribution

under the action of a flow. From a numerical perspective, con-

struction of the operator relies on selecting a set of initial con-

ditions and simulating forward for only a short time period,

thus avoiding the compounding of numerical time-integration

errors. Due to these short bursts, transient dynamics can be

captured very well. However, much attention has been

focused on computing invariant densities,14 which are infinite-

time objects, through approximating the Perron-Frobenius op-

erator by a Markov chain. The number of simulated initial

conditions is dictated by the need to sample the region of in-

terest well. In high-dimensions, both short- and long-time dy-

namics simulations require a mesh on the entire space. This

can be true even in the case of a low-dimensional attractor. If

we have a priori knowledge of the low-dimensional subspace

the attractor lives in, then the mesh size can be restricted.

However, for an arbitrary system, this knowledge may not be

initially available, thus requiring the full mesh.

On the other hand, the Koopman operator presents a

picture for the “dynamics of observables.” The difference

in viewpoints between the Perron-Frobenius and Koopman

operators is similar to the Eulerian versus the Lagrangian

viewpoint in fluid mechanics, with the Koopman picture

corresponding to the Lagrangian viewpoint. It meant that

measurements are made along trajectories. For the Koop-

man operator, the numerical construction relies on poten-

tially fewer initial conditions, but requires longer run-

times, which is more suitable to physical experiments. For

example, when testing a jet engine, it is started from a rela-

tively small number of initial conditions and run it over a

long time rather than preparing thousands of initial condi-

tions and running the engine for a few seconds for each ini-

tial condition. As long run-times required, the asymptotics

are well-understood. However, more research is needed to

understand the transients.

To visualize high-dimensional dynamical systems, we

often restrict our attention to one, or a few, two-dimensional

cross-sections in the state space and look at the invariant

structures intersecting that slice. With the Perron-Frobenius

operator, it is difficult to directly compute invariant densities

on the slice of interest, since, in principle, it requires a com-

putation of the invariant density for the entire state space as

an intermediate step. For the Koopman operator, invariant
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objects are attached to initial conditions, making it well-

suited to visualizing structures on an arbitrary 2D cross-

section in the state space. Initial conditions can be easily

prepared on the slice and the invariants directly computed.

In such cases, the number of initial conditions required to

understand the dynamics is significantly reduced.

While operator methods, and specifically the Koopman

and Perron-Frobenius operators, have much potential to deal

with applied problems, these methods are all but absent from

the applied and industrial settings, with due exceptions.16,35,36

To speed up the adoption of operator techniques in these

domains, any new methodology needs to be able to leverage

already existing data, instead of proposing both a new method-

ology and a new way to collect data. The “dynamics of observ-

ables” perspective, and specifically the Koopman operator, is

used as it deals with measurements, i.e., observables, which

are well-understood both theoretically and computationally.

On the other hand, the Perron-Frobenius techniques would

require working with representations of densities, which are of-

ten singular, especially in well-behaved engineered systems.

In this paper, we intend to describe three concepts, all

under the umbrella of “dynamics of observables,” that show

how this theory can be made useful for analysis and design.

Contributions can be split between theoretical and applied

contributions.

A. Theoretical contributions

1. Dynamical evolution of a system can be studied by look-

ing at what is termed Koopman mode analysis. The con-

cept is similar to normal mode analysis familiar from

linear vibration theory. Koopman mode analysis starts

with a choice of a set of linearly independent observables,

or equivalently a vector-valued observable. The Koopman

operator U is then analyzed through its action on the sub-

space spanned by the chosen observables. The observ-

ables are decomposed into projections onto the

eigenspaces of U, and the evolution is a sum of terms

composed of a product of three terms: (i) a part that is

time-dependent and is determined by the eigenvalue (or

frequency) associated with the eigenspace; (ii) an eigen-

function of U, which is a function of the initial conditions;

(iii) the vector of the coefficients of the projection of the

observables onto the eigenspaces, with the coefficients

only being functions of the chosen observables. In this

way, spectral analysis can be performed on nonlinear sys-

tems. This analysis is also used for model reduction.34,36

2. The notions of the ergodic quotients and eigenquotients
allow the Koopman operator to be used for the extraction

and analysis of invariant and periodic structures in the state

space.6 The points in the state space are grouped into invar-

iant sets using level sets of eigenfunctions of the Koopman

operator. Instead of set-theoretic framework, this approach

is lifted to the analytical setting using the ergodic quotient

and eigenquotient formalism. The eigenquotients are stud-

ied as subsets of particular Sobolev spaces, where their ge-

ometry gives insight into the structure of the state space, in

spirit similar to analysis of Hamiltonian systems via Morse

theory of the associated energy functions.

3. In the standard interpretation of ergodic theory, mixing and

ergodicity are treated as binary concepts: a system is either

mixing/ergodic or it is not. Both mixing and ergodicity can

be formulated using spectral invariants of the Koopman op-

erator. From a finite-time evolution of an arbitrary system,

we can quantify how close its spectral invariants are to the

“ideal” case, e.g., mixing or ergodic, and in this way for-

mulate continuous indicators of ergodicity and mixing. The

ergodicity defect48 and the mixing norm30 are examples of

continuous indicators that extend the corresponding binary

notions. Such a relaxation brings the concepts of ergodicity

and mixing into an engineering context, allowing, e.g., the

use of the indicators as optimization criteria. We present a

unified explanation of the concepts that have previously

appeared in literature.28–31,45,48

B. Numerical techniques and applications

Numerical computation of the objects in the theory uses

elements from three different areas. Fourier analysis based

methods are useful for computing Koopman modes for dy-

namics on the attractor in addition to being essential for the

construction of the eigenquotient. A variant of the standard

Arnoldi algorithm based on companion matrices is also use-

ful for computing part of the spectrum of the Koopman oper-

ator, a basic element of Koopman mode analysis. This

variant does not require an explicit representation of the op-

erator and only requires data, sequences of vectors coming

from either simulations or experiments.

Koopman mode analysis has seen applications in fluids

mechanics to extract spatial structures for the flow.8,43,47,49

Koopman modes have also found applications in the analysis

of coherency and instabilities for power systems53–56 and in

the field of building energy efficiency where they have been

used for model validation and data analysis.16,18

To compute the eigenquotients numerically, a set of

observables is averaged along trajectories started at different

initial conditions, obtaining a finite-dimensional representation

of any eigenquotient. Such representations are analyzed with

the aid of a diffusion maps algorithm,9,10 which computes a

change of coordinates, the diffusion modes, for the eigenquo-

tient. In the limit where infinitely many initial conditions were

simulated for infinite time, such coordinate change would

render any consequent analysis independent of the choice of

the observables averaged during the computation. The scale-

ordering of diffusion coordinates makes it practical to obtain a

low-dimensional approximation of the eigenquotients.

The averaging along trajectories is used again to formulate

continuous indicators for ergodicity and mixing, where the rate

of approach of the averages along finite-time trajectories to the

infinite limit is indicative of the underlying dynamics. Based on

such indicators, the dynamics of the flows can be designed to

match a particular statistical behavior, with applications in path-

planning for vehicles28 and mixing of fluids on micro-scales.31

II. NOTATION AND TERMINOLOGY

We start off by fixing some notation and terminology.

Let us denote the state space by M and define dynamics on it
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by the iterated map T : M ! M. Note that the set M can be

an arbitrary set (possessing no structure) and T can be an ar-

bitrary map on this set. Then the abstract dynamical system

is specified by the couple (M, T). Note that standard texts on

ergodic theory study a specific case when M is a measurable

space, with a r-algebra B, and is T B-measurable. Addition-

ally, transformation T is typically assumed to be measure-

preserving, i.e., there exists a measure l, the invariant
measure, such that for any S 2 B

lðSÞ ¼ lðT�1SÞ; (1)

with T�1S understood as the pre-image of S. The measure l
does not necessarily have a density function associated with

it. For the formulation of the theory in this paper, we do not

require the measurable framework, although when answering

more specific questions, we might restrict ourselves to it, as

it is the one most commonly encountered in applied dynami-

cal systems.

We will be concerned with the behavior of observables

on the state space. To this end, we define an observable to be

a function f : M ! C, where f is an element of some func-

tion space F . For now, it is not necessary to specify any

structure for F . A concrete interpretation of an observable is

that of a sensor probe for the dynamical system in question;

we can access information about the system via the evolution

of the observable’s values. Instead of tracking the trajectory

fp; TðpÞ; T2ðpÞ;…g, we now track the trace ff ðpÞ; f ðTðpÞÞ;
f ðT2ðpÞÞ;…g. The description of the dynamics can then be

concisely written down in the form of state and output equa-

tions, familiar to control theorists,

pnþ1 ¼ TðpnÞ
vn ¼ f ðpnÞ:

(2)

The dynamical systems community mainly focuses on state

space trajectories fpng, while the control systems community

usually studies systems that have an additional input or dis-

turbance terms, with the functions T and f taking particular

forms that are common in engineered systems.

We define the (discrete-time) Koopman operator, UT : F
! F , as

½UTf �ðpÞ ¼ f ðTðpÞÞ; (3)

i.e., it is a composition, UTf ¼ f � T, of the observable f and

the iterated map T. When it is obvious which transformation

gives rise to the Koopman operator, we will drop the depend-

ence on T from the notation and write U instead of UT .

When F is a vector space, U is a linear operator.

When M is a finite set, U is a finite-dimensional operator

and can be represented by a matrix. However, when M is finite-

or infinite-dimensional, U is generally infinite dimensional.

Much of the time, we only have access to a particular collection

of observables ff1;…; fKg � F ; these could be physically rele-

vant observables arising naturally from the problem, or a (subset

of a) function basis for F . We can extend the Koopman opera-

tor to this larger space in the natural way: If F ¼ ðf1;…; fKÞT
2 FK , then UK : FK ! FK is defined as

½UKF�ðpÞ :¼
½Uf1�ðpÞ

�

½UfK�ðpÞ

2
4

3
5: (4)

Hence UK ¼ �K
1 U. With an abuse of notation, we generally

write UK as U. The space FK is the space of C
K

-valued

observables on M. In this context, C
K is referred to as the

output space. More generally, we can consider vector valued

observables, F : M ! V, where V is some vector space. For

example, when analyzing the heat equation on a periodic

box B, the state space can be regarded as the sequence space

of Fourier coefficients and an observable F : M! L2ðB; dxÞ
can be regarded as mapping between a sequence of Fourier

coefficients (the state space M) and a temperature distribu-

tion on B (the real-valued space L2ðB; dxÞ). We will revisit

this setup in more detail in Example 4.

The above notion of the Koopman operator was defined in

the context of discrete-time dynamical systems. Often though,

working in the discrete-time setting poses an unneeded restric-

tion; in many systems, the natural formulation of the dynamics is

with respect to a continuous time variable. The Koopman opera-

tor can be extended to deal with continuous-time dynamical sys-

tems, or even more generally, event-based dynamical systems.

Assume we have the continuous-time dynamical system

_p ¼ TðpÞ. In this context, there is not just the Koopman op-

erator, but a semigroup of operators fUtgt2Rþ given by a

generator U. We call the semigroup fUtg the Koopman semi-
group. We explicitly define the action of the semigroup on

the observable f 2 F as

½Utf �ðpÞ ¼ f ðUtðpÞÞ: (5)

Here UtðpÞ � Uðp; tÞ is the flow map that takes an initial

condition p 2 M and maps it to the solution at time t of the

initial value problem (IVP) having initial condition p(0)¼ p;

i.e., for a fixed p0 2 M, the trajectory fUðp0; �Þgt	0 is a solu-

tion of the IVP _p ¼ TðpÞ; pð0Þ ¼ p0. The generator of the

Koopman semigroup is defined by

½Uf � :¼ lim
t!0

Utf � f

t
; (6)

where the limit is taken in the strong sense.24

The following examples describe the above concepts in

certain simple, concrete cases.

Example 1 (Cyclic group). Let M ¼ fe; a; a2g be a

cyclic group of order 3 ða3 � eÞ. Define T : M! M by

TðpÞ ¼ a � p. Hence the entire state space is a periodic orbit

of period 3. Let F be the C-valued functions on M. Clearly,

the space of observables is C
3
. Let f1; f2; f3 be the indicator

functions on e; a; a2, respectively,

f1ðpÞ ¼
�

1; p ¼ e;

0; p 6¼ e
;

f2ðpÞ ¼
�

1; p ¼ a;

0; p 6¼ a
;

f3ðpÞ ¼
�

1; p ¼ a2;

0; p 6¼ a2
:

(7)
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These form a basis for F . The action of the Koopman opera-

tor on this basis is given as

½U f1�ðpÞ ¼ f1ða � pÞ ¼ f3ðpÞ;
½U f2�ðpÞ ¼ f2ða � pÞ ¼ f1ðpÞ;
½U f3�ðpÞ ¼ f3ða � pÞ ¼ f2ðpÞ:

(8)

For an arbitrary observable f 2 F given by f ¼ c1f1 þ c2f2

þ c3f3, with ci 2 C, we have that

Uf ¼ c1f3 þ c2f1 þ c3f2:

Then, the matrix representation of U in the ff1; f2; f3g basis is

given by

U
c1

c2

c3

2
4

3
5 ¼ 0 1 0

0 0 1

1 0 0

2
4

3
5 c1

c2

c3

2
4

3
5: (9)

In this case, Eq. (9) gives the full action of the Koopman op-

erator on F . �

Example 2 (Linear, diagonalizable systems). Let M ¼ Rd

and define T : M! M by

ðTðxÞÞi ¼ lixi; (10)

where x ¼ ðx1;…; xdÞT 2 M and li 2 R. Let F be the space

of C-valued functions on Rd. Let fb1;…; bdg � M be a ba-

sis for M and define fiðxÞ ¼ hbi; xi, where h�; �i is the inner

product on Rd. The action of U : F ! F on fi is

½U fi�ðxÞ ¼ hbi; TðxÞi ¼ ½bi;1;…; bi;d�

l1x1

�

ldxd

2
664

3
775

¼ ½bi;1;…; bi;d�

l1 0 � � � 0

0 l2 � � � 0

� � . .
.

�

0 0 � � � ld

2
6666664

3
7777775

x1

�

xd

2
664

3
775:

(11)

Let F d ¼ �d
1F and define Ud on F d as in Eq. (4). Then for

F ¼ ðf1;…; fdÞT ,

½UdF�ðxÞ ¼

b1;1 � � � b1;d

� . .
.

�

bd;1 � � � bd;d

2
664

3
775

l1 0 � � � 0

0 l2 � � � 0

� � . .
.

�

0 0 � � � ld

2
666664

3
777775

x1

�

xd

2
64

3
75:

(12)

Note that Eq. (12) is just the action of the Koopman operator

on the particular observable F ¼ ðf1;…; fdÞT , not the full

action of the Koopman operator on the entire observable

space, F . The main point is that the Koopman operator is re-

ducible, provided T leaves some subspace of F invariant.

As a special case, we can take the bi’s to be the canoni-

cal basis vectors having zeros everywhere, except for a 1 in

the ith entry. In this case, the functions ffig represent the ca-

nonical projections onto the coordinates of x; i.e., fiðxÞ ¼ xi.

Then the action of the Koopman operator with respect to

these particular observables is given as

½UdF�ðxÞ ¼

l1 0 � � � 0

0 l2 � � � 0

� � . .
.

�

0 0 � � � ld

2
66664

3
77775

x1

�

xd

2
64

3
75: (13)

�

The next example shows that the Koopman operator for-

malism can easily handle state spaces that are mixtures of

discrete and continuous domains.

Example 3 (Mixed state space). Let T
2 ¼ ½0; 2pÞ 
 ½0; 2pÞ

and G ¼ f0; 1; 2g. Define M ¼ T
 G and let the dynamics be

given by

Ikþ1 ¼ Ik þ
sk

2

� �
K sin hk; mod 2p

hkþ1 ¼ hk þ Ikþ1; mod 2p

skþ1 ¼ sk þ 1; mod 3

(14)

where pk ¼ ðIk; hkÞ 2 T
2; sk 2 G, and K > 0. The dynamics

are given by the standard map cycling between the unper-

turbed, shear-flow case and two perturbed cases. The

“perturbation dynamics” are driven by a group action.

Let FT
2 ¼ ff : T

2 ! Cg be the set of all functions

mapping the torus into the complex numbers. We do not

assume that the functions in FT
2 have any type of regularity

or algebraic properties; for the moment they are completely

arbitrary. Similarly, let FG ¼ fg : G! Cg be the set of all

functions from the group G into the complex numbers. One

possible choice for the space of observables F on M is the

set F ¼ fh ¼ g � f jf 2 FT
2 ; g 2 FGg. Hence observables on

M are pointwise products of functions on T
2

and G and map

the mixed state space into C. The Koopman operator can

easily be defined as

½Uh�ðpk; skÞ ¼ gðskþ1Þ � f ðpkþ1Þ:

Another possible choice for F could be the set of all the

observables that are functions of only I and h. This is a subset

of the previous choice by taking g to be a constant function.

This is a natural choice in the case that the “perturbation

dynamics” (the dynamics on G), cannot be measured. �

Example 4 (Partial differential equations). Consider the

2D heat equation on B ¼ ½� 1
2
; 1

2
� 
 ½� 1

2
; 1

2
� with periodic

boundary conditions,

@uðx; tÞ
@t

¼ c2r2uðx; tÞ: (15)

Assuming u;r2u 2 L2ðB; dxÞ; uðx; tÞ can be expanded in a

trigonometric basis,

uðx; tÞ ¼
X
j2Z2

ajðtÞei2pj�x; (16)

where j � x is the dot product of j and x. A Galerkin projec-

tion onto this basis yields
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_ajðtÞ ¼ �4p2c2jjjjj22ajðtÞ: (17)

Thus, we have the continuous-time, infinite-dimensional ana-

logue of Example 2. We could proceed with exhibiting the

Koopman semigroup or induce a discrete-time evolution

from the continuous-time flow. In the latter case, fix a time

step h> 0 and get

ajðtnþ1Þ ¼ expð�4p2c2jjjjj22hÞ ajðtnÞ; (18)

where tn :¼ nh.

The state space, M ¼ ‘2ðZ2Þ, is the space of Fourier

coefficients; if a 2 M, then a ¼ ðaj1
; aj2

;…Þ, where

ðj1; j2;…Þ is some ordering of Z2. Let Eq. (18) define the

induced discrete-time evolution map, Th : M! M. At this

point, we could exactly reduce this problem to Example 2 by

restricting our attention to a finite-dimensional subspace of M.

Let the observable space, F , be the C-valued functions on

M. A family of observables on M, parameterized by x 2 B, is

given by (16); namely, fixing x 2 B, we have for any a 2 M

fxðaÞ ¼
X
j2Z2

aje
i2pj�x: (19)

Hence, the temperature at a point x 2 B is a linear observable

on the space of Fourier coefficients.

Assume the temperature can be measured at a finite num-

ber of points ðx1; x2;…; xKÞ in B and take the finite collection

of observables ðfx1
;…; fxK

Þ defined by Eq. (19). Then the

action of the Koopman operator on this set of observables is

U

fx1
ðaÞ
�

fxK
ðaÞ

2
64

3
75 ¼X

j2Z2

lj aj

ei2pj�x1

�

ei2pj�xK

2
64

3
75; (20)

where lj ¼ expð�4p2c2jjjjj22hÞ. �

III. KOOPMAN MODE ANALYSIS

A. Eigenfunctions and Koopman modes of U

Thus far, we have avoided putting structure on the func-

tion space F . When F is a vector space, the Koopman opera-

tor is linear. It, therefore, makes sense to study its spectral

properties as this will give us insight into the dynamics of the

system, similar to the case of linear finite-dimensional sys-

tems. We make the further assumptions that F is a Banach

space under some norm, jj � jj, and that U is a bounded, and

hence continuous, operator on this space.

Let f/1;…;/ng be a set of eigenfunctions of U, where

n ¼ 1; 2;…; or 1, not necessarily forming a complete basis

set for F . In the discrete-time case, we have that

½U/i�ðpÞ ¼ ki/iðpÞ: (21)

In the continuous-time case, the k’s are eigenvalues of the

generator U of the Koopman semigroup, fUtg. The eigen-

condition is then

½Ut/i�ðpÞ ¼ ekit/iðpÞ; (22)

so that fekig are the eigenvalues for the Koopman semigroup.

We first note two simple properties of eigenfunctions: their

algebraic structure (Prop. 5) and their role in spectral equiva-

lence of the systems (Prop. 7).

Proposition 5 (Algebraic structure of eigenfunctions

under products). Assume F is a subset of all C-valued func-

tions on M that forms a vector space which is closed under

pointwise products of functions. Then, the set of eigenfunc-

tions forms an Abelian semigroup under pointwise products

of functions. In particular, if /1;/2 2 F are eigenfunctions

of U with eigenvalues k1 and k2, then /1/2 is an eigenfunc-

tion of U with eigenvalue k1k2.

Furthermore, if p 2 Rþ and / is an eigenfunction with
eigenvalue k, then /p is a eigenfunction with eigenvalue kp,

where /pðxÞ :¼ ð/ðxÞÞp. If / is an eigenfunction that vanishes
nowhere and r 2 R, then /r is an eigenfunction with eigen-
value kr. The eigenfunctions that vanish nowhere form an Abe-
lian group.

Proof. Assume U/1 ¼ k1/1 and U/2 ¼ k2/2 and put

wðxÞ ¼ /1ðxÞ/2ðxÞ. In discrete time,

½Uw�ðxÞ ¼ wðTðxÞÞ ¼ /1ðTðxÞÞ/2ðTðxÞÞ
¼ ½U/1�ðxÞ ½U/2�ðxÞ ¼ k1k2/1ðxÞ/2ðxÞ
¼ k1k2wðxÞ:

Hence, the set of eigenfunctions is closed under pointwise prod-

ucts. An analogous computation holds for continuous time.

Note that constant functions are eigenfunctions at eigen-

value 1. Hence the constant function that is equal to 1 every-

where is an eigenfunction of U and acts as the identity

element. Combining this with the above closure property and

standard properties of pointwise products of functions shows

that the set of eigenfunctions is an Abelian semigroup.

Let U/ ¼ k/ and fix p 2 Rþ. Then

½U/p�ðxÞ ¼ /pðTxÞ ¼ ð/ðTxÞÞp ¼ ðk/ðxÞÞp

¼ kp/pðxÞ:

If / vanishes nowhere, then /�1ðxÞ :¼ 1=/ðxÞ is well-defined.

Then, the above chain of identities remains valid for r 2 R

replacing p 2 Rþ. Hence, the Abelian semigroup of eigenfunc-

tions also contains all of its inverses. Therefore, the set of

eigenfunctions vanishing nowhere is an Abelian group. �

Example 6 (Analytic observables of stable/unstable sys-

tems). Let _x ¼ kx, with x; k 2 C and jkj 6¼ 1. Then UtðxÞ
¼ ektx. Let /ðxÞ ¼ x. Then

½Ut/�ðxÞ ¼ /ðUtðxÞÞ ¼ /ðektxÞ
¼ ektx ¼ ekt/ðxÞ;

which implies that / is an eigenfunction of U. By Proposi-

tion 5, any /nðxÞ :¼ ð/ðxÞÞn ¼ xn is an eigenfunction of U
with eigenvalue kn.

Let f(x) be an analytic function. Then f ðxÞ ¼
P

cnxn

¼
P

cn/nðxÞ, where cn ¼ 1
n!

dnf ð0Þ
dxn . Therefore,

½Uf �ðxÞ ¼
X

cn½U/n�ðxÞ ¼
X

kncn/nðxÞ:
�
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The second property shows the spectral equivalence

of topologically conjugate transformations.

Proposition 7 (Spectral equivalence of topologically

conjugate systems). Let S : M ! M and T : N ! N be topo-

logically conjugate; i.e., there exists a homeomorphism h :
N ! M such that S � h ¼ h � T. If / is an eigenfunction of

US with eigenvalue k, then / � h is an eigenfunction UT at

eigenvalue k.

Proof. Fix x 2 M and let y 2 N be such that x¼ h(y).

The result follows from the chain of equalities:

kð/ � hÞðyÞ ¼ k/ðxÞ ¼ ½US/�ðxÞ ¼ /½SðxÞ�
¼ /fS½hðyÞ�g ¼ /fh½TðyÞ�g
¼ ½UTð/ � hÞ�ðyÞ:

�

Example 8 (Topological conjugacy of diagonalizable sys-

tems). Let yðkÞ ¼ ðyðkÞ1 ; y
ðkÞ
2 Þ

T
, where the superscript (k) indexes

time, and let yðkþ1Þ ¼ TyðkÞ, where T is a matrix. Assume that

T has eigenvectors v1; v2 at eigenvalues k1; k2 such that vi 6¼ ej,

where ej is the canonical basis vector. If V ¼ ½v1; v2�, then after

defining new coordinates xðkÞ ¼ ðxðkÞ1 ; x
ðkÞ
2 Þ

T ¼ V�1yðkÞ, we get

x
ðkþ1Þ
1

x
ðkþ1Þ
2

" #
¼

k1 0

0 k2

" #
x
ðkÞ
1

x
ðkÞ
2

" #
¼: K

x
ðkÞ
1

x
ðkÞ
2

" #
:

The maps K and T are topologically conjugate by KV�1

¼ V�1T.

Note that /1ðxðkÞÞ ¼ x
ðkÞ
1 and /2ðxðkÞÞ ¼ x

ðkÞ
2 are eigen-

functions of UK at eigenvalues k1 and k2, respectively. By

Proposition 5 and Example 6, we have that /m;nðxðkÞÞ
:¼ ½/1ðxðkÞÞ�m½/2ðxðkÞÞ�n � ½x

ðkÞ
1 �

m½xðkÞ2 �
n

is an eigenfunction

of UK at eigenvalue km
1 kn

2. By Proposition 7, /m;n � V�1 is an

eigenfunction of UT at eigenvalue km
1 kn

2, where V�1 has taken

the place of h in Proposition 7. �

Now, assume f 2 F is an observable in the closed, lin-

ear span of a set of linearly independent eigenfunctions

f/ign
1 (recall n could be finite or infinite). Then

f ðpÞ ¼
Xn

i¼1

ciðf Þ/iðpÞ; (23)

for some constants ciðf Þ 2 C. The dynamics of f are particu-

larly simple,

½Uf �ðpÞ ¼ f ðTðpÞÞ ¼
Xn

i¼1

ciðf Þ/iðTðpÞÞ

¼
Xn

i¼1

ciðf Þ½U/i�ðpÞ

¼
Xn

i¼1

kiciðf Þ/iðpÞ;

(24)

and similarly

½Umf �ðpÞ ¼
Xn

i¼1

km
i ciðf Þ/iðpÞ: (25)

The extension to vector-valued observables F ¼ ðf1;…; fKÞT ,

where each fi is in the closed linear span of the eigenfunc-

tions, is trivial,

½UkF�ðpÞ ¼
Xn

i¼1

km
i /iðpÞ

ciðf1Þ
�

ciðfKÞ

2
64

3
75

¼
Xn

i¼1

km
i /iðpÞCiðFÞ;

(26)

where CiðFÞ :¼ ½ciðf1Þ;…ciðfKÞ�T . Motivated by Eq. (26), we

have the following definition.

Definition 9. Let /i be an eigenfunction for the Koop-

man operator corresponding to the eigenvalue ki. Given a

vector-valued observable F : M ! V, the Koopman mode,

CiðFÞ, corresponding to /i is the vector of the coefficients of

the projection of F onto spanf/ig.
Remark 10. The importance of defining Koopman

modes with respect to eigenfunctions, rather than eigenval-

ues, becomes apparent when we consider vector-valued

observables and non-simple eigenvalues. For example, let

k have a two-dimensional eigenspace Ek and let /1 and /2

be a basis for it. Let f1 ¼ c1/1 þ c2/2 and f2 ¼ c3/2 be

scalar-valued. Define F ¼ ðf1; f2ÞT . The Koopman modes

corresponding to /1 and /2 are

C1ðFÞ ¼
c1

0

� �
and C2ðFÞ ¼

c2

c3

� �
;

respectively. Note that both of these Koopman modes have

k as the associated eigenvalue. Therefore, if the Koopman

mode was defined with respect to the eigenvalue k, then it

would not be a well-defined object. However, when the

eigenspace is one-dimensional, there is no confusion in say-

ing “the Koopman mode corresponding to k.” �

Remark 11. The definition of Koopman modes can be

carried over with a slight modification to generalized eigen-

functions. When an observable can be expanded in terms of

only eigenfunctions, the Koopman modes are time-invariant

objects. However, when a generalized eigenfunction is present

in the expansion, the Koopman modes become time-

dependent objects. For example, let / be an eigenfunction and

w a generalized eigenfunction of U corresponding to k 6¼ 0,

U/ ¼ k/ and Uw ¼ /þ kw:

Let F ¼ C1ðFÞ/þ C2ðFÞw be a vector-valued observable.

Then

UkF ¼
�

C1ðFÞkk þ C2ðFÞkkk�1
�
/þ kkC2ðFÞw

¼ kk C1ðFÞ þ
k

k
C2ðFÞ

� �
/þ kkC2ðFÞw

for k 	 0. The Koopman mode for / at time k is the time-

dependent quantity C1ðFÞ þ kk�1C2ðFÞ.
However, since Koopman modes of generalized eigen-

functions have not been treated in the literature, whenever we
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refer to Koopman modes in this paper, we implicitly mean a
Koopman mode corresponding to an eigenfunction. �

To be completely explicit, the eigenfunctions are C-valued

observables on the state space M and the eigenpairs ðki;/iÞ
depend only upon the dynamics (M, T) and the function space

F , not on a particular observable. The Cið�Þ’s can be thought of

as a mapping from the observable space into a vector space V;

for example, in Eq. (26) above, Ci maps F into C
K

. The map

F7!/iCiðFÞ is then a vector-valued projection operator onto the

subspace span f/ig.
Remark 12. Given F as a Banach space of scalar func-

tions, one can ask for conditions on the geometric multiplicity

of k, i.e., dimension of the eigenspace Ek. The general answer

to this question depends on the dynamics T and on the particu-

lar space of observables F chosen. We can give an answer for

the case most studied in literature, when T preserves a mea-

sure l with F ¼ L2ðM; lÞ. In this case, all the eigenvalues of

the associated Koopman operator U are on the unit circle.

When T is an ergodic transformation (i.e., when any

measurable set S invariant under T is either of zero or

full measure), all eigenvalues of U are simple (see Petersen,

Sec. 2.4 (Ref. 40)). When T is not ergodic, the state space

can be partitioned into ergodic sets: minimal invariant sets

S such that the restriction TjS : S! S to any S is ergodic.

Since all ergodic sets S are disjoint, they support mutually

singular functions from F . As a result, the number of line-

arly independent eigenfunctions of U at any particular eigen-

value k is bounded from above by the number of ergodic sets

in the state space. The number of such ergodic sets is highly

dependent on the character of dynamics. The partition into

ergodic sets, the ergodic partition, will be discussed in more

detail in Sec. IV A.

Note that the computational method discussed later in

Sec. III B 2 assumes fixing an initial condition p0 2 M,

which effectively selects the ergodic set S � M which con-

tains the point p0. Then the Koopman operator UjS acting on

L2ðS; ljSÞ has simple eigenvalues, where ljS is the ergodic

measure on the ergodic component S.

There is an interesting relation between ergodic dynamics

and Proposition 5 when the space of observables F ¼ L2ðM; lÞ
is defined with respect to an ergodic measure l. Given an eigen-

function / 2 F with eigenvalue k, Proposition 5 guarantees

that /n is an eigenfunction with eigenvalue kn, as long as

/n 2 F . If the eigenvalue is periodic (kk ¼ k for some k 	 2),

then /k lies in the eigenspace Ek. Ergodicity guarantees the sim-

plicity of Ek, and hence there exists a non-zero c 2 C, such that

jj/k � c /jj2 ¼ 0, in L2ðM; lÞ norm. �

Example 13 (Linear systems43). We first look at the case

when the dynamics are given by a linear map, A : M ! M,

on some finite-dimensional, inner-product space M; i.e.,

xmþ1 ¼ Axm. Suppose A has a complete set of eigenvectors,

denoted by fv1;…; vng, with corresponding eigenvalues

fk1;…; kng. Let fwjgn
1 be the eigenvectors of the adjoint A�

with eigenvalues f�kjgn
1, normalized so that hvj;wki ¼ djk.

Consider the observable defined as /jðxÞ ¼ hx;wji. Then

½U/j�ðxÞ ¼ /jðAxÞ ¼ hAx;wji ¼ hx;A�wji
¼ hx; �kjwji ¼ kjhx;wji ¼ kj/jðxÞ:

(27)

We see that /j is an eigenfunction of the Koopman operator.

However, the functions f/jgn
1 do not exhaust all of the

eigenfunctions of U. For example, by Proposition 5, /jðxÞ/kðxÞ
¼ hx;wjihx;wki is an eigenfunction of U. In particular,

gðxÞ :¼ hx;wjik is an eigenfunction of U with eigenvalue kk

for any k 2N.

Let F be the vector-valued observable defined as FðxÞ ¼ x
when x 2 spanfv1;…; v‘g, where ‘ < n, and zero otherwise;

i.e., F acts as the identity on a subspace of M spanned by the

first ‘ eigenvectors and has the complement of that subspace as

its kernel. Then

FðxÞ ¼
X‘
j¼1

hx;wjivj ¼
X‘
j¼1

/jðxÞvj (28)

and

½UmF�ðxÞ ¼
X‘
j¼1

km
j /jðxÞvj: (29)

From these expressions, we see that the eigenvector, vj, of

the linear map A is the Koopman mode, CjðFÞ, correspond-

ing to /j. �

Example 14 (Rotations of the circle). Let the state space be

the interval M¼ [0, 1). Let x 2 ð0; 1Þ and define T : M! M
by

TðpÞ ¼ pþ x; mod1: (30)

Note that there is a natural identification of M with the circle

T ¼ R=2pZ and the functions on M with 2p-periodic func-

tions on R. It is well-known that if x 2 Q, then every initial

condition is periodic and if x is irrational, then the trajectory

starting from any initial condition densely fills M. Note

that the dynamics preserve the Lebesgue measure. Let

F ¼ L1
CðMÞ, be the space of Lebesgue integrable C-valued

functions on M and consider the observable /nðpÞ ¼ ei2pnp;
n 2 Z. Then

½U/n�ðpÞ ¼ /nðTðpÞÞ ¼ ei2pnðpþxÞ

¼ ei2pnx /nðpÞ:
(31)

Therefore, for any n 2 Z; /n is an eigenfunction of U with

eigenvalue kn ¼ ei2pnx. Since the trigonometric polynomials are

dense in L1ðTÞ, then for f‘ðpÞ ¼
P

n2Z f̂ ‘ðnÞei2pnp 2 L1ðTÞ,

½Uf‘�ðpÞ ¼
X
n2Z

f̂ ‘ðnÞei2pnx/nðpÞ: (32)

If F ¼ ðf1;…; fKÞT is the vector-valued observable, then

½UF�ðpÞ ¼
X
n2Z

ei2pnx/nðpÞ
f̂ 1ðnÞ

�

f̂ KðnÞ

2
64

3
75: (33)

Hence the vectors of Fourier coefficients are the Koopman

modes of the system. �

Example 15 (Partial differential equations). We continue

with the heat equation example from above (Example 4).
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Recall that a map was defined on the space of Fourier coeffi-

cients by

ðTðaÞÞj ¼ expð�4p2c2jjjjj22hÞaj: (34)

Note that the canonical coordinate projections, /jðaÞ :¼ aj ,

are eigenfunctions for the Koopman operator, with eigenval-

ues kj ¼ expð�4p2c2jjjjj22hÞ, by the computation,

½U/j�ðaÞ ¼ /jðTðaÞÞ ¼ ðTðaÞÞj
¼ expð�4p2c2jjjjj22hÞaj

¼ expð�4p2c2jjjjj22hÞ/jðaÞ:
(35)

For the observable fxðaÞ :¼
P

j2Z2 aje
i2pj�x, we get

½Umfx�ðaÞ ¼
X
j2Z2

km
j /jðaÞei2pj�x:

Suppose we can only measure the temperature at a finite

number of locations fx1;…; xkg, then for F ¼ ðfx1
;…; fxK

ÞT ,

½UmF�ðaÞ ¼
X
j2Z2

km
j /jðaÞ

ei2pj�x1

�

ei2pj�xK

2
64

3
75: (36)

In the expression above, each Koopman mode,

CjðFÞ ¼
ei2pj�x1

�

ei2pj�xK

2
64

3
75; (37)

is just a “shape” function on the physical space B ¼ ½�1=2;
1=2� 
 ½�1=2; 1=2�. This stresses the point that the eigen-

functions are defined on the state space M while the Koop-

man modes are functions in the output space. �

The development thus far has only focused on the case

when an observable is in the closed linear span of some set

of eigenfunctions of the Koopman operator. No assumption

was made on whether this set was a complete set for U or

even if U possessed a complete set of eigenfunctions. One

could ask what conditions we could impose on the system,

which are sufficient to guarantee that U has a spectral

decomposition. This is the case for measure-preserving dy-

namical systems, as we now explain.

Let A � M be the attractor of the dynamical system and

l the unique invariant measure supported on A. Often, l will

be a so-called physical measure. These types of measures ex-

hibit the important property,

1

n

Xn�1

k¼0

½Ukf �ðpÞ !
ð

M

f dl; (38)

for any continuous observable f : M ! C and for Lebesgue-

almost every p 2 M belonging to a positive Lebesgue measure

set V � M containing the attractor (see Young61 for a more

detailed discussion). Such measures are important in applications

since they guarantee the existence of well-defined time-averages

even when an experiment starts with initial conditions not on the

attractor. In such cases, we can restrict our attention to the dy-

namics and observables on the attractor and recover all the as-

ymptotic behavior of the system.

The situation on the attractor is quite nice when we con-

sider the function space F ¼ L2ðA; lÞ. The restriction of the

dynamics to the attractor, TjA : A! A, can be shown to be

invertible l-almost everywhere. The restriction of the Koop-

man operator to the attractor, UjA : L2ðA; lÞ ! L2ðA; lÞ,
can then be defined by UjAf ¼ f � TjA. In this case, the oper-

ator is unitary,22,40 implying that all of the eigenvalues lie on

the unit circle and the eigenfunctions are orthogonal.34,36,40

Since UjA is unitary, there exists a spectral resolution40

UjAf ¼
ð

S1

k dEðkÞf (39)

where E is a projection-valued Borel measure on the unit

circle; i.e., for any Borel set S in the unit circle, E(S) is a pro-

jection operator. The measure E is supported on the spectrum

of UjA. E can be decomposed into two measures, Ep and Ec,

that are supported on the point spectrum and the continuous

part of the spectrum, respectively. For any f 2 L2ðA; lÞ, the

spectral resolution becomes

UjkAf ¼
X

j

ei2pxjkPjf þ
ð1

0

ei2phk dEcðhÞf (40)

where Pj : L2ðA; lÞ ! L2ðA; lÞ is the orthogonal projection

onto the eigenspace corresponding to the eigenvalue kj ¼ ei2pxj

and Ec is the projection-valued measure corresponding to the

continuous part of the spectrum. Either term on the right-hand

side of Eq. (40) could be zero depending on whether the opera-

tor has no point spectrum or no continuous part of the spectrum.

When the eigenvalues are simple, we get for a vector-valued

observable F ¼ ðf1;…; fKÞT 2 �K
i¼1L2ðA; lÞ,

½UjkAF�ðpÞ ¼
X

j

ei2pxjk/jðpÞCjðFÞ þ
ð1

0

ei2phk dEcðhÞFðpÞ:

(41)

where /j is the eigenfunction corresponding to the eigen-

value kj ¼ ei2pxjk and we have used PjFðpÞ ¼ /jðpÞCjðFÞ
(when ki is non-simple, this identity does not necessarily

hold). Finally, we note that the constant functions on the

attractor are eigenfunctions of UjA at eigenvalue 1 and that

P0f :¼
Ð
Af dl defines a projection onto the constant func-

tions. Then, Eq. (41) becomes

½UjkAF�ðpÞ ¼
ð
A

FðpÞ dlðpÞ þ
X
fj: xj 6¼0g

ei2pxjk/jðpÞCjðFÞ

þ
ð1

0

ei2phk dEcðhÞFðpÞ (42)

(for further details on this decomposition consult Mezić34).

Therefore, for the case of measure-preserving transfor-

mations or those systems possessing a physical measure, the

asymptotic dynamics of the Koopman operator are given by
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the contributions of three components: (1) the average value

of the observable, (2) the portion admitting a Koopman mode

expansion (the part corresponding to the point spectrum), and

(3) the contribution of the continuous part of the spectrum.

The third component, dEcðhÞFðpÞ, we refer to as the Koop-

man mode distribution, or the KM distribution for short. On

the other hand, the Koopman mode expansion (the second

component in the decomposition) is fairly well-understood

with respect to its relation to the physics of a problem, the

contribution of the KM distribution does not enjoy the same

level of understanding and has received little attention, so far,

in the literature.

B. Computation of Koopman modes

In the examples that were presented thus far, it was

fairly easy to determine the eigenpairs of the Koopman oper-

ator and the corresponding Koopman modes. For a general

system, however, things will not be so easy. This section will

discuss a few methods to compute the projection of an

observable onto the eigenspaces of the Koopman operator,

from both the theoretical and numerical viewpoints.

1. Theoretical results

The first tool is given by the following theorem. It is a

special case of a result found in Yosida.60

Theorem 16. Let F be a Banach space and U : F ! F .

Assume jjUjj � 1. Let k be an eigenvalue of U such that

jkj ¼ 1. Let Û ¼ k�1U and define

AKðÛÞ ¼
1

K

XK�1

k¼0

Û
k
:

Then AK converges in the strong operator topology to the
projection operator on the subspace of Û-invariant function;
i.e., onto the eigenspace Ek corresponding to k. That is, for
all, f 2 F

lim
K!1

AKf ¼ lim
K!1

1

K

XK�1

k¼0

Û
k
f ¼ Pkf : (43)

where Pk : F ! Ek is a projection operator.
Proof. See Yosida60 or Krengel.23

Consider the case when the eigenvalues are simple and

jk1j ¼ � � � ¼ jk‘j ¼ 1 and jknj < 1 for n > ‘. Then, kj ¼ ei2pxj

for some real xj, when j � ‘. For vector-valued observables, the

projections defined by Eq. (43) take the form,

/jCjðFÞ ¼ lim
K!1

1

K

XK�1

k¼0

e�i2pxjk½UkF�; (44)

for j ¼ 1;…; ‘. Hence, Theorem 16 reduces to Fourier analy-

sis, as one might expect, for those eigenvalues on the unit

circle and the projections can be computed with any imple-

mentation of a fast Fourier transform. For further discussion,

consult Mezić and Banaszuk.36 or Mezić.34

When an observable is a linear combination of a finite col-

lection of eigenfunctions corresponding to simple eigenvalues,

we get an extension of the above theorem to eigenvalues not

having unit modulus.

Theorem 17 (Generalized Laplace analysis). Let

fk1;…; kmg be a (finite) set of simple eigenvalues for U or-

dered so that jk1j 	 � � � 	 jkmj and let /i be an eigenfunction

corresponding to ki. For each n 2 f1;…;Ng, assume fn :
M ! C and fn 2 spanf/1;…;/mg. Define the vector-valued

observable F ¼ ðf1;…; fNÞT .

Then the Koopman modes for F can be computed via

/jCjðFÞ ¼ lim
k!1

1

K

XK�1

k¼0

k�k
j

"
UkF�

Xj�1

i¼1

kk
i /iCiðFÞ

#
: (45)

Proof. Since each /i is an eigenfunction, spanf/1;…;/mg is

a U-invariant subspace, so the restriction of U to this sub-

space is a finite-dimensional linear operator and can be rep-

resented with a matrix. Any fn 2 spanf/1;…;/mg can

be written as fn ¼
Pm

j¼1 cjðfnÞ/j. Then fn �
Pj�1

i¼1

ciðfnÞ/i 2 spanf/j;…;/mg. U restricted to spanf/j;…;/mg
has eigenvalues fkj;…; kmg. Then k�1

j U restricted to

spanf/j;…;/mg has eigenvalues 1;
kjþ1

kj
;…; km

kj

n o
. The mod-

ulus of any element of this set is � 1. Taking the average, as

in Eq. (44), using the operator k�1
j U restricted to

spanf/j;…;/mg gives the projection onto k�1
j U-invariant

functions. The k�1
j U-invariant functions are just elements of

spanf/jg. Then

lim
k!1

1

K

XK�1

k¼0

½k�1
j U�k

 
fn �

Xj�1

i¼1

ciðfnÞ/i

!

is just cjðfnÞ/j. This is equivalent to (45) when F ¼ fn. The

extension a vector-valued F is obvious. �

Remark 18. Theorem 17 is a simple consequence of

Theorem 16. The case of F having elements in a generalized

eigenspace is more difficult and is treated in forthcoming

work by the authors. �

Remark 19. Analogous expressions hold for continuous

time, with Eqs. (44) and (45) replaced by

/jCjðFÞ ¼ lim
T !1

1

T

ðT
0

e�i2pxj t½UtF�dt: (46)

and

/jCjðFÞ ¼ lim
T !1

1

T

ðT
0

e�kj t

"
UtF�

Xj�1

i¼1

eki t/iCiðFÞ
#

dt; (47)

respectively. �

The first thing to note is that for Theorem 17 and its

continuous-time analogue a set of eigenvalues is needed; they

are not computed as part of the theorem. To get the projec-

tions /j CjðFÞ, the more unstable modes must be subtracted

off of the dynamics before the time-average is computed.

The most common case for which Theorems 16 and 17

(and their continuous-time analogues) are applied occurs

when we restrict our attention to a compact invariant subset
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C of the basin of attraction for some attractor A � M and

take for F the product L2ðA; lÞ 
 HðCÞ, where l is the

unique invariant measure supported on the attractor and

HðCÞ is the space of analytic functions on C. In this case, an

eigenvalue for U satisfies jkj � 1.

Example 20 (Harmonic oscillator). Consider the Harmonic

oscillator

_p1ðtÞ ¼ p2ðtÞ

_p2ðtÞ ¼ �x2p1ðtÞ

Letting pðtÞ ¼ ðp1ðtÞ; p2ðtÞÞT , the solution flow is

pðtÞ ¼ Utðpð0ÞÞ ¼ cos xt
1

x
sin xt

�x sin xt cos xt

" #
p1ð0Þ
p2ð0Þ

� �

Note that this system is divergence-free and therefore pre-

serves volume in the state space; all eigenvalues of U have

modulus 1.

Let F(p(t))¼ p(t). Equation (46) is nonzero only for

x1¼x and x2¼�x. Then for k1¼ eix and k2¼ e�ix, we get

/1ðpð0ÞÞC1ðFÞ ¼
1

2

 
p1ð0Þ
p2ð0Þ

!
� i

 
p2ð0Þ=x
�xp1ð0Þ

!" #

¼ 1

2
p1ð0Þ � i

p2ð0Þ
x

� �
1

ix

� �

and

/2ðpð0ÞÞC2ðFÞ ¼
1

2

 
p1ð0Þ
p2ð0Þ

!
þ i

 
p2ð0Þ=x
�xp1ð0Þ

!" #

¼ 1

2
p1ð0Þ þ i

p2ð0Þ
x

� �
1

�ix

� �
;

respectively. We can write

½UtF�ðpð0ÞÞ ¼ FðpðtÞÞ ¼ Utðpð0ÞÞ
¼ eixt/1ðpð0ÞÞC1ðFÞ
þ e�ixt/2ðpð0ÞÞC2ðFÞ;

or more explicitly,

p1ðtÞ
p2ðtÞ

� �
¼ eixt 1

2
p1ð0Þ � i

p2ð0Þ
x

� �
1

ix

� �

þ e�ixt 1

2
p1ð0Þ þ i

p2ð0Þ
x

� �
1

�ix

� �
:

We recognize the familiar normal mode expansion for the har-

monic oscillator. The normal modes are the Koopman modes

C1ðFÞ ¼ ½1; ix�T and C2ðFÞ ¼ ½1; �ix�T, whereas the Koop-

man eigenfunctions /1;2ðpð0ÞÞ ¼ 1
2
ðp1ð0Þ7p2ð0Þ=xÞ are the

terms of the normal mode expansion that are functions of only

the initial conditions. �

While in principle the projections onto the stable and

unstable modes can be computed directly using Theorem 17,

difficulties arise when we move past simple cases. If an

explicit representation of U is not known for the observable

F, we would need to compute the projections numerically.

For jkj 6¼ 1, this would require a numerical implementation

of a Laplace transform; these are generally unstable compu-

tations, precluding the direct numerical implementation of

Theorem 17 when F has stable or unstable Koopman modes.

Therefore, Theorem 17 is more suited as an analytical tool,

rather than a numerical one.

2. A numerical algorithm: The dynamic mode
decomposition (DMD)

Usually, we do not have access to an explicit representa-

tion of the Koopman operator. The behavior of the operator

can only be ascertained by its action on an observable and

usually at only a finite number of initial conditions. Thus, we

are led to consider data-driven algorithms for computing the

Koopman modes. By data, we mean a sequence of observa-

tions of a vector-valued observable along a trajectory fTkpg.
The following algorithms use these sequences of observations

to approximate both the eigenvalues and the Koopman modes

of U without having to numerically implement a Laplace

transform. This is accomplished by finding the best approxi-

mation of U on some finite-dimensional subspace and com-

puting eigenfunctions of the resulting finite-dimensional linear

operator. The notion of best approximation will be made clear

in what follows.

Fix a vector-valued observable F : M ! C
m

and con-

sider the cyclic subspace

K1 ¼ spanfUkFg1k¼0; (48)

that is, K1 is the space of vector-valued observables in

which finite linear combinations of elements from fUkFg1k¼0

are dense.

Fix an r <1 and consider the Krylov subspace

Kr ¼ spanfUkFgr�1
k¼0: (49)

We will assume that fUkFgr�1
k¼0 is a linearly independent set

so that these functions form a basis for Kr. Note that

UKr � Krþ1, so that, in general, Kr is not U-invariant; it is

only invariant if UrF 2 spanfUkFgr�1
k¼0.

Let Pr : Fm ! Kr be a projection from the space of

vector-valued observables onto Kr. Then

PrUjKr
: Kr ! Kr (50)

is a finite-dimensional linear operator. This operator has a

matrix representation, Ar : C
r ! C

r
, in the fUkFgr�1

k¼0-basis.

Note that this matrix is dependent upon (1) the vector-valued

observable, (2) the number of time-steps r used (the dimen-

sion of the Krylov subspace), and (3) the projection Pr used

which is specified by the type of approximation we choose to

make; in the following algorithms, this projection is the

least-square approximation for evolution from a single point

p 2 M.

If ðk; vÞ is an eigenpair for Ar, where v ¼ ðv0;…; vr�1ÞT
2 C

r
, then / ¼

Pr�1
j¼0 vj½UjF� is an eigenfunction of PrUjKr

.

By restricting our attention to a fixed observable F and a

Krylov subspace, we have reduced the problem of finding
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eigenvalues and Koopman modes of the Koopman operator

to finding eigenvalues and eigenvectors for a matrix Ar.

A standard method for computing eigenvalues of a

matrix is the Arnoldi algorithm and its variants. These are

iterative methods relying on Krylov subspaces. The basic

idea behind these algorithms is to project the matrix onto a

lower-dimensional subspace and to compute the eigenvalues

of the lower-rank matrix. If the projection has a nice repre-

sentation, then the eigenvalue problem for this lower-rank

approximation can be efficiently solved.

The standard Arnoldi algorithm2,32,46 assumes we have

a matrix A : C
m ! C

m
whose eigenvalues and eigenvectors

we want to compute. Starting from a random vector b 2 C
m

of unit norm, we form the Krylov subspace

Kr :¼ spanfb;Ab;…;Ar�1bg:

Assuming full rank, an orthonormal basis fqjgr
1 for Kr can

be found using a Gram-Schmidt procedure applied to

fAjbgr�1
j¼0 . Orthogonalization and renormalization is usually

performed at each step j. Letting Qr be the matrix formed

from the orthonormal basis, we get the relation

Hr ¼ Q�rAQr

where Hr is of upper Hessenberg form and has the interpreta-

tion of the orthogonal projection of A onto Kr. Hr can be dia-

gonalized efficiently. The eigenvalues of Hr approximate the

r eigenvalues of A of largest magnitude. Implementations of

this algorithm use various additional methods to ensure nu-

merical stability.

By applying the Arnoldi algorithm, we implicitly

assume there exists a matrix A whose evolution Akb 2 C
m

matches the evolution ½UkF�ðpÞ 2 C
m for k ¼ 0;…; r.

Unfortunately, since we do not have an explicit representa-

tion of the Koopman operator, we cannot use the standard

Arnoldi algorithm. This is due to the orthogonalization and

renormalization performed at each step, which is equivalent

to changing the observable F at each step. If qk is the vector

formed from normalizing the component of ½UkF� orthogonal

to spanf½UjF�gk�1
0 , then there is some G : M! C

m
such that

qk ¼ GðpÞ. Hence we are never looking at the action of the

Koopman operator along a single trajectory and observable,

precluding the use of the Arnoldi algorithm with data

obtained from simulation.

A variant of the Arnoldi algorithm, utilizing companion

matrices, was first described in Ruhe.44 The algorithm was

popularized in the Fluids community by Rowley et al.43 and

Schmid.47 In Schmid,47 the algorithm was dubbed the DMD,

whereas Rowley et al.43 related the algorithm to the approxi-

mation of Koopman modes.

The strength of the DMD algorithm is that it only

requires a sequence of vectors fbkgr
k¼0, where

bk :¼ UkFðpÞ 2 C
m (51)

for some fixed F : M! C
m

and fixed p 2 M. The algorithm

gives the best approximation, at the point p 2 M, of the pro-

jection /CðFÞ onto the eigenfunction / (Eq. (26)). As will

be seen, this corresponds to a specific choice of the projec-

tion operator Pr appearing in Eq. (50).

To derive the DMD algorithm, let

Kr :¼ ½b0;…; br�1�:

The columns of Kr are the C
m

-vectors resulting from the

point evaluations of the fUkFg-basis for the Krylov subspace

Kr at the point p 2 M.

In general, br will not be in the span of the columns of

Kr. In this case, br ¼
Pr�1

j¼0 cjbj þ gr, where the cj’s are cho-

sen to minimize the C
m-norm of the residual gr. This corre-

sponds to choosing the projection operator Pr appearing in

Eq. (50) so that PrU
rF is the least-squares approximation to

UrF at the point p 2 M as measured by the C
m-norm; i.e.,

jj½UrF�ðpÞ � Pr½UrF�ðpÞjjCm ¼
				br �

Xr�1

j¼0

cjbj

				
C

m

�
				br �

Xr�1

j¼0

djbj

				
C

m

for any other fd0;…; dr�1g.
Since br ¼ Krcþ gr, where c ¼ ðc0;…; cr�1ÞT , we get

UKr ¼ ½b1;…; br� ¼ ½b1;…; br�1;Krcþ gr�;

or equivalently

UKr ¼ KrAr þ gre
T (52)

where e ¼ ð0;…; 0; 1ÞT 2 C
m

and

Ar ¼

0 0 � � � 0 c0

1 0 � � � 0 c1

0 1 � � � 0 c2

� � . .
.

� �

0 0 � � � 1 cr�1

2
666664

3
777775 (53)

is the r
 r companion matrix; it is the matrix representation

of PrU in the fUkFgr�1
k¼0-basis.

Diagonalize the companion matrix,

Ar ¼ V�1KV; (54)

where K is the diagonal matrix of eigenvalues ki and the col-

umns of V�1 are eigenvectors of Ar. Inserting the expression

for Ar into Eq. (52) and multiplying on the right by V�1

gives

UKrV
�1 ¼ KrV

�1Kþ gre
TV�1: (55)

Define

E :¼ KrV
�1: (56)

Then Eq. (55) becomes

UE ¼ EKþ gre
TV�1: (57)
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For large enough m, it is hoped that jjgre
TV�1jj is small. If

that is the case, then UE  EK and the columns of E approx-

imate some eigenvectors of U and the diagonal elements of

K approximate some eigenvalues of U. Note that

jjgre
TV�1jj ¼ 0 whenever r > m, since then the columns of

Kr are linearly dependent which implies that gr ¼ 0.

Definition 21. Let K and E be defined as in Eqs. (55) and

(57), respectively. Let wi be the ith column of E and ki be the

ith diagonal element of K. Then wi is called an empirical Ritz

vector and ki is called an empirical Ritz value.

Each empirical Ritz vector approximates /iðpÞCiðFÞ,
the projection of F onto some eigenvector /i, and the empiri-

cal Ritz values approximate the corresponding eigenvalues

of U. For this reason, we will generally refer the empirical

Ritz vectors and values as the Koopman modes and eigenval-

ues computed by the DMD algorithm although this is not

strictly true and loosens the terminology.

Remark 22. The above algorithm is very much tied to

the initial condition chosen. This dependence arises since the

empirical Ritz values and vectors are formed using a Krylov

subspace that is generated by a sequence of vector-valued

observations along a finite trajectory having initial condition

p 2 M. A given initial condition may not reveal the full spec-

trum and different initial conditions can reveal different parts

of the spectrum. For example consider the dynamical

system,

pkþ1 ¼
k1pk; pk � 0

k2pk; pk > 0
;

�
(58)

where 0 < k1 < 1 < k2. Let /1ðpÞ ¼ minfp; 0g and

/2ðpÞ ¼ maxf0; pg. These are eigenfunctions of the Koop-

man operator at eigenvalues k1 and k2, respectively. Let

FðpÞ ¼ p � /1ðpÞ þ /2ðpÞ. Analytically, we can decompose

the observable into a sum of projections onto eigenspaces:

FðpÞ ¼ P1FðpÞ þ P2FðpÞ, where Pi is the projection onto /i.

Choosing an initial condition p < 0 and applying the DMD

algorithm only computes the projection onto the stable

mode; the DMD algorithm only reveals P1FðpÞ. Similarly,

choosing p > 0 only reveals the unstable mode, P2FðpÞ.
Therefore, the DMD algorithm may only reveal a subset of

the spectrum of the Koopman operator and the correspond-

ing Koopman modes.

It should also be remarked that if F 62 spanf/ig for

some eigenfunction /i, then the DMD algorithm will not

reveal that mode. This is often the case for natural choices

for a set of observables, as was the case in the linear system

example above (see Example 13, p. 21). �

The version of the DMD algorithm described tends to be

numerically ill-conditioned. The is due to Akb0 converging

to the eigenspaces corresponding to the largest magnitude

eigenvalues, resulting in the columns of Kr becoming nearly

linearly dependent. A robust version of the algorithm has

been described in Schmid.47 It amounts to first computing a

singular value decomposition (SVD) of Kr and projecting A
onto the Krylov subspace using the SVD basis (for details,

consult Schmid.47). Chen et al.8 discuss variants of the

dynamic mode decomposition, relates it to discrete Fourier

transforms, and introduce an “optimized” DMD algorithm

that computes an arbitrary number of modes from data.

C. Applications of Koopman modes

The theory of Koopman modes has led to a number appli-

cations in the literature. Broadly, the uses of Koopman modes

can be classified under two headings: model reduction and

coherency. Model reduction deals with extracting the spatial

features of just a few Koopman modes and attempting to under-

stand the physics of the system just based on those, neglecting

the details contained in other Koopman modes. The notion of

coherency, on the other hand, deals with how observables relate

dynamically with respect to a Koopman mode. Coherency is

always defined for a (not necessarily proper) subset of observ-

ables and an eigenvalue k. The subset of observables is coher-

ent for k if the dynamics are identical. This reduces to checking

if the initial magnitudes and phases of CkðFÞ are the same for

each observable in the subset. The following definition, first

appearing in Susuki and Mezić,53 makes this precise.

Definition 23 (Coherency between Koopman modes).

Consider a vector-valued observable F : M! C
m

, where

F ¼ ðf1;…; fmÞT and fj : M ! C for j ¼ 1;…;m. Let

fC1ðFÞ;…;C‘ðFÞg; ‘ <1 be a collection of Koopman

modes of interest. Note that CiðFÞ ¼ ðci;1;…; ci;mÞT 2 C
m

.

Fix �1; �2 > 0 and consider j1; j2 2 f1;…;mg. Then, fj1 and

fj2 are ð�1; �2Þ-coherent (with respect to the chosen Koop-

man modes) if

(i) jjci;j1 j � jci;j2 jj < �1 and

(ii) j/ci;j1 �/ci;j2 j < �2,

for all i ¼ 1;…; ‘. �

The choice of two epsilon values in the above definition

allows the practitioner to set the tolerances of the magnitude and

phase independently. This is useful when one can tolerate more

variation in either the modulus or the phase and still call the

modes coherent. Thus ci;j2 is coherent with ci;j1 , if the complex

number ci;j2 is contained inside some rectangle centered at ci;j2 .

The examples we present are necessarily a subset of

those that exist in the literature.

1. Power systems

Koopman mode analysis has seen application in the

analysis of power systems. In Susuki and Mezić,53,54 the

authors used Koopman mode analysis to identify coherency

in the short-term swing dynamics of multi-machine power

systems, with the New England Test System and IEEE Reli-

ability Test System-1996 being used as test cases for the

methodology.53,54 In Susuki and Mezić,56 the authors used

Koopman mode analysis to identify precursors to the so-

called coherent swing instability of power systems where a

group of generators synchronously loses coherency with the

rest of the system after a local disturbance. We will focus

only upon the identification of coherency, as pursued in Sus-

uki and Mezić,53,54 since it underlies the work in Susuki and

Mezić56 as well.

The New England system is a 39-bus system having 10

synchronous generators, while the IEEE systems has 73

buses and 99 synchronous generators.53,54 As the analysis of
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the two systems is the same, we focus on the simpler New

England system.

The swing dynamics of the New England system were

given by the following systems of differential equations:53,54

ddi

dt
¼ xi

Hi

p fb

dxi

dt
¼ �Dixi þ Pmi � GiiE

2
i

�
X10

j ¼ 1

j 6¼ i

EiEjCij;

(59)

where Cij is the coupling term

Cij ¼ Gijcosðdi � djÞ þ Bijsinðdi � djÞ:

In this model, i ¼ 2;…10 indexed the generators, di was the

angular position of the rotor of generator i relative to bus 1,

and xi was the rotor speed of generator i relative to that of

bus 1; Di was the damping coefficient of generator i, Ei was

the voltage of the generator, and Pmi the mechanical input

power; Gii was the internal conductance of generator i, while

Gij þ
ffiffiffiffiffiffiffi
�1
p

Bij was the transfer impedance between generators

i and j; Hi was a per unit time inertia constant and fb a fre-

quency.53,54 The variables Hi; Ei; Di; fb, and power loads

were specified during simulations.53,54 The variables Gii; Gij,

and Bij were computed using power flow computations (see

Susuki and Mezić,53,54 and the references therein, for full nu-

merical details). The state space for each generator

(i ¼ 2;…; 10) was the cylinder C ¼ ½�p; p� 
R and the full

state space M for this system was M ¼ C 
 � � � 
 C ¼ C9.

Each generator exhibited a stable equilibrium at ðd�i ;x�i ¼ 0Þ,
for some d�i , computed using a power flow computation.

Let an observable fi : M! R be given by fiðd;xÞ ¼ xi,

where d ¼ ðd2;…; d10Þ and x ¼ ðx2;…;x10Þ. The vector-

valued observable chosen for Koopman mode analysis was

F ¼ ðf2;…; f10ÞT, so that

Fðd;xÞ ¼
x2

�

x10

2
64

3
75:

This was a physically relevant observable since in practice

one measures the rotor speeds for each generation plant.53,54

The system was evolved for a short time period with a

disturbance from the equilibrium state localized at rotor 8.

Study of the resulting trajectories showed that generators 2,

3, 6, and 7 were a coherent group;53,54 the four generators

exhibited responses in angular frequencies xi having the

same amplitude and phase.

The DMD algorithm was applied to the same simulation

data. The Koopman modes of interest were those that had the

largest norms and corresponding growth rates jkjj. Figure 1

shows a plot of the magnitude and phase of each component

of the three Koopman modes with the largest growth rates and

magnitudes. These were labeled as modes 7, 8, and 9 and cor-

responded to frequencies of 1.3078, 1.0962, and 0.3727 Hz,

respectively. For each mode j¼ 7, 8, 9, there were amplitudes

Aji and phases aji for the generators i ¼ 2;…; 10. In the fig-

ure, the amplitudes and phases for modes 7, 8, 9 are plotted in

plotted with symbols �; 
, and �, respectively. Number labels

within the plots specify the generator. It is seen that generators

2, 3, 6, 7, and 9 are coherent with respect to mode 8, while all

but generator 9 are coherent with respect to mode 9. There-

fore, generators 2, 3, 6, 7, and 9 were coherent with respect to

both modes 8 and 9, as one found with visual inspection of

the trajectories. While not done in this paper, the amplitudes

and phases represented in this way allow using a number of

clustering algorithms to automatically identify coherency.

2. Jet in crossflow

One of the earliest applications of Koopman modes was

to the study of nonlinear fluid flows. Rowley et al.43 intro-

duced the concepts to the fluids community and demonstrated

the methodology by computing a subset of the Koopman

modes, using the DMD algorithm, for a jet in a crossflow. The

jet in a crossflow configuration is a common way of mixing

the jet fluid with a uniform crossflow. The crossflow moves

parallel to a flat plate and the jet is injected through an orifice

in the plate. It is known that such a system can exhibit self-

sustained oscillations,43 and Koopman modes were used to

automatically identify the relevant frequencies and corre-

sponding three-dimensional flow structures.

The flow field was studied in a ðLx;Ly;LzÞ¼ ð75;20;30Þd�0
computational box, where d�0 was the displacement thickness

at the crossflow inlet. The incompressible Navier-Stokes equa-

tions over a flat plate were solved using a Fourier-Chebyshev

spectral method with a grid resolution of 256
201
144 (see

the reference for all the simulation details). Therefore, each

point in the state space M is a sequence of Fourier-Chebyshev

coefficients. The vector-valued observable, F : M!Rm, was

chosen as the velocity measurements of the flow field at the

FIG. 1. Power Systems—Amplitudes and phases for the components of the

three Koopman modes having largest growth rates and norms. Koopman

modes and eigenvalues were computed using the DMD algorithm. The larg-

est modes are labeled as modes 7, 8, and 9. The amplitudes and phases of

the components of mode 9 are plotted with the symbol �. The numbers in

the plot correspond to component of the mode. Modes 7 and 8 are plotted

similarly, expect with symbols � and
 , respectively. Generators 2, 3, 6, 7,

and 9 are coherent with respect to mode 8. All generators, except generator

8, are coherent with respect to mode 9.
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grid points. Hence, m¼ 3ð256
 201
 144Þ  2:2
 107

(three velocity components at each grid point). The situation

is similar to the heat equation example above (Example 4,

p. 14) where the state space was a space of Fourier coeffi-

cients and the observable was a heat distribution on a square.

Remark 24. The choice of state space M and a basis for

the observables are not unique. For a fluid experiment on some

physical domain B, we assume that the solutions exists in

some function space. Usually this is the space of finite energy

flows so that a velocity profile u(x) exists in L2ðB; dxÞ.
Depending on the boundary conditions, many different bases

for L2ðB; dxÞ exist. The particular basis chosen depends on

the computational method used to solve the Navier-Stokes

equations. As discussed, this method was a Fourier-Chebyshev

spectral method; the resulting basis for L2ðB; dxÞ consisted of

trigonometric and Chebyshev polynomials. The state space M
was the sequence space of Fourier-Chebyshev coefficients cor-

responding to L2ðB; dxÞ functions. However, if periodic

boundary conditions for the fluid flow are assumed, the trigo-

nometric polynomials could be used to represent L2ðB; dxÞ
and M would be the space of Fourier coefficients. Therefore,

the choice of solution method for the Navier-Stokes equations

determines the basis functions and implicitly defines the state

space M that represents the system. �

An initial velocity profile and boundary conditions were

specified for simulations and this configuration corresponded

to a fixed p 2 M. Letting bk :¼ ½UkF�ðpÞ, the DMD algo-

rithm was performed on the sequence of observables

fb200; b202;…; b700g. The reason for the delay in the start

time of the sequence was to neglect the transient terms.

The top row of Figure 2 shows the time signals of the

streamwise velocity recorded by a sensor probe close to the

wall, just downstream from the jet orifice and a probe located

downstream and on the jet shear layer. In the bottom row,

the spectral content of the time signals are shown in black,

whereas the spectral peaks identified by the DMD algorithm

are shown in red. Note that for the probe near the wall (left

column of Figure 2) the signal contains only low-frequency

components, whereas the signal near the jet contains both

low- and high-frequencies. The probes are local measure-

ments and only pick up a subset of the full spectrum for the

fluid flow. The Koopman modes are global objects and, as

shown in the figure, the DMD algorithm identifies both the

low- and high- frequency components of the flow field.

Figure 3 shows the spectrum of the Koopman operator

as computed by the DMD algorithm. Most eigenvalues lie on

the unit circle implying that the flow field is near an attractor.

The time-averaged flow (steady-state component) corre-

sponds to k ¼ 1 and is indicated in blue in the left image of

Figure 3. The rest of the eigenvalues have colors smoothly

varying from red to white with the colors corresponding to

the magnitude of the associated global mode. Red corre-

sponds to large magnitudes for the Koopman modes, white

to low magnitude. The magnitudes are given by the total

energy of the mode (2-norm). The right image of Figure 3

shows the magnitudes of the Koopman modes at each fre-

quency. The color scheme is the same as for the left image.

If we order the Koopman modes in order of decreasing

magnitude, mode 1 corresponds to the time-average flow and

the rest come in complex-conjugate pairs; modes 2 and 3

correspond to complex-conjugate eigenvalues and have the

same magnitude. Figure 4, shows the streamwise velocity

components of mode 2 (left) and mode 6 (right). Each mode

oscillates at a single frequency, with mode 2 corresponding

to a high-frequency (St¼ 0.141) and mode 6 to a low-

frequency (St¼ 0.0175); T is the Strouhal number. These

correspond to the tallest red line and the left most red line in

the bottom row of Figure 2, respectively. In both images of

Figure 4, the red surfaces correspond to positive streamwise

velocities and blue surfaces to negative streamwise veloc-

ities. Mode 2 is associated with shear layer vortices with

additional vortices extending toward the wall. Mode 6 has

FIG. 2. Jet in Crossflow—The top row is the time signal of the streamwise velocity for a probe near the wall, downstream of the jet orifice (left) and for a probe

downstream, in the jet trajectory (right). In the bottom row, the spectral content of the corresponding probe signals are shown in black. In red, the part of the

spectrum of the Koopman operator captured by DMD algorithm. Only the positive frequencies are shown since eigenvalues occur in complex-conjugate pairs.

Reprinted with permission from Rowley et al., J. Fluid Mech. 641, 115–127 (2009). Copyright 2009 Cambridge University Press.
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large structures along the wall associated with shedding of

the wall vortices. This shedding of wall vortices is coupled

to the main jet body as indicated by the mode having struc-

ture along the jet body.

3. Self-sustained oscillations in a turbulent cavity

Seena and Sung49 investigated the causes of self-

sustained pressure oscillations in fluid flow over a cavity (see

Figure 6 for a profile of the experiment geometry) by using

the dynamic mode decomposition algorithm. We denote this

domain by B. The goals of the study were to identify the vor-

tical structures that drove the hydrodynamic oscillations and

obtain dynamical information about those structures.49 Both

thin and thick incoming boundary layers were studied (Reyn-

old’s numbers at the cavity of 12 000 and 3000, respec-

tively); only the turbulent case (Re¼ 12 000) is covered

here.

As with the case of the jet in a crossflow example, the

fluid evolution was governed by the incompressible Navier-

Stokes equations corresponding to the specified cavity geom-

etry (see Seena and Sung49 for details on the computational

domain). Abstractly, the state space M was a sequence space

of coefficients for basis functions on B. Since the system

was not periodic in all dimensions, the basis functions were

not the 3-dimensional trigonometric polynomials (see

Remark 24). A family of observables, parameterized by

points in B, was given by functions mapping a point in M (a

sequence of coefficients) to the fluid pressure at a point

x 2 B.

The solutions of the Navier-Stokes equations were com-

puted using the Crank-Nicolson method using a second-

order central difference scheme in space.49 Cavity flows at

the high Reynold’s number were simulated with a large

Eddy simulation (LES).49 Broadly speaking, LES filters the

governing equations by removing the small-scale structures

and replacing them with models. Refer Seena and Sung49 for

FIG. 3. Jet in Crossflow—(left) The spec-

trum of Koopman operator as identified

with the DMD algorithm. Most of the

Koopman eigenvalues are on the unit

circle. The mode corresponding to the

time-averaged flow (corresponding to

k¼ 1) is indicated in blue. The other

eigenvalues are colored from red to white

based on the total energy of the associated

Koopman mode. Red corresponds to

high-energy modes, white to low-energy

modes. (right) The magnitudes of the

Koopman modes at the each frequency.

The color scheme is the same as for the

image on the left. Reprinted with permis-

sion from Rowley et al., J. Fluid Mech.

641, 115–127 (2009). Copyright 2009

Cambridge University Press.

FIG. 4. Jet in CrossflowKoopman modes 2 (left) and 6 (right) corresponding

to high- (St2¼ 0.141) and low- (St6¼ 0.0175) frequencies, respectively. T is

the Strouhal number. Red contours correspond to positive streamwise veloc-

ities and blue contours to negative streamwise velocities. Reprinted with

permission from Rowley et al., J. Fluid Mech. 641, 115–127 (2009). Copy-

right 2009 Cambridge University Press.

FIG. 5. Turbulent cavity flow—(left)

Koopman eigenvalues computed using the

DMD algorithm for turbulent flow inside

the cavity at Re¼ 12 000. The eigenvalues

are colored based on the energy of the cor-

responding Koopman mode. (right) The

energy of the Koopman mode at each fre-

quency, x (rad/s). Reproduced by permis-

sion from A. Seena, Int. J. Heat Fluid

Flow 32(6), 13 (2011). Copyright 2011 by

Institution of Mechanical Engineers.
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full details of the simulation parameters and Germano

et al.19 for a discussion of LES.

The vector-valued observable chosen for analysis was

the fluid pressure at each of the computational grid points in

and above the cavity. The DMD algorithm was applied to a

sequence of 124 flow snapshots recorded after allowing tran-

sients to decay.49 Figure 5 shows the Koopman eigenvalues

resulting from the DMD algorithm. On the left, almost all of

the eigenvalues are seen to be on the unit circle, implying

that the flow field is on or near an attractor. Colors in the plot

correspond to the total energy of the corresponding Koop-

man mode. On the right, the total energies of the Koopman

modes at each frequency are shown. The four dominant

peaks are labeled. Only positive frequencies are marked

since eigenvalues occur in complex-conjugate pairs. The

mode labeled as 1 occurs at x ¼ 0 and corresponds to the

steady component of the flow. The corresponding Koopman

mode is shown in Figure 6(a). Solid, black lines correspond

to high-pressure regions, whereas broken, gray lines corre-

spond to low-pressure regions. Koopman modes 2, 3, and 4,

corresponding to the labeled peaks in Figure 5(b), are

shown in Figures 6(b)–6(d). Modes 2 and 3 correspond to

x ¼ 4:6 rad=s and 3.5 rad/s, respectively. The exact fre-

quency corresponding to mode 4 was not reported, but was

less than 10 rad/s. The low- and high-pressure regions of

the modes oscillate at a fixed frequency and suggest self-

sustained oscillations in the cavity.49 These results were

consistent with results reported in literature.49 The study suc-

cessively used the DMD algorithm to identify the large vorti-

ces in the cavity driving the self-sustained oscillations.

Remark 25. Figures 3 and 5 show that the Koopman spec-

trum, as computed by the DMD algorithm, has some eigenval-

ues inside the unit circle, even though an initial block of data

points was discarded before computation so that transients

could die out. They are most likely spurious eigenvalues

resulting from the finite truncation of the data and the DMD

algorithm and not due to slowly decaying modes contained in

the data. Unfortunately, no detailed investigation has been

done on such eigenvalues; most attention has been focused on

the modes corresponding to eigenvalues on the unit circle and

those inside the unit circle have been ignored. �

4. Energy efficiency in buildings

Energy use and efficiency in buildings has received

much attention in recent years and Koopman mode analysis

has recently seen application in this field, as well. A

researcher is generally interested in temperature distributions

in buildings, as this can tell much about heating, ventilation

and air conditioning (HVAC) and controller performance or

if the building is operating near its design point.16,18 Such

measurements can also be used for model validation.16,18

Analysis requires understanding of the heat flow in the

building subject to forcing from weather or even human traf-

fic between areas of the building. In the most general case,

heat transfer equations must be solved for a complicated do-

main with varying boundary conditions. The interesting

observables are the temperatures at each point in the build-

ing, B. The temperature distributions in the building are

assumed to exist in some function space (L2ðB; dxÞ, for

example). A temperature distribution can be represented in a

basis fb1; b2;…g for the function space. The state space M
is the sequence space of coefficients for these basis func-

tions; i.e., a point p 2 M is p ¼ ðc1; c2;…Þ, for some coeffi-

cients ck 2 C. An observable maps a point in M to the

temperature at a point x 2 B. When collecting real data, the

temperature is measured at a finite number of points, usually

dictated by the placement of the temperature sensors by the

building designers. The vector-valued observable of interest

is the vector of the temperatures recorded by the building

sensors.

In the most general case, the full model for the building

is too complicated to solve. A variety of simplifying assump-

tions and a numerical package is needed to compute solu-

tions to the building system. EnergyPlus11 is a simulation

package for modeling energy and water use in buildings. It is

a free program offered by the U.S. Department of Energy

and is widely used.38 At a high level, an EnergyPlus building

model consists of specifying the location of every surface in

the building. A list of rooms is then created and the interac-

tion of the rooms (between shared surfaces) is specified. For

example, heat conduction through a certain type of material

may be specified for one wall, whereas radiative heat transfer

is important for windows. Models can also include weather

data, HVAC usage, room occupancy, and building water

usage. The software makes the assumption that rooms are

well-mixed so that no temperature gradients exist in the

room. Under the assumptions of the software, heat transfer in

the building is approximated by a system of coupled ordinary

differential equations.

In Eisenhower et al.,16 Koopman mode analysis was

used to decompose the temperature evolution in a building

into purely periodic global modes. The building investigated

was the Y2E2 building at Stanford University and was mod-

eled and simulated in the EnergyPlus software package. The

physical building has 2370 HVAC sensors recording data

throughout the building.16 The vector-valued observable

chosen was the vector consisting of temperature readings

taken at the sensors on the second floor.16 Koopman mode

analysis was used to validate the EnergyPlus model by com-

paring the most energetic Koopman modes for the simulation

and the raw data.

Figure 7 shows the spectral content of the Koopman

modes computed using the DMD algorithm with the sensor

data on top and the EnergyPlus data on the bottom. The

FIG. 6. DMD modes inside the cavity at Re¼ 12 000 for modes labeled 1, 2,

3, and 4 in Figure 5. Reproduced by permission from A. Seena, Int. J. Heat

Fluid Flow 32(6), 13 (2011). Copyright 2011 by Institution of Mechanical

Engineers.
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sensors are along the vertical axis with the period of the

Koopman mode along the horizontal axis. A vertical streak

in Figure 7 corresponds to a “global” mode; i.e., most sen-

sors are affected by the Koopman mode at that frequency. In

both images, a strong streak is seen at the 24 h period which

is due to the daily forcing from the weather. Horizontal blue

lines indicate near constant temperatures at those sensors and

correspond to rooms served by their own fan units.16

Figure 8 shows the 24 h Koopman mode for both the

sensor data and the EnergyPlus model. The top row corre-

sponds to the sensor data, the bottom row to the simulation.

The magnitude of the mode is shown on the left with the

phase on the right. Note that the magnitude and phase of the

Koopman mode is reported in reference to the outside air

temperature (OAT). The relative magnitude of a mode is

given in decibels (dB)

jKMij ¼ 20 log10

���� CiðFÞ
COATðFÞ

����;

and the phase is given in degrees

/KMi ¼ /CiðFÞ �/COATðFÞ;

where CiðFÞ and COATðFÞ are the Koopman modes as com-

puted by the DMD algorithm. For the sensor data, the magni-

tude of the 24 h mode relative to the external temperature

was about �6 dB throughout the building. This implied that

the peak temperature oscillation inside the building was

smaller than the magnitude of the temperature fluctuations

outside. For the EnergyPlus mode, the temperature magni-

tude inside was much closer to the external fluctuations since

the relative magnitude of the mode was about 0 dB. Signifi-

cant deviations in the relative phases were also seen between

the sensor data and the model. These discrepancies implied

that the parameters used in the simulation model were incor-

rect. The analysis lead to suggestions on the model parame-

ters to modify.16

In practice, even under the simplifying assumptions uti-

lized in programs such as EnergyPlus, a detailed model of

the building can be prohibitively expensive to simulate over

the time scales needed (e.g., hours up to years). Methods for

model reduction are in order. Zoning approximations are one

approach. In a detailed EnergyPlus model, each room is

treated as a unique thermal zone. Each room is assumed

well-mixed so that the thermal properties are uniform in the

room. The idea of zoning is to lump adjacent rooms together

in such a way that the thermal properties can then be

assumed uniform across those rooms. This procedure results

in less regions that need to be simulated in the model. Usu-

ally, zoning approximations are performed heuristically.18

However, model accuracy is quite sensitive to the zoning

approximation used.18

Georgescu et al.18 used the notion of coherency between

Koopman modes (Definition 23 above) to create zoning

approximations for buildings and studied the Engineering

Sciences Building (ESB) at the University of California,

Santa Barbara as a test case for the methodology. The

particular observable chosen was F ¼ ðf1;…; fmÞT, where each

fj : M ! R; j ¼ 1;…;m, represented the temperature of a

room in the ESB. In the detailed EnergyPlus model, there were

m¼ 191 zones. An additional physical assumption was

imposed so that rooms were grouped into a zone if they were

both on the same floor and adjacent as well as �-coherent.

The modes of interest were those having periods of one

year, 24 h, 12 h, 8 h, and 6 h. These corresponded to the most

energetic modes. Figure 9 shows the Koopman modes of the

ESB EnergyPlus simulation for the three most energetic

modes. The magnitudes of the Koopman modes are given in

the top row. Units are degrees Celsius relative to the average

temperature in the room. The average temperatures were not

reported. The bottom row corresponds to the phase in radians

of the Koopman mode. Consider the block of four rooms in

the center of the right hand side of the building (the ones that

are dark blue in the magnitude plot of the year long mode).

By visual inspection, the middle two rooms on this block

would be lumped into a single zone. While the colors of

those two rooms vary between each of the six images in Fig-

ure 9, within the same image those two rooms have the same

FIG. 7. Y2E2 building decomposition—Koopman spectra for the sensor

data (top) and the EnergyPlus model (bottom). A large spectral content is

seen at the 24 h period due to outdoor forcing conditions. Horizontal blue

lines correspond to near constant temperatures at those sensors. These sen-

sors correspond to rooms that are served by their own fan units allowing a

tight control of temperature. Reproduced by permission from Eisenhower

et al., “Decomposing building system data for model validation and analysis

using the koopman operator,” in SimBuild 2010—Fourth National Confer-

ence of IBPSA, USA, August 2010.
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color, and hence almost identical values. These two rooms

satisfy the �-coherency definition for some small � > 0.

IV. ANALYSIS OF STATE SPACES USING
EIGENQUOTIENTS

Sections I–III discussed the Koopman eigenfunctions in

the context of spectral decomposition of the Koopman operator,

and we did not pay much attention to values that eigenfunctions

take on the state space. In this section, we demonstrate that

eigenfunctions carry information about transport between parts

of the state space and provide a way to identify invariant sets.

Going further, we will endow the collections of invariant sets

with their own metric topology, which allows for associating

smaller invariant sets into larger coherent structures.

The material in this section appeared originally in a

string of papers6,7,26,36,37,52 with the technical details given

also in dissertations of two of the authors.5,33

A. State-space analysis of Koopman eigenfunctions

The level sets of Koopman eigenfunctions at eigenval-

ues jkj ¼ 1 form invariant sets, and periodic and wandering

chains of sets in the state space. The eigenfunction level-set

partitions depend not only on the choice of the eigenspace

Ek from which eigenfunctions are taken, but also on the

choice of a particular function in the eigenspace. However,

an exhaustive procedure for analysis of level-set partitions

can be devised, based on partition products, such that the

result in the limit does not depend on the particular choice of

eigenfunctions studied, but rather only on the eigenvalue k,

which determines the dynamics of level sets, e.g., periodic or

invariant. In this section, we first focus on the ergodic parti-

tion, which corresponds to analysis of the invariant eigen-

space of the Koopman operator, i.e., k¼ 1. The

generalization to “periodic” eigenspaces, i.e., those corre-

sponding to k ¼ ei2px for x 2 Q, is straightforward, and we

present it at the end of this section.

From this point onward, we will assume the measurable

setup of the Koopman operator: T : M ! M will be a meas-

urable map between measure spaces ðM;BÞ, with at least

one invariant measure l. The observables F are, at the very

least, a subset of complex-valued measurable functions.

Given an invariant function /, i.e., a function in invariant

eigenspace of the Koopman operator / 2 E1ðUÞ, we can

form its level set partition fð/Þ :¼ fSz : 8z 2 Cg, where the

level sets are Sz :¼ fx 2 M : /ðxÞ ¼ zg. Since / is a

FIG. 8. Y2E2 building decomposition—Koopman mode for the 24 h period. (top row) The magnitude and phase, respectively, of the raw data’s Koopman

mode. (bottom row) The magnitude and phase of the EnergyPlus model’s Koopman mode. The magnitude units are given in decibels and phase in degrees.

Both are relative to the external 24 h mode. The discrepancy between scales shows the model mismatch with the real data. Reproduced from Eisenhower et al.,
“Decomposing building system data for model validation and analysis using the koopman operator,” in SimBuild 2010—Fourth National Conference of

IBPSA, USA, August 2010.
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measurable function, its level sets Sz are measurable sets.

Additionally, they are invariant sets, by virtue that each Sz

collects all state-space points on which / takes the value z,

i.e., if it contains x, it will also contain TðxÞ; T2ðxÞ;…, since

/ is constant along trajectories. A partition of the state space

into invariant sets is called a stationary partition.

Unless the system is ergodic, the choice of / 2 E1 is not

unique (see Remark 12): often there will be at least two func-

tions /;w 2 E1, which are not linearly related and yield two

different partitions fð/Þ; fðwÞ. The product of two partitions
fð/Þ�fðwÞ, which contains intersections of sets in each of

the partitions (see Fig. 10), is again a stationary partition.

The product is finer than either of the original partitions, as

sets in fð/Þ or fðwÞ can be recovered as unions of sets in

fð/Þ�fðwÞ. Naturally, given a finite set of functions

/k; i ¼ 1;…;K, the product
WK

k¼1 fð/kÞ of the associated

partitions can be formed incrementally.

Given a partition f of the space and some set A, the quo-
tient map pf : M ! A is any map that separates the partition

f : pfðxÞ ¼ pfðyÞ iff 9S 2 f such that x; y 2 S. In other

words, all the points in any S 2 f will be mapped to a single

point p 2 A. The image set n :¼ pðMÞ is termed the quotient
n of the partition f. If we are given just the map pf, we could

reconstruct the partition f from level sets of pf, in terms of

values of the quotient map codomain A.

For a product partition fK ¼
WK

k¼1 fð/kÞ, the most

straightforward way to construct a quotient map is by arranging

FIG. 9. Zoning approximations of buildings—Koopman mode magnitude and phase for the modes having the largest magnitudes. Only one floor of the ESB is

shown. (Top) The magnitudes of the Koopman modes. Units are in degrees Celsius relative to the mean temperature of the room. (Bottom) The phase of the

Koopman mode in radians. Reproduced from Georgescu et al., “Creating zoning approximations to building energy models using the Koopman operator,” in

SimBuild 2012—Fifth National Conference of IBPSA, USA, August 2012.

FIG. 10. Partitions of the state space M into f(/), f(w) and their product

fð/Þ�fðwÞ.
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eigenfunctions in a vector-valued function to define pK : M
! C

K; pKðxÞ :¼ ð/1ðxÞ;/2ðxÞ;…;/KðxÞÞ. Notice, however,

that the quotient map is not unique: any bijection h : C
K ! A,

e.g., a coordinate transform, can be used to form another quo-

tient map through composition h � pK . While the construction

of pK might appear academic, it is significant in that it trans-

lates the problem of constructing partition fK from the topologi-

cal setting, where intersections of sets were used to check

whether two points x, y are in the same product set, to an ana-

lytical setting, where the equality pKðxÞ ¼ pKðyÞ can be

checked, either numerically or analytically. We will make use

of this fact heavily in Sec. IV B.

Evaluation of eigenfunctions /k, which feature in con-

struction of quotient maps, is easy when we are given a

method for evaluating the projection of the space of observ-

ables onto an eigenspace Pk : F ! Ek. In this case, we can

compute a dense set of eigenfunctions in Ek by evaluating

Pkf for a dense set fk 2 F . Moreover, when F is a Hilbert

space, we can compute the projection on an orthogonal basis

for F , obtaining a (not necessarily orthogonal) basis for Ek.

A practical way to numerically evaluate Pk for jkj ¼ 1 using

trajectory averages is explained in Sec. IV C.

For k ¼ 1, projecting functions fk using P1 results in an

infinity of invariant functions that we can attempt to use in

forming incremental level-set partitions. It is not trivial that

the partition intersection can be extended to the case of an in-

finity of U-invariant functions /k. The first result of this sort

was obtained by Sine51 for continuous observables

F ¼ CðMÞ. Such setting is fairly restrictive for deterministic

dynamics. Therefore, we focus on a more general result36,37

that holds for F ¼ L1ðM; lÞ. Assume we are given a count-

able, bounded family /k 2 E1 � L1ðM; lÞ, for k ¼ 1; 2;…,

whose span is dense in the invariant eigenspace E1 of the

Koopman operator U. The incremental partition into level sets

fe ¼
_1
k¼1

fð/kÞ

exists as the level set partition of the map pe : M ! ‘1,

defined as pe :¼ ð/1;/2;…Þ, where ‘1 is the space of

bounded sequences. The map pe is termed the ergodic quo-
tient map, with ergodic quotient ne :¼ peðfÞ as its image set.

While the concept of the ergodic partition was known

since at least Rokhlin,41,42 this computationally feasible con-

struction is fairly recent.36,37 The justification for the name

of the ergodic partition comes from analyzing restrictions of

T to invariant sets S 2 fe. Each S carries a measure lS such

that the restricted dynamics T : S! S is ergodic with
respect to lS. By one of the several equivalent definitions of

ergodicity,40 this means that for any f 2 L1ðS; lSÞ

ð
S

flS ¼ lim
N!1

1

N

XN�1

n¼0

f � TnðxÞ; (60)

at almost every x 2 S, with respect to lS. The measures lS

are called ergodic measures and are extreme points of the

space of invariant measures (by the Ergodic Decomposition

Theorem).21 Moreover, integrals against ergodic measures

define the projection onto the invariant eigenspace P1f ðxÞ
¼
Ð

SðxÞ f dlSðxÞ, where S(x) denotes the ergodic set containing

point x. This is a consequence of the equality (Eq. (60)) along

with Mean Ergodic Theorems,5 e.g., von Neumann theorem for

F ¼ L2ðM; lÞ or Yosida ergodic theorem for general Banach

spaces, used in earlier sections as Theorem 16.

The ergodic partition is unique up to l-measure zero

sets, i.e., given two stationary partitions f1 and f2 that satisfy

the above properties, for any S1 2 f1 there exists S2 2 f2,

such that lðS1�S2Þ ¼ 0. Consequently, the partition fe does

not depend on the choice of functions /k used to construct it:

different choices of functions just yield different representa-
tions of the quotient map pe; however, the limit partition will

be the same.

When there is only one T-invariant measure l, up to

multiplication by a scalar, the system is uniquely ergodic. In

that case, the eigenspace E1 is one-dimensional, containing

only a.e. constant functions. In turn, the ergodic partition

contains a single set, and the ergodic quotient map maps

almost all points (with respect to l), into a single point in the

sequence space ‘1. While uniquely ergodic systems might

be of interest in general, they are not the target of this

approach. The ergodic quotient analysis is intended to help

the analysis of state spaces which contain a lot of ergodic

measures, e.g., systems with families of periodic or quasi-

periodic orbits and systems possessing interspersed regions

of regular and irregular dynamics.

For most conservative regular systems, ergodic parti-

tions are similar to partitions of the state space into orbits.

However, in zones of irregular dynamics, e.g., on strange

attractors and in zones of strong mixing, it is difficult to gain

intuition about behavior of the systems simply from orbits.

Orbits are inherently zero-dimensional (for maps) or one-

dimensional sets (for flows), but in chaotic regimes, every

one of them densely fills a bigger set, possibly even a set of a

positive invariant measure, e.g., positive volume. Moreover,

in a mixing zone any two trajectories look nothing alike, yet

they are contained in the same set and have the same statisti-

cal behavior. Through such reasoning, we might be inter-

ested not in description of trajectories themselves, but rather

in description of minimal invariant sets containing individual

trajectories. Precisely, the ergodic partition f is a measurable
hull of the decomposition of the space into orbits TnðxÞ, i.e.,

a partition of the space into minimal measurable invariant

sets that contain orbits.42 In this sense, f is the appropriate

counterpart of the state space portrait in the context of meas-

urable dynamical systems.

The understanding of the ergodic partition, derived from

functions in the invariant eigenspace E1, can be extended to

eigenspaces Ek for which jkj ¼ 1. When the eigenfunctions

are taken from a “periodic” eigenspace Ek, for an eigenvalue

with property kb ¼ 1, for some b 2N (period), the extension

is straightforward. Level sets of / 2 Ek are then periodic

sets, which are arranged in b-periodic chains, fSa; TðSaÞ;
T2ðSaÞ;…; Tb�1ðSaÞg. Similarly, if k ¼ ei2px is such that

x/Q, the chains of level sets extend into infinity, forming

wandering chains. The partition fð/Þ is again an invariant

partition, in the sense that for each S 2 fð/Þ; TðSÞ 2 fð/Þ.
However, fð/Þ is not stationary, as S are not invariant sets; it
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is an invariant b-periodic partition or, when x/Q, an invari-

ant wandering partition. The partition products also general-

ize: if /;w 2 Ek; fð/Þ�fðwÞ will also be a b-periodic/

wandering invariant partition.

The invariant measures can be generalized to the con-

cept of complex eigenmeasures,36 which satisfy

lðT�1SÞ ¼ k�1lðSÞ:

Integrating against extrema of eigenmeasures enables us to

evaluate Pk away from k ¼ 1, and construct eigenquotient
maps pkðxÞ ¼ ð…;Pkfk;…Þ, analogously to constructions of

ergodic quotient maps from a basis fk for F . In this sense,

the ergodic quotient map is the eigenquotient map at k ¼ 1.

The eigenquotient maps collect basis functions for the eigen-

space Ek. Note that this basis set might be overdetermined, since

we do not know ahead of time what dimEk is. In Remark 12, we

have indicated that the dimension of Ek is bounded by the num-

ber of mutually singular components of measure l which was

used to define the space of observables as F ¼ LpðM; lÞ. These

components are precisely the ergodic measures, and there are as

many of them as there are ergodic sets.

Given an eigenfunction / 2 Ek, for jkj ¼ 1, its modulus

and complex angle functions are, respectively, j/j; //, for

which /ðxÞ ¼ j/ðxÞjexp½i2p//ðxÞ�. The modulus function

j/j is an invariant function, since Uj/j ¼ j/ � Tj ¼ jk/j
¼ j/j. On the other hand, // 2 Ek is a factor map: it conju-

gates the dynamics of T with a dynamical system h7!hþ x,

evolving on a circle S
1
, with x as the angle of the eigenvalue

k ¼ rei2px,36,58 since

//ðTxÞ ¼ //ðxÞ þ x:

To illustrate what these functions might reveal about dy-

namics, we will take the Chirikov Standard Map

xnþ1 ¼ xn þ pn þ �sinð2pxnÞ
pnþ1 ¼ pn þ �sinð2pxnÞ;

(61)

with � ¼ 0:15. The system preserves the area measure m; there-

fore, the Koopman operator U : L2ðM; dmÞ ! L2ðM; dmÞ is

unitary and its eigenvalues all lie on the unit circle. Figure 11

shows level sets of an invariant eigenfunction, and modulus and

angle of an eigenfunction at ei2px for x ¼ 1=3, demonstrating

the distinction between / 2 E1 and the modulus of w 2 Ek.

Even though both jwj and / are invariant functions, jwj
is non-zero only over trajectories that are periodic with pe-

riod 3. At � ¼ 0:15, such trajectories are mostly concentrated

in two large groups of periodic chains near the middle of the

state space. On the other hand, invariant functions that are

not formed by taking absolute values of periodic functions

do not necessarily make a distinction between periodic and

non-periodic dynamics. The angle function /w can be used

to infer the order in which sets are ordered in the associated

periodic chains. Even such simple visualizations can be use-

ful aids in quick assessment of a new dynamical system, by

identifying regions that are not dynamically connected.

B. Geometry of eigenquotients

Section IV A, we explained how eigenfunctions of the

Koopman operator connect to invariant and periodic struc-

tures in the state spaces of dynamical systems. We have also

indicated that the finest invariant partitions f can be repre-

sented in sequence spaces using quotient maps p : M ! ‘1

and their image sets, eigenquotients n ¼ pðMÞ. In this sec-

tion, we will be treating geometry of sets n, explaining it for

the case of the ergodic quotient, which corresponds to invari-

ant sets. As explained in Section IV A, a generalization to

periodic sets is straightforward.

Identification of ergodic sets can be thought of as check-

ing whether for two state space points p1; p2 2 M it holds

that pðp1Þ ¼ pðp2Þ or not; essentially, we are using a discrete

topology on ergodic quotient n to compare points in the state

space M. We can, however, use other metric topologies on

the ergodic quotient to extract additional information about

the state space, e.g., to obtain a low-dimensional representa-

tion of dynamics, or identify functions acting as integrals of

motion over invariant sets, not necessarily entire state

spaces. By a low-dimensional representation of dynamics,

we mean that we are looking for a minimal set of directions

in the state space, in which we can move a point across the

boundary of an ergodic set S and land in another ergodic set

S0 where trajectories look similar, on average, to those in S.

As a motivation for the analysis of ergodic quotient we

take the Morse theory analysis of Hamiltonian systems. Con-

sider three state spaces sketched in the top row of Figure 12.

Each state space contains a region where trajectories are

FIG. 11. Level sets of eigenfunctions / 2 E1 and w 2 Ek for k ¼ ei2px at x¼ 1/3 for the Chirikov Standard Map at � ¼ 0:15. (Functions were evaluated by

computing Fourier averages, see Sec. IV C). (a) Invariant eigenfunction / 2 E1. (b) Modulus |w| of a 3-periodic eigenfunction w. Modulus of any eigenfunction

for |k| = 1 is an invariant function. (c) Angle /w of a 3-periodic eigenfunction w. Angle of an eigenfunction at is a factor map for dynamics. (Only regions

where angle is well defined, i.e., w 6¼ 0, are colored.)
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tightly layered together, and where they can be parametrized

using a single continuous parameter: distance from elliptical

fixed points. For Hamiltonian systems, these properties can

be formally stated by inducing a topology on the state space

based on the energy function. In other words, the “similarity”

of neighboring ergodic sets that we are after is here repre-

sented by the similar values that the energy function attains

on neighboring ergodic sets.

Level sets of any monotonic function of the Hamilto-

nian can be represented by Reeb graphs sketched next to

the state spaces. Reeb graphs are a topological tool, fea-

tured in Morse theory, which analyzes manifolds through

level sets of differentiable functions on them. The Reeb

graphs provide a concise description of changes in topology

of such level sets as the level, i.e., value of the function, is

changed. In dynamical systems, they have been used to

study level sets of integrals of motion for integrable Hamil-

tonian systems;4,15 in this context, they are known as

Fomenko-Reeb graphs. Since integrals of motion are invari-

ants of projections P1 onto the k ¼ 1 eigenspace, in certain

settings we could draw parallels between Fomenko-Reeb

graphs and the ergodic quotient n.

The vertices in Fomenko-Reeb graphs correspond to

those values of the Hamiltonian H : M! R at which the to-

pology of level sets of H changes. The edges connecting the

vertices correspond to families of connected components of

level sets that are homotopically related with respect to con-

tinuous variation of values of H. Figure 12 illustrates what

the Fomenko-Reeb graphs look like for two simple Hamilto-

nian systems. Without going into details of their construction

here, an important feature of these graphs is that continuous

segments in them correspond to one-parameter families of

periodic orbits. For the double-well oscillator, strands merge

at the value of energy where two separate wells merge across

the separatrix to form the outer layer of periodic orbits.

Therefore, by looking at number of independent parameters

in a Fomenko-Reeb graph, we can deduce the number of

families of periodic orbits in the state space.

Currently, Fomenko-Reeb graph analysis is formulated

only for integrable Hamiltonian systems.4 By analyzing the er-

godic quotient, we can establish an approach similar in spirit,

even for systems that do not have an explicit energy function,

but might contain families of invariant sets in the state space.

The ergodic quotient map collects, in a sense, all possible

invariant functions that can be thought as generalizations of

energy. Unlike the case of Hamiltonian systems, where topol-

ogy of the energy codomain was used to define topology on

the state space, the ergodic quotient n is a subset of an infinite-

dimensional sequence space ‘1, which can be endowed with

many Euclidean-like topologies that are not all mutually equiv-

alent. For this reason, we need to choose a metric structure

ðn; dÞ, where d is a distance function, so that we can obtain a

context in which a generalization of Reeb analysis of Hamilto-

nian systems to non-Hamiltonian systems is possible.

The role played by the Hamiltonian function in

Fomenko-Reeb graphs is taken up by the quotient map p.

The image space of Hamiltonian was R with its natural met-

ric topology; the ‘1 topology on the ergodic quotient n is

too sensitive to establish analogous arguments. Instead, we

will use a Sobolev space metric which requires interpretation

of the image under the quotient map pðxÞ as a spatial Fourier

transform of ergodic measures lx. Within this setting, we

seek to extract coherent onion layers in the state space by

identifying connected components in ðn; dÞ. The challenge

lies in extracting a particularly appropriate low-dimensional

parametrization of n even though it is embedded within the

infinite-dimensional space ‘1.

First, as observables which will be projected onto E1 we

choose the normalized harmonic basis for F , e.g., on

M ffi ½0; 1�D

fkðxÞ ¼ ei2pk�x;

where k 2 ZD and k � x ¼
Pd

j¼1 kjxj. This results in the repre-

sentation of the ergodic quotient map p

pðpÞ ¼ ð…; ½P1fk�ðpÞ;…Þ
¼ ð…; l̂pðkÞ;…Þ

that maps the points of the state space p to Fourier coefficients

l̂pðkÞ :¼
Ð

Mfkdlp of the associated ergodic measure lp. This

opens up opportunities to use metrics available on the space

of Fourier coefficients, e.g., weighted ‘2 metrics, to compare

dynamics in different ergodic sets, and generalize the

Fomenko-Reeb analysis from Hamiltonian systems to a more

general class of systems. Note, however, that when we are

interested only in identifying ergodic partitions using discrete

topology on n, i.e., ask whether x; y 2 M are elements of the

same ergodic set S 2 f by checking if pðxÞ ¼ pðyÞ, any con-

tinuous basis of observables will be sufficient.36 The choice of

basis is largely a matter of convenience of constructing other

metric structures on n, alternative to the discrete metric.

Due to boundedness of Fourier coefficients, the ergodic

measures are elements of the Sobolev space W2;�s, whose

norm can be defined as a weighted Euclidean norm,

FIG. 12. Sketches of two Hamiltonian oscillators: a harmonic oscillator and

a double-well oscillator. Top row: state space portrait. Bottom row: graphic

representation of Fomenko-Reeb graphs for level-sets of Hamiltonian func-

tions. Dashed arrows indicate how moving an initial condition across the

level sets reflects on the Reeb graph. Reprinted with permission from

M. Budi�sić, Physica D Nonlinear Phenom. 241(15), 1255–1269 (2012).

Copyright 2012 North-Holland.

047510-23 Budi�sić, Mohr, and Mezić Chaos 22, 047510 (2012)



jjljj22;�s :¼
X
k2ZD

jl̂ðkÞj2

½1þ ð2kpÞ2�s
; (62)

with the index determined as s¼ (Dþ 1)/2 where

D ¼ dim M. We use ‘2;�s as the symbol for the associated

Fourier coefficient space with the weighted Euclidean norm.

An excellent introduction to the Sobolev space theory is the

classic textbook by Adams and Fournier,1 which contains all

the material relevant for this analysis.5

To establish a metric structure on the ergodic quotient,

we use the jj:jj2;�s-induced metric, and analyze continuity of

ergodic quotient maps p in it. The ‘2;�s ffi W2;�s metric struc-

ture induces a distance-like function on the state space

dsðp1; p2Þ2 :¼ jjlp1
� lp2

jj22;�s: (63)

This function is not a true distance but a pseudo-distance

precisely because the points at zero distance from each other

are those that lie in the same ergodic set. Clearly, when the

system is uniquely ergodic with respect to l, the function ds

evaluates to zero for l-almost any pair of points p1; p2.

Remark 26. The choice of the Sobolev space W2;�s has a

justification in comparison of ergodic measures interpreted

as measures of residence times of trajectories in measurable

sets of a compact state space M.29,30 Let B(x, r) denote Eu-

clidean balls in M and vx;r their characteristic (indicator)

functions. The quantity lp½Bðx; rÞ� is the residence time of

trajectory TnðpÞ in B(x, r), due to ergodicity of the system

T : S! S, i.e., equality of integrals and time averages (60):

lp½Bðx; rÞ� ¼
ð

S

vx;rdlp ¼ lim
N!1

1

N

XN�1

n¼0

vx;r � TnðpÞ;

where S � M is the element of the ergodic partition contain-

ing the initial condition p.

The distance between trajectories originating at p1; p2

can then be formulated by integrating the difference in resi-

dence times over all spherical sets, with R chosen such that

M � Bðx;RÞ:

dðp1; p2Þ2 :¼
ðR

0

ð
M

jlp1
½Bðx; rÞ� � lp2

½Bðx; rÞ�j2dxdr: (64)

The choice for the index of Sobolev norm s¼ (Dþ 1)/2

results in the equivalence of norms, i.e., existence of con-

stants a; b > 0 such that for any p1; p2 2 M

a dðp1; p2Þ � ds ¼ jjlp1
� lp2

jj2;�s � b dðp1; p2Þ:

This argument shows that (64) is again only a pseudo-

distance, like ds. We will return to this interpretation in

Sec. V; the formulation (62) is more useful in analysis of the

ergodic quotient n.

The space ðn; jj:jj2;�sÞ can be analyzed computationally,

allowing for extraction of coherent structures in state spaces

of dynamical systems. We are looking to extract connected

components of n, i.e., curves C � ‘2;�s. In our motivational

Hamiltonian examples, regions mapping to curves in

Fomenko-Reeb graphs (see Fig. 12) contained an onion layer-

ing of trajectories, which could be interpreted as regions of

uniform dynamical behavior. We can visualize such regions

by coloring all the points x 2 p�1ðCÞ using the same color.

In a recent paper,7 we have presented an algorithm that

performed the analysis described above. Using averaging of

harmonic observables along trajectories (see Sec. IV C), it

evaluates an approximation of the ergodic quotient map p on

a set of initial conditions fpngN
n¼1 covering the region in state

space that is to be analyzed. The connected components are

extracted based on pairwise evaluations of the induced Sobo-

lev metric dðp1; p2Þ � jjlp1
� lp2

jj2;�s.

The Diffusion Maps algorithm9,10 was used to provide a

coordinate change for the ergodic quotient n. The particular er-

godic quotient map p used earlier was constructed using aver-

aged harmonic functions as coordinates. This choice was driven

by desire to efficiently evaluate the Sobolev metric as a weighted

Euclidean metric. However, the harmonic basis set is chosen

without any regard for intrinsic geometry of n, and therefore it

might not be the most efficient way of analyzing geometry of n.

The Diffusion Maps algorithm interprets n as a heat-

conductive object, and computes the modes of heat spread

along it, resulting in a coordinate change W : n! ‘2. The ‘2

distance between points WðnÞ corresponds to the diffusion dis-

tance: an intrinsic, coordinate-independent distance along the

ergodic quotient. This reflects the fact that the Diffusion Maps

algorithm obtains intrinsic geometry of n, regardless of the

coordinate system that n was originally represented in. Com-

ponents of W are functions wk : n! R, ordered with k 2N

according to the spatial scales over which they vary. For

example, if n is a simple line segment, as it is the case for the

harmonic oscillator, wk will just be Legendre polynomials:

solutions of the heat equation with no-flux boundary condi-

tion. For more general n, the diffusion modes wk become

more complicated, however, they retain the scale-ordering of

harmonic functions. The wk are good candidates for the analy-

sis similar to the Reeb graph analysis for manifolds, which

was previously noticed in medical image analysis.50

As mentioned earlier, a bijection composed with the er-

godic quotient map p results in another ergodic quotient map.

Therefore, by forming v :¼ W � p, with components vk ¼
wk � p we obtain the ergodic quotient represented in a “good”

coordinate set, which can be efficiently truncated to obtain low-

dimensional representations of the ergodic quotient. The Eu-

clidean distance over a truncated set of diffusion coordinates

approaches the diffusion distance limit exponentially fast, in

number of diffusion modes retained.10 Since Euclidean distance

is the most common distance used in applied problems, a host

of off-the-shelf algorithms can be used to post-process the er-

godic quotient, e.g., a k-means clustering or proximity graph

analysis for extraction of connected components.

We use the double-well potential to illustrate this analy-

sis, with results presented in Figure 13(b). The Hamiltonian

function for this system, which serves as the basis for the

well-known Duffing oscillator, is given by

Hðq; pÞ ¼ 1

2
p2 � k

1

2
q2 � 1

4
bq4

� �
; (65)

in this analysis we chose k¼ 1, b¼ 2. From Figure 13(b) it is

evident that the computations using metric jj:jj2;�s retain the
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desired intuition established by Figure 12: the diffusion coor-

dinate v2 approximates the energy function of the system,

while coordinate v1 discriminates between wells of the

potential. The gaps in the numerical result are due to finite

number of initial conditions x used to evaluate the ergodic

quotient map, and irregularities are due to the finite averag-

ing process used to evaluate the projection P1; the Diffusion

Maps algorithm can be adaptively tuned to tolerate such

errors. When the state space is visualized using pseudo-

coloring based on diffusion coordinates, the regions of uni-

form dynamical behavior are clearly distinguished.

The presented process goes beyond Hamiltonian flows:

as an illustration we use a periodically forced 3d fluid flow

based on the classical Hill’s vortex flow.7 It is a solution to

an ODE system on x ¼ ðR; z; hÞ � Rþ 
R
T

_R
_z
_h

2
4

3
5 ¼ 2Rz

1� 4R� z2

c=2R

� �
þ �

ffiffiffiffiffiffi
2R
p

sin h
zð

ffiffiffiffiffiffi
2R
p
Þ�1

sin h
2cos h

" #
sin 2pt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Aðx;tÞ

; (66)

where parameters c and � are swirl and perturbation

strengths, respectively. Figure 13(c) shows two vortices that

exist at c ¼ � ¼ 0:3495 colored based on the colors assigned

to components of ergodic quotient shown in Figure 13(d).

These two examples demonstrate that functions vk 2 F
are invariant eigenfunctions for the Koopman operator, but

whose level sets resemble energy functions. In this sense,

instead of finding a function that would provide a “good”

labeling of ergodic sets, as we did with energy functions in

motivational Hamiltonian examples, we constructed a set of

such a function from data generated by analyzing a basis for

the invariant eigenspace of the Koopman operator. The

entire process is made computationally feasible by truncating

the set vk, therefore discarding the fine-scale features in favor

of computability, while retaining coarse-grained features in

an organized manner.

C. Infinite-time averages as projections
onto eigenspaces

In our presentation of analyses of the state space using

eigenfunctions of the Koopman operator, we have assumed

we can compute eigenfunctions /ðkÞ by projecting an observ-

able f onto the eigenspace at k using the projection operator

Pk. When k ¼ ei2px, i.e., for eigenvalues on the unit circle,

we can evaluate the associated projection operator Pk using

(a) (b)

(c) (d)

FIG. 13. Geometric analysis of the ergodic quotient for a planar Hamiltonian system with Hamiltonian (Eq. (65)) and a periodically forced 3d fluid-like flow

defined by (Eq. (66)). Reprinted with permission from M. Budi�sić, Physica D Nonlinear Phenom. 241(15), 1255–1269 (2012). Copyright 2012 North-Holland. (a)

State space of a double-well potential. Color is the first diffusion coordinate v1, corresponding to color in b. (b) Embedding of n for a double-well potential into

first two diffusion coordinates. Colors are values of v1 for easier comparison with a (Cf. Fig. 12, center). (c) Two vortices in the Poincar�e section of the periodic

3D Hill’s vortex flow extracted based on continuous segments in n. (d) Embedding of n for the periodic 3D Hill’s vortex flow into first two diffusion coordinates.
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infinite-time averages. For this reason, we restrict ourselves

to the eigenspaces Ek for which jkj ¼ 1 in this section.

The focus of our interest will be the averages

1

N

XN�1

n¼0

e�i2pxnf � TnðxÞ; (67)

which we would want to extend pointwise into the limit as

N !1. To describe the set of observables F which have

well defined limits, we start by assuming that the map T con-

serves a measure l on the Borel algebra A in M. For

l-integrable observables f the finite averages of the form

(Eq. (67)) can be extended into N !1 to result in well

defined Fourier averages ~f
ðxÞ

:

Theorem 27 (Wiener, Wintner). Let T : M ! M pre-

serve a measure l on a measurable space M. Then the set of

points Rðf Þ � M on which the limit

~f
ðxÞðxÞ :¼ lim

N!1

1

N

XN�1

n¼0

e�i2pxnf � TnðxÞ (68)

is well defined can be chosen for all f 2 L1ðM; lÞ and
x 2 R, independently of x, and such that lðM=RÞ ¼ 0.

Proof. The original proof by Wiener and Wintner59 was

found to contain an error. Several correct proofs have been

compiled by Assani.3 �

Moreover, when L1ðM; lÞ contains a dense countable

set, the convergence set R can be chosen independently of

f.36 When frequency x ¼ 0 is chosen, Fourier averages

(Eq. (68)) are referred to as ergodic averages,

~f ðxÞ :¼ lim
N!1

1

N

XN�1

n¼0

f � TnðxÞ: (69)

As mentioned before, the concept of eigenmeasures lðxÞp for

map T provides means for evaluating the projection operator,

to which we now add a trajectory-wise formulation,

Pkf ðxÞ ¼ ~f
ðxÞðxÞ ¼

ð
M

f dlðxÞx :

A recent monograph by Wichtrey58 provides a detailed anal-

ysis of existence of Fourier averages and their applications

in linear, nonlinear, and control systems.

While this presentation would perhaps suffice in the

abstract, in practical settings we should take additional interest in

1. the influence of choice observable f on the information

contained in eigenfunctions Pkf ,

2. the “size” of the convergence set R on which the averages

converge, and

3. the rate or error in approximating ~f
ðxÞ

using finite averages.

The influence of x on the value of ~f
ðxÞðxÞ is easily seen

by fixing f and x and studying the sequence of (complex)

numbers an :¼ f � TnðxÞ. The average

XN�1

n¼0

e�i2pxnan

is then just a Discrete Fourier Transform (DFT) of the

sequence an.

From the basic knowledge of Fourier analysis, the val-

ues ~f
ðxÞ

will be non-zero only for those x that correspond to

temporal modes present in the sequence an, which represent

the trace of the observable f � TnðxÞ. Whether an contains a

mode at x depends not only on trajectory TnðxÞ, but also on

the choice of the observable. This is easiest to see when f is

chosen as a constant function (if constant functions are

in F ). In that case, ~f
ðxÞ � 0 for all non-zero x, and ~f

ð0Þ � f ,

regardless of the underlying dynamics T.

Remark 28. Several concepts in this paper are associated

with Joseph Fourier’s name. This is understandable, as his

ideas are at the root of all of them, but unfortunate as it might

imply direct connections where there are none.

Several recent works36,58 use the name harmonic aver-
ages for ~f

ðxÞ
, in reference to harmonic analysis of dynamical

flows. To avoid confusion with harmonic means of numbers,

we decided to use Fourier averages instead, as do Wiener,

Wintner, and Assani. This name is connected with the tempo-
ral Fourier transforms of sequences, as explained above, since

for fixed x 2 M and f 2 F , the function x 7! ~f
ðxÞðxÞ is the

Discrete Fourier Transform of the sequence n 7! f � TnðxÞ.
Only through ergodicity, i.e., equality of space and time

averages
Ð

Mf dl ¼ ~f , do we obtain a connection with spatial
Fourier transform. Choosing fkðxÞ as harmonic functions

ei2pk�x, where k is now a wavenumber, we can interpret any

sequence k 7!~f kðxÞ in the ergodic quotient n as the spatial

Fourier transform of the averaging ergodic measure lx. We

refer to the image set of the spatial Fourier transform as the

spatial Fourier coefficients.

The eigenquotient maps, i.e., x 7!ð…;Pkf ðxÞ;…Þ, could

be justifiably named Fourier quotient maps, in analogy to er-

godic/Fourier average dichotomy. Despite our earlier choices

of terminology,7 we expect this connection to hold only for

eigenvalues k ¼ ei2pix, when PkfkðxÞ ¼ ~f
ðxÞðxÞ As one could

conceivably formulate an eigenquotient map for jkj 6¼ 1, in

this paper we chose to use the term eigenquotient instead.

Finally, the harmonic functions fkðxÞ ¼ ei2pk�x; k 2 Zd,

i.e., solutions to Laplace equation Df ¼ 0 on a torus T
d, are

sometimes called Fourier functions or Fourier harmonics.

We use these functions as observables, i.e., functions that are

acted on by the Koopman operator, to facilitate evaluation of

Sobolev norms. Out of all, this connection in name is the

least significant of all presented here, nevertheless, we men-

tion it in this remark to clarify our terminology.

Remark 29. Starting from the same observable f, two dif-

ferent eigenfunctions at x ¼ 0 can be computed as /ðxÞ :¼
~f
ð0ÞðxÞ and for any x 6¼ 0; w :¼ j~f ðxÞðxÞj. An example can

be found in Figure 11 where the first two images were com-

puted by Fourier averages of f ðx; pÞ ¼ sinðpx� p=4Þ
cosð6ppÞ at x ¼ 0 and at x ¼ 1=3, after which the modulus

was taken. Both observables are invariant with respect to

dynamics.

For a generic observable f, the main difference is that

j~f ðxÞjðxÞ is sensitive to x-periodic dynamics: even though

the information about the phase of x-periodic sets is

removed by taking the modulus, j~f ðxÞjðxÞ will be zero on all

points that are not in any of x-resonant chains, which can be
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easily explained by DFT interpretation. There is no such

restriction on ~f
ð0Þ

, whose value can vary between different

invariant sets (see Fig. 11(a)). Conversely, j~f ð1=3Þj is zero

everywhere except on the period-3 island, where trajectories

contain x ¼ 1=3 frequency components (Fig. 11(b)).

The x values corresponding to the ei2px that are eigen-

values of the Koopman operator will result in non-zero

eigenfunction f ðxÞ for at least some observable f. The x val-

ues that are not frequencies of any of the eigenvalues will

result in ~f
ðxÞ � 0. The frequency x ¼ 0, however, corre-

sponds to eigenvalue k ¼ 1 of U, which is always in the

spectrum of the Koopman operator. This frequency is of a

particular interest, as the eigenfunctions ~f
ð0Þ � ~f are invari-

ant functions for the system.

To illustrate the difference in eigenfunctions obtained by

starting from different observables, we again used the Chirikov

Standard Map (61) at � ¼ 0:15. The averages were computed

for x ¼ 0, which projects observables to the invariant eigen-

space of U. As Figure 14 shows, the detail that level sets of

averaged observables reveal about the state space is highly de-

pendent on the starting observable, however, when a “good”

observable is chosen, it can reveal a lot about the state space.

The lack of intuition about how to select such a “good” starting

observable led to development of the ergodic quotient analysis,

presented in Sec. IV B. The diffusion coordinates vk used

therein can be interpreted as constructed observables that

reveal detailed information about the state space.

The convergence set R was established to be of full

measure l by Theorem 27. The measure l is a measure pre-

served by the system, which is also used to define the space

of integrable observables L1ðM; lÞ for which the Wiener-

Wintner theorem holds. Depending on the analyzed system,

the existence of an invariant measure can be inferred through

different arguments. For example, a system _x ¼ FðxÞ gov-

erned by divergence-free vector field r � F � 0 conserves

the volume-measure on the state space. In dissipative dynam-

ics, the systems may conserve Sinai-Ruelle-Bowen measures

on chaotic sets.61 Finally, on a compact state space M the

only necessary assumption for existence of an invariant l is

continuity of T, by the theorem of Krylov-Bogolyubov.21

The Wiener-Wintner theorem holds for any invariant mea-

sure l. Therefore, by choosing the measure used to formulate

the space of observables F ¼ L1ðM; lÞ, we influence the

amount of information we can collect about the system by eval-

uating Fourier averages and the size of the set R. In applied

contexts, we would often want to include as many open sets as

possible in the support of measure l chosen: for volume-

preserving systems, volume of the state space is often a good

choice. Caution is still needed, as there could be a l-zero, yet

dense, non-convergence set Rc. Nevertheless, in our experi-

ence, simulations of dynamical systems that model physical

phenomena do not contain such extreme pathological cases.

For dissipative systems, one often requires a that the set

of Birkhoff-regular initial conditions,13 for which Fourier

averages of continuous observables converge, is of positive

volume, i.e., that the system preserves a physical measure61

supported on the attractor. In those cases, computing quo-

tient maps using Fourier averages will identify basins of

attractions of the attractors, instead of attractors themselves,

since the points in the basin will have the same averages as

the points on the attractor.

A well-known example17 of a dissipative system for

which trajectory averages do not converge for almost all

open sets of initial conditions contains an attractive hetero-

clinic cycle (see Fig. 15). Ergodic measures are d-measures

supported on each of the fixed points, consequently, any

invariant measure will be singular with respect to Lebesgue.

Trajectories that approach heteroclinics spend longer and

longer times along each of the exterior fixed points, possibly

in such a manner that the finite time averages do not

FIG. 14. Three different observables fj (top row) and associated invariant functions ~f j (bottom row), obtained by ergodic averages along trajectories of

the Chirikov Standard Map (IV A) for � ¼ 0:15. The pseudocolor is the value of each function. (a) Level sets of f1(x, p) = sin (4px). (b) Level sets of

f2(x, p) = sin (4pp). (c) Level sets of f3(x, p) = cos (4pp). (d) Level sets of ~f 1ðx; pÞ (e) Level sets of ~f 2ðx; pÞ. (f) Level sets of ~f 3ðx; pÞ.
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converge. Notice that, while the conditions of Theorem 27

are formally satisfied, they are almost vacuous for practical

purposes, as only the subsets of heteroclinic orbits have

well-defined averages, yet the convergence set is still of full

measure, due to singular nature of the measure conserved.

From the authors’ experience in applying the averaging

technique to dynamical systems that model physical phe-

nomena for practical analysis, finding an appropriate conver-

gence set R is rarely a problem. A more practically

significant issue comes from the different rates of conver-

gence of finite to infinite averages for points within R.

The rate of convergence of finite limits

ANf ðxÞ :¼ 1

N

XN�1

n¼0

f � TnðxÞ;

and their Fourier counterparts (67) on the set R is not uni-

form. It is a classical result that the rates of convergence

over periods of length N can range from exponentially fast,

i.e., Oðe�kNÞ for k > 0, for trajectories approaching expo-

nentially stable fixed points, to algebraic convergence N�a,

where a > 0 is arbitrarily small, see, e.g., Petersen, Sec. III

A.40 From a practical perspective, in a lot of cases the

situation does not look so bleak. Trajectories on periodic

orbits and in strongly mixing regions achieve the rates of

convergence of OðN�1Þ and OðN�1=2Þ, respectively. The

slopes 0 < a < 1=2 are to be expected near homoclinic and

heteroclinic orbits, especially if such orbits are embedded

within zones of intermittency, where trajectories get

entrained around marginally stable fixed points for long

times, before eventually moving away from them.12 Such

zones appear, for example, in perturbed hamiltonian and

volume-preserving systems.39 Studies of volume-preserving

systems, in theoretical57 and computational7 contexts, have

shown that such regions are small in area.

To illustrate, we plotted convergence errors for the Chir-

ikov Standard Map (61), simulated for � ¼ 0:18 where the

state space contains both regular and mixing regions. This

brief analysis is similar to those in literature.7,25,26 As an in-

dicator of convergence speed, we compared the ergodic aver-

age, i.e., Fourier average with x ¼ 0, after N1 ¼ 106

iterates with the average after (significantly) shorter number

N � N1 of iterates. To avoid making conclusions based on

a single observable, a truncated set of Fourier harmonics

fkðx; pÞ ¼
1

2p
exp½i2pðkxxþ kppÞ�;

for k ¼ ðkx; kpÞ 2 ½�5; 5�2 � Z2, was used; this is the type of

set used to practically approximate the quotient maps

described in Sec. IV B and for each trajectory the largest

absolute difference in averages over that set was taken as an

indication of the convergence error.

Figure 16(a) shows the error in averages after a fixed

time N ¼ 105 iterates, while Figures 16(b)–16(d) show the

time required for the error to stay within 10�3 for 100 iter-

ates. It is clear that the speed of convergence varies across

the state space, with convergence in chaotic regions slower

than in regular regions. We proposed7 that the simulated

time is varied for individual trajectory based on the relative

convergence error, which resulted in efficient simulation

runs with only a small subset of initial conditions, in regions

of intermittency, requiring long simulation times.

FIG. 15. Attracting heteroclinic cycles may prevent convergence of ergodic

averages.

FIG. 16. Convergence of ergodic averages. The difference

in averages of Fourier harmonics for trajectory starting at

x 2 M is computed as maxkjANfkðxÞ � AN1 fkðxÞj over

k 2 ½�5; 5�2 � Z2. Step N1 ¼ 106 was taken as “true” in-

finity. A total of 2025 initial conditions, seeded from a

uniform rectangular grid, was used. Colors were interpo-

lated from the first 500 iterates of each trajectory. (a) Dif-

ference in averages after N = 105 and N1 = 106 iterates

(log10-scale). The bottom of the color scale includes all

the values below �6 (b) Distribution of number of initial

conditions over iterations required for the difference in

averages compared to N1= 106 iterates to reach 10�3. (c)

Number of steps required for the difference in averages

compared to 106 iterates to reach 10�3. (d) Number of

steps required for the difference in averages compared to

106 iterates to reach 10�3 (enlarged).
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This section dealt with the problem of extending finite-

time averages into the infinite limit, to be able to approxi-

mate the limiting measures of empirical distributions. It

might be surprising that even explicitly finite time averages

find their use in practical applications. In Sec. V, we demon-

strate how to formulate continuous indicators of mixing and

ergodicity, and use them in design of feedback control for

technical systems.

V. CONTINUOUS INDICATORS OF ERGODICITY
AND MIXING

When dynamical systems are analyzed as measure-

preserving transformations, ergodicity and mixing property
are among the first concepts discussed in introductory text-

books.24,27 Let measure l be preserved by the system. In

plain language, ergodicity with respect to l means that sets

left invariant by the transformation/flow are either full mea-

sure l, or l-negligible. The mixing property, which implies

ergodicity, means that any set of positive l-measure will be

distributed by the flow according to the mixing measure l.

While the standard introductions to these properties40

often include equivalence theorems that provide alternative

formulations of ergodicity and mixing, cf. Eqs. (60) and

(71), all the definitions treat them as binary indicators: either

the system is ergodic/mixing, or it is not. From the perspec-

tive of applied dynamical systems, especially in the context

of design of dynamics, having a binary indicator of a desired

property is insufficient. Designers prefer to work with con-

tinuous indicators, e.g., an ergodicity indicator that takes val-

ues in [0, 1] where the extremum 0 would imply classical

ergodicity, and the higher values would indicate how far, in

some sense, the system is from being ergodic. The continu-

ous indicators of ergodicity and mixing can be constructed

from averages of functions along trajectories.29,48 The aver-

aging process corresponds to an invariant measure, which is

then compared to the a priori measure l to infer how close

the system is to being l-ergodic or l-mixing.

Designing systems to be ergodic or mixing has a number

of practical applications. Consider the case of micro-mixers,

devices whose task is to mix two fluids, reactants, such that

when the reaction is initiated, there are no “pockets” or

unused reactants, and the reaction occurs uniformly in the

vessel. At usual macro-scales, the fluids are easily mixed just

by shaking them; on micro- and nano-scales this is not possi-

ble. Instead, micro-mixers use dynamical, advective trans-

port, to reach the mixed state. An example where ergodicity

is desirable comes from search-and-rescue missions, where

helicopters or airplanes are used to scan a large area for sur-

vivors of airplane crashes and capsized boats. It is not trivial

to design a flight path that ensures that the entire area is cov-

ered and that particular zones are searched more often or

more thoroughly: such task can be phrased as design of an

ergodic flight path. Both of these problems can be addressed

by casting them into a framework of dynamical systems and

requiring that the trajectories are mixing or ergodic.

While trajectory averages were treated as a technique

for computation of projections onto eigenspaces of

the Koopman operator, which required their extension into

infinity, in this section we will show what can be extracted

from finite-time averages (Eq. (67)), with x ¼ 0, i.e., the

finite-time version of ergodic averages. The average of a

bounded observable f : M ! C over a finite-time trajectory

segment, f 7! 1
N

PN
n¼0 f � TnðxÞ, is a linear continuous func-

tional. By the Riesz representation theorem, the finite-

average functionals are represented by empirical measures,

whose distributions, formally defined as

cx;NðpÞ :¼ 1

N

XN�1

n¼0

d½p� TnðxÞ�; (70)

can be thought of as strings (or ribbons) of d-distributions,

supported along the orbits (see Fig. 17).

The consequence of defining the empirical distribution

using the Riesz representation theorem is the well-known

equality between spatial and time averages. With a bit of

breadth in notation, the expression hf ; gi ¼
Ð

Mf ðpÞgðpÞdp
can be used to couple functions f and measures g(p)dp. In the

case of measures with density functions, i.e., absolutely con-

tinuous measures, both f and g can be taken as functions;

when gðpÞdp ¼ dlðpÞ corresponds to a more general mea-

sure l, f is taken as a test function, and g is in the class of

distributions, or generalized functions, e.g., for a point mass

l, g is a Dirichlet d distribution. Coupling the empirical mea-

sure (Eq. (70)) with a test function f yields

hcx;N; f i ¼
ð

M

1

N

XN�1

n¼0

d½p� TnðxÞ�
( )

f ðpÞdp

¼ 1

N

XN�1

n¼0

ð
M

d½p� TnðxÞ�f ðpÞdp

¼ 1

N

XN�1

n¼0

f ½TnðxÞ�:

If, as an observable, we take the characteristic function of a

measurable set A, rx;NðAÞ ¼ hcx;N; vAi is the residence time:

the fraction of time [0, N] that trajectory TnðxÞ spends inside

set A. Therefore, the empirical measures hcx;N; �i induced by

averaging functionals are probability measures, for any ini-

tial condition x 2 M and N 	 0. For any finite time, empiri-

cal distributions are not absolutely continuous with respect

to the Lebesgue measure. In the limit N !1, however,

they converge in weak-� topology to ergodic measures;61

their limits might be point masses, on equilibria, singular

FIG. 17. For finite time N, averaging functionals can be represented by em-

pirical probability measures, whose distributions cx;N can be thought of as

sequences of d distributions supported on trajectories.
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measures, e.g., on periodic orbits, or absolutely continuous

measures, e.g., in mixing regions.

Ergodicity of the flow Tn with respect to a flow-

invariant measure l can be stated as the condition that for

½l�-a.e. x 2 M,

lim
N!1
hcx;N; vAi ¼ lðAÞ; (71)

for all measurable sets A. The state-space points x 2 M
whose trajectories satisfy the ergodicity condition are called

l-generic. The first step towards a continuous indicator of

ergodicity was presented by Scott et al.,48 who used a Haar

wavelet basis as observables: these wavelets directly relate

to indicator functions of a basis for open sets on a rectangu-

lar state space. Since wavelet bases are parametrized by scale

at which sets are resolved, the constructed ergodic indicator,

termed ergodicity defect, acted as a coarse-grained version

of ergodicity, reflecting an engineering perspective: instru-

ments have finite precisions, therefore, if the equalities

(Eq. (71)) are satisfied for all sets coarser than precision of

the instrument, the system can be thought of as ergodic for

the particular application.

Based on a similar idea, Mathew and Mezić29 con-

structed a different continuous ergodicity indicator. For

declaring ergodicity, it is sufficient to verify the condition

(Eq. (71)) on a basis for the Borel algebra, e.g., Euclidean

balls Bðx; rÞ ¼ fp 2 M : jjp� xjj2 < rg, whose indicator

functions we label vðp;rÞ. Integrating the deviations between

trajectory averages and measures of sets, we obtain the em-

pirical ergodicity ExðnÞ

ExðnÞ2 :¼
ðR

0

ð
M

jhcx;n; vðp;rÞi � l½Bðp; rÞ�j2dp dr; (72)

where R is selected such that the largest ball includes the entire

state space M (cf. pseudodistance (Eq. (64))). It is almost imme-

diate that the ergodicity is equivalent to limn!1 ExðnÞ ¼ 0 if x
is selected as a l-generic point. Strictly speaking, Ex compares

the N !1 limit of empirical measures to the prior l; to assure

that the same behavior occurs almost everywhere, Ex can be

integrated along the state space.

The practical value of ExðnÞ is in how its constituents

are computed: hcx;n; vðp;rÞi is computed as a time-average of

an indicator function, which is very easily computed as the

system is being simulated from an ODE. When l is the vol-

ume measure, quantities l½Bðx; rÞ� are just volumes of Eu-

clidean balls, and are computed using well-known formulas.

Consequently, evaluation of ExðnÞ is simple, as it requires

only evaluation of finite-time averages.

On the other hand, l can be a more detailed measure, as

in the mentioned case of probabilities of target detection.28,29

In those cases, evaluating (Eq. (72)) might be a more compli-

cated effort, requiring careful spatial gridding to control

errors in the integral. Instead of measures of spherical sets,

the metric ExðnÞ can be expressed using Fourier coefficients

of l, facilitating the control of spatial scale resolution. The

integrand in Eq. (72) can be interpreted as a difference

between generalized expansion coefficients, where the basis

set is the set of characteristic functions, whose supports are a

base for Borel sets

l½Bðp; rÞ� ¼ h@l; vðp;rÞi:

The @l stands for the (formal) density of the prior measure l.

If the basis vðp;rÞ is replaced by a harmonic basis fk, then

l̂ðkÞ :¼ h@l; fki are just spatial Fourier coefficients, easily

computed to very high orders by fast Fourier transform if we

know the density @l explicitly. At the same time, practicality

of evaluation of hcx;n; fki is not sacrificed. The resulting em-

pirical ergodicity is given by a metric induced by the

negative-index Sobolev norm jj:jj2;�s on the space of distri-

butions W2;�s (cf. Eq. (62)), if both @l and cx;n are in it.

jjcx;n � @ljj2;�s ¼
X
k2ZD

jhcx;n; fki � h@l; fkij2

½1þ ð2pjjkjj2Þ
2�s

; (73)

where the state space is, for simplicity, M ’ T
D; k 2 ZD.

Wavevectors k 2 ZD parametrize harmonic functions fkðxÞ
¼ ð2pÞD=2ei2pk�x.

When the order of the Sobolev space s is chosen as

s¼ (Dþ 1)/2, jjcx;n � @ljj2;�s and ExðnÞ are equivalent:29

there exist constants a > 0 and b > 0 such that

ajjcx;n � @ljj2;�s � ExðnÞ � bjjcx;n � @ljj2;�s;

at all n. As a consequence, decay of jjcx;n � @ljj2;�s can be

used as the proxy for computing decay of ExðnÞ to detect

ergodicity, since jjcx;n � @ljj2;�s is easier to numerically

evaluate for most measures l.

A practical application of ExðnÞ can be seen on a model

search-and-rescue problem, where an UAV, e.g., a small

helicopter, would search an area containing a target whose

position is estimated by a probability density.29 The search

path for the vehicle can be planned using a dynamical sys-

tem: the searcher is treated as a passive particle, possibly

with a non-zero inertia, in a fluid-like flow. The probability

density is a product of Gaussians, modeling a priori esti-

mates of the target, and discontinuous indicator functions,

modeling foliage on the ground where the UAV has no visi-

bility. The goal is to design the dynamics of the flow, such

that the trajectory traced out by a particle avoids foliage

and explores the feasible area according to probability of

finding the target.

The devised control algorithm used ExðtÞ (in continuous-

time setting) as the optimization function in a Hamilton-

Jacobi-Bellman framework. Instead of optimizing for decay

of ExðtÞ over a finite horizon t 2 ½0; T�, a greedy approach is

chosen, where the optimization horizon is shrunk to the

instance by taking T ! 0, resulting in a closed-form expres-

sion feedback law which relies on finite-time averages of har-

monic observables, computed along the path that the searcher

traveled. As a result, trajectories designed for a team of UAVs

searched the area efficiently, with minimal crossings over the

zones with high foliage (Fig. 18), with further details pre-

sented in Refs. 28 and 29.

In addition to quantifying ergodicity, the W2;�s norm can

be used to quantify mixing with respect to a target density @l,
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in which context it was originally developed.30,31 In the final

design of a micro-mixer, an initial concentration of fluid reac-

tants q was advected by a dynamical system, whose effect was

captured by the Perron-Frobenius operator Pnq. To quantify

mixing, the metric MðnÞ :¼ jjPnq� @ljj2;�s was computed

with the order s¼ 1/2. By optimizing the dynamics of the fluid

flow, a quick mixing of reactants was successfully achieved

(Fig. 19), both in numerical and experimental settings.

The main difference between M(n) and ExðnÞ is that the

mixing metric compares instantaneous advected density Pnq
to the prior l, which, in the dual Koopman framework, is

equivalent to using Unf . Recall that the ergodicity metric

used the temporal averages 1
N

PN�1
n¼0 ½Unf � (cf. Eq. (70)). The

other difference between mixing and ergodicity indicators

can be interpreted as the requirement on the scales at which

measure l is sampled: the ergodicity indicator ExðnÞ gives

more weight to larger spherical sets, while in M(n), differen-

ces over all sets are weighted the same, regardless of the set

size, due to rescaling of the measure dxdr by the measure of

the spherical set to dxdr=lðx; rÞ. Therefore, those trajectories

that lead to uniform decay of ExðnÞ will first appear well dis-

tributed in l over larger sets, and only then will they sample

l on smaller scales. Conversely, M(n) does not make such a

distinction, requiring that the trajectories distribute on all

scales equally fast.

In practice, the choice between ExðnÞ and M(n) is driven

by the application: for mixing of fluids, it was important that

two reactants were in contact at the instant of reaction initia-

tion, e.g., initiation of burning in the chamber. In the search-

and-rescue application, instantaneous behavior was not of

the essence, as the goal was to find the target over the entire

course of the search mission, not necessarily to have the

same (high) probability to locate the target at any particular

time instance. In future applications, a similar analysis of the

problem would decide which property, ergodicity ExðnÞ or

mixing M(n), would be a more appropriate design criterion.

FIG. 19. Simulation of mixing of reac-

tants in a micro-chamber using dynamics

designed by optimizing a W�s;2 distance

between advected density and uniform

target density. Reprinted with permission

from G. Mathew et al., J. Fluid Mech.

580, 261 (2007). Copyright 2007 Cam-

bridge University Press.

FIG. 18. Searching for a target by optimizing the decay of empirical ergodicity ExðnÞ, through computation of jjcx;n � @ljj2;�s for several trajectories.

Reprinted with permission from G. Mathew, Physica D Nonlinear Phenom. 240(4–5), 432–442 (2011). Copyright 2011 North-Holland. (a) Target probability

distribution and initial searcher positions. Probability density is positive and constant on white region, zero on gray. (b) Paths of searchers, showing the search-

ers sampling the area with positive density. (c) Decay of jjcx;n � @ljj2;�s
2 (labeled by U in the original paper).
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The indicators for ergodicity and mixing presented in

this section are based on representations of ergodic measures

in the space of Fourier coefficients. They, therefore, repre-

sent ergodic measures as accurately as it is possible through

their Fourier coefficients: numerically, approximations will

converge quicker the smoother the ergodic measure studied.

However, it is well known that the shape of the ergodic

measure’s density does not determine uniquely the dynami-

cal system. In this sense, the indicators are not intrinsic to

the dynamical system studied. For example, if one would use

a unique ergodic measure l for a map T1 and seek to drive

the ergodic measure of another system T2 to match l, there

would be no guarantee that trajectories of T1 and T2 would

be conjugate, without further restrictions on properties of

maps T1 and T2.

VI. CONCLUSIONS

We have reviewed the theoretical aspects and applica-

tions of the spectral theory of the Koopman operator in dy-

namical systems. The use of these concepts holds promise to

provide a theory that extends and complements tools from

geometrical dynamical systems theory that enabled so much

development in science and technology over the last century.

The presented material described three parallel branches of

Koopman operator analysis

1. Koopman mode analysis,

2. eigenquotient analysis, and

3. indicators of ergodicity and mixing.

The Koopman modes generalize the notion of linear

eigenmodes, known from, e.g., linear mechanical vibration

theory, to the nonlinear context, without linearizing the dy-

namics first. It is interesting that projections onto eigenspa-

ces of the Koopman operator are achieved via an extension

of Laplace and Fourier analysis, and that such extension

works in the nonlinear case. The Koopman mode analysis

has proved especially useful in analysis of dynamics in

infinite-dimensional state spaces, which were observed using

a high-dimensional measurements, e.g., thermal dynamics of

a building system, with a distributed measurement of temper-

atures or fluids experiments.

The eigenquotient analysis generalizes the analysis of

smooth integrals of motion, which is central in theoretical

mechanics, to systems which do not have any smooth invari-

ants. The non-smooth eigenfunctions are constructed using

infinite-time averaging along trajectories of the dynamical

system. The eigenfunctions are used to construct a geometry

for families of invariant sets which can be used to extract

invariant regions that locally resemble phase portraits of

integrable Hamiltonian systems. The same analysis can not

only be applied to the study of invariant sets, but also peri-

odic and wandering sets.

Finally, we showed how the trajectory averages can be

used even when only finite-time data is available. The val-

ues of finite-time averages of functions along trajectories

can be used to evaluate quantitative indicators of how

closely the system is to accurately sampling a prior mea-

sure. Such indicators can be used as optimization criteria in

a feedback algorithm for trajectory planning of unmanned

aerial vehicles.

The theory reviewed here was introduced and developed

mostly for measure-preserving deterministic systems, includ-

ing dynamics on the attractor of a dissipative system. Much

more work remains to be done in the case of dissipative sys-

tems and extensions to non-smooth and hybrid (determinis-

tic/stochastic) case.
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53Y. Susuki and I. Mezić, “Nonlinear Koopman modes of coupled swing dy-

namics and coherency identification,” in Power and Energy Society Gen-

eral Meeting (IEEE, 2010), pp. 1–8.
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