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Abstract— Recent contributions have extended the applica-

bility of Koopman operator theory from dynamical systems to

control. Stability theory got reformulated in terms of spectral

properties of the Koopman operator [1], providing a nice

link between the way we treat linear systems and nonlinear

systems and opening the door for the use of classical linear

e.g. pole placement theory in the fully nonlinear setting.

New concepts such as isostables proved useful in the context

of optimal control. Here, using Kato Decomposition we de-

velop Koopman expansion for general LTI systems. We also

interpret stable and unstable subspaces in terms of zero level

sets of Koopman eigenfunctions. We then utilize conjugacy

properties of Koopman eigenfunctions to extend these results

to globally stable systems. In conclusion, we discuss how the

classical Hamilton-Jacobi-Bellman setting for optimal control

can be reformulated in operator-theoretic terms and point the

applicability of spectral operator theory in max-plus algebra to

it. Geometric theories such as differential positivity have been

also related to spectral theories of the Koopman operator [2],

in cases when the attractor is a fixed point or a limit cycle,

pointing the way to the more general case of quasiperiodic and

chaotic attractors.

I. INTRODUCTION

In the last 20 years, an opertor-theoretic point of view

emerged as an appropriate one to treat certain types of

problems in dynamical systems in control. It has its roots

in 1930’s through the work of Koopman and von Neumann
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[3], [4]. Koopman was working with square-integrable ob-

servables on state space. For a dynamical system

ẋ = F(x), (1)

defined on a state-space M (i.e. x ∈M - where we by slight

abuse of notation identify a point in a manifold M with its

vector representation x in Rm, m being the dimension of the

manifold), where x is a vector and F is a possibly nonlinear

vector-valued smooth function, of the same dimension as

its argument x, denote by St(x0) the position at time t

of trajectory of (1) that starts at time 0 at point x0 (see

Figure 1). We call St(x0) the flow. Denote by g an arbitrary,
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Fig. 1. Trajectory of a dynamical system in R3.

vector-valued observable from M to Rk. The value of this

observable g that the system trajectory starting from x0 at
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time 0 sees at time t is

g(t,x0) = g(St(x0)). (2)

Note that the space of all observables g is a linear vector

space. The family of operators U t, acting on the space of

observables parametrized by time t is defined by

U tg(x0) = g(St(x0)). (3)

Thus, for a fixed time τ , Uτ maps the vector-valued ob-

servable g(x0) to g(τ,x0). We will call the family of

operators U t indexed by time t the Koopman operator of

the continuous-time system (1). This family was defined for

the first time in [3], for Hamiltonian systems. In operator

theory, such operators, when defined for general dynamical

systems, are often called composition operators, since U t

acts on observables by composing them with the mapping

St [5]. In discrete-time the definition is even simpler: if

x′ = T(x), (4)

is a discrete-time dynamical system defined on a set M then

the Koopman operator U associated with it is defined by

Ug(x) = g ◦T(x).

The operator U is linear, as shown here for the discrete case:

U(c1g1(x) + c2g2(x)) = c1g1(T(x)) + c2g2(T(x))

= c1Ug1(x) + c2Ug2(x). (5)

In the continuous-time case, a similar calculation also shows

linearity of members of the Koopman family for each time

t.

It was only in the 1990’s that potential for wider applica-

tions of the operator-theoretic approach has been realized [6],

[7]. In this century the trend of applications of this approach

has continued, as summarized in [8]. This is partially due

to the fact that strong connections have been made between

the spectral properties the Koopman operator for dissipative

systems and the geometry of the state space. In fact, the

hallmark of the work on the operator-theoretic approach in

the last two decades is the linkage between geometrical

properties of dynamical systems - whose study has been

advocated and strongly developed by Poincaré and followers

- with the geometrical properties of the level sets of Koopman

eigenfunctions [7], [9], [10]. The operator-theoretic approach

has been shown capable of detecting object of key impor-

tance in geometric study, such as invariant sets, but doing so

globally, as opposed to locally as in the geometric approach.

It also provides an opportunity for study of high-dimensional

evolution equations in terms of dynamical systems concepts

[11], [12] via a spectral decomposition, and links with

associated numerical methods for such evolution equations

[13].

II. CONTINUOUS-TIME LINEAR SYSTEMS WITH SIMPLE

SPECTRUM

In the case when the sys is linear, and given by ẋ =

Ax, its matrix eigenvalues are eigenvalues of the associated

Koopman operator. The associated Koopman eigenfunctions

are given by ([12])

φj(x) = 〈x,wj〉 , j = 1, . . . , n (6)

where wj are eigenvectors of the adjoint A∗ (that is, A∗wj =

λcjwj), normalized so that 〈vj ,wk〉 = δjk, where vj is an

eigenvector of A, and 〈·, ·〉 denotes an inner product on a

linear space M in which the evolution is taking place. This

is easily seen by observing

φ̇j = 〈ẋ,wj〉 = 〈Ax,wj〉 = 〈x, A∗wj〉 = λj 〈x,wj〉 = λjφj ,

(7)
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and thus φj(t,x0) = U tφj(x0) = exp(λjt)φj(x0). Now, for

any x ∈ M , as long as A has a full set of eigenvectors at

distinct eigenvalues λj , we may write

x =

n∑
j=1

〈x,wj〉vj =
n∑
j=1

φj(x)vj .

Thus,

U tx(x0) = x(t) = exp(At)x0

=

n∑
j=1

〈exp(At)x0,wj〉vj

=

n∑
j=1

〈x0, exp(A
∗t)wj〉vj

=
n∑
j=1

exp(λjt) 〈x0,wj〉vj ,

=

n∑
j=1

exp(λjt)φj(x0)vj , (8)

where x(x0) is the vector function that associates Cartesian

coordinates with a point x0 (the initial condition) in state

space. This is an expansion of the dynamics of observables

- in this case the coordinate functions x(x0) in terms

of spectral quantities (eigenvalues, eigenfunctions) of the

Koopman family U t. Something interesting comes out: the

quantity we know as eigenvector vj is not associated with

the Koopman operator, but rather with the observable - if we

changed the observable to, for example y = Cx, C being

an m× n matrix, then the expansion would read

U ty(x0) =

n∑
j=1

exp(λjt)φj(x0)Cvj , (9)

and we would call φj(x0)Cvj the j − th Koopman modes

of observable y. Assume now that the space of observables

on Rn we are considering is the space of complex linear

combinations of x(x0). Then, φj(x0)Cvj is the projection

of the observable Cx onto the eigenspace of the Koopman

family spanned by the eigenfunction φj(x0) = 〈x,wj〉.

Note that what changed between expansions (8) and (9)

is the vector vj . On the other hand, the eigenvalues and

eigenfunctions used in the expansion do not change. Thus,

what changes with change in observables is their contribution

to the overall evolution in the observable, encoded in Cvj .

These properties persist in the fully nonlinear case, with the

change that the spectral expansion is typically infinite and

can have a continuous spectrum part.

Note also that the evolution of coordinate functions can

be written in terms of evolution of Koopman eigenfunctions,

by

U tx(x0) =

n∑
j=1

φj(t,x0)vj . (10)

III. CONTINUOUS-TIME LINEAR SYSTEMS: GENERAL

CASE

In general, the matrix A can have repeated eigenvalues and

this can lead to a lack of eigenvectors. Recall that algebraic

multiplicity of an eigenvalue λj of A is the exponent (mj)

of the polynomial factor (λ − λj)
mj of the characteristic

polynomial det(A − λI). In other words, it is the number

of repeat appearences of λj as a zero of the characteristic

polynomial. An eigenvalue that repeats mj times does not

necessarily have mj eigenvectors associated with it. Indeed -

the algebraic multiplicity mj of λj is bigger than or equal to

geometric multiplicity, which is the number of eigenvectors

associated with λj . A very elegant way of seeing this is to

use the so-called Kato Decomposition. Kato Decomposition

is an example of a spectral decomposition, where a linear

operator is decomposed into a sum of terms consisting of

scalar multiples of projection and nilpotent operators. For a

finite-dimensional linear operator A it reads

U =

s∑
h=1

λhPh +Dh, (11)

Each Ph is a projection operator on the algebraic eigenspace

Mh that can be defined as the null space of (U − λhI)mh ,
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and Dh is a nilpotent operator. We now use the spectral de-

composition theorem for finite-dimensional linear operators

to provide an easy, elegant proof of Hirsch-Smale theorem

[14] on solutions of ordinary differential equations. Consider

a linear ordinary differential equation on Rm, ẋ = Ax where

A is an n × n matrix. It is well-known that the solution of

this equation reads x(t) = exp(At)x0, where x0 is the initial

condition. The exponentiation of the matrix A reads

exp(At) =

∞∑
k=0

Aktk

k!
. (12)

Now, from the Kato decomposition we obtain

Ak =

s∑
h=1

λkhPh +

k∑
j=1

(
k

j

) s∑
h=1

λk−jh Dj
h,

where λh, h = 1, ..., s are eigenvalues of A. Now we rewrite

exp(At) as

I +

∞∑
k=1

∑s
h=1 λ

k
hPh +

∑k
j=1

(
k
j

)∑s
h=1 λ

k−j
h Dj

h

k!
tk,

=

s∑
h=1

Ph

∞∑
k=0

λkht
k

k!
+

∞∑
k=1

∑k
j=1

(
k
j

)∑s
h=1 λ

k−j
h Dj

h

k!
tk,

=

s∑
h=1

eλhtPh +

∞∑
k=1

∑k
j=1

(
k
j

)∑s
h=1 λ

k−j
h Dj

h

k!
tk,

(13)

Note now that

tleλht = tl
∞∑
k=0

λkht
k

k!
=

∞∑
k=0

λkht
k+l

k!
=

∞∑
m=l

λm−lh tm

(m− l)!
.

We can rewrite the second sum in the last line of (13) as

∑
j<mh

∞∑
k=j

(
k

j

) s∑
h=1

λk−jh Dj
h

tk

k!

=

s∑
h=1

∑
j<mh

∞∑
k=j

(
k

j

)
λk−jh Dj

h

tk

k!
,

(14)

leading further to

=

s∑
h=1

∑
j<mh

∞∑
k=j

k · (k − 1) · ... · (k − j + 1)

j!
λk−jh Dj

h

tk

k!
,

=

s∑
h=1

∑
j<mh

Dj
h

j!

∞∑
k=j

λk−jh

tk

(k − j)!
,

=

s∑
h=1

∑
j<mh

Dj
h

j!
tjeλht.

(15)

Thus we get

exp(At) =

s∑
h=1

(eλhtPh +
∑
j<mh

tjeλht

j!
Dj
h), (16)

Let us now connect this expansion to the formula we

obtained previously, given by (8). In that case, we assumed

that algebraic multiplicities of all eigenvalues are 1, and there

is a full set of associated eigenvectors vj . Thus, the nilpotent

part Dj = 0, and the projection of a vector x0 on the j− th

eigenspace is Pjx0 = 〈x0,wj〉vj = φj(x0)vj . Using this

with (16), we obtain (8).

More generally, let the dimension of each geometric

eigenspace be equal to 1, let j = 1, ..., s be the counter of

distinct eigenvalues of A and m1, ...,ms their multiplicities

(or equivalently dimensions of algebraic eigenspaces corre-

sponding to eigenvalues). Label the basis of the generalized

eigenspace Ej by v1
j , ...,v

mj

j , where vij are chosen so

that (A − λjI)
ivij = 0. In other words, v1

j is a standard

eigenvector of A at λj and the generalized eigenvectors

vij , i = 2, ...,mj satisfy Avij = λjv
i
j + vi−1j . Now let

φij(x) =
〈
x,wi

j

〉
where wi

j is the dual basis vector to vij

and satisfies

A∗wi
j = λcjw

i
j +wi+1

j , i < mj .

A∗wi
j = λcjw

i
j , i = mj . (17)
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Note that for i > 1.

φ̇ij(x) =
〈
ẋ,wi

j

〉
=
〈
Ax,wi

j

〉
=

〈
x, A∗wi

j

〉
=
〈
x, λcjw

i
j +wi+1

j

〉
= λj

〈
x,wi

j

〉
+
〈
x,wi+1

j

〉
= λjφ

i
j(x) + φi+1

j (x). (18)

We call φij(x), 1 ≤ i < mj generalized eigenfunctions of

the Koopman operator at eigenvalue λj .

Example 1 To justify the name generalized eigenfunctions,

consider the following simple example: let mj = 2. Then

φ̇1j = λjφ
1
j + φ2j , where φ12 is an eigenfunction of U t at λj

satisfying φ̇2j = λjφ
2
j . Then

(d/dt− λjI)2φ1j = 0.

Thus, φ1j is in the nullspace of the differential operator ( ddt−

λjI)
2.

Expanding from the example, for mj arbitrary, generalized

eigenfunctions φ satisfy (d/dt−λjI)mjφ = 0. By integrating

(18), the time evolution of the generalized eigenfunctions

reads

φij(t) =

mj−i∑
n=0

tn

n!
eλjt

i+n∑
l=mj

φlj(0). (19)

(in fact by directly differentiating (19), one can easily find

out that it satisfies (18)). Now writing

x =

s∑
j=1

mj∑
i=1

〈
x,wi

j

〉
vij ,

we get

U tx(x0) = x(t) = exp(At)x0

=

s∑
j=1

mj∑
i=1

〈
exp(At)x0,w

i
j

〉
vij

(20)

leading further to

=

s∑
j=1

mj∑
i=1

〈
x0, exp(A

∗t)wi
j

〉
vij

=

s∑
j=1

mj∑
i=1

eλjt(

mj∑
k=i

tk−i

(k − i)!
〈
x0,w

k
j

〉
)vij ,

=

s∑
j=1

eλjt

mj∑
i=1

(

mj∑
k=i

tk−i

(k − i)!
φkj (x0))v

i
j

=

s∑
j=1

[
eλjt

(
mj∑
k=1

φkj (x0)v
k
j

)

+

mj−1∑
i=1

ti

i!
eλjt

(
mj∑

k=i+1

φkj (x0)v
k−i
j

)]
.

(21)

We connect the formula we just obtained with the expansion

(16). Comparing the two, it is easy to see that

Pjx =

mj∑
k=1

φkj (x)v
k
j , (22)

and

Di
jx =

mj∑
k=i+1

φkj (x)v
k−i
j (23)

The above discussion also shows that, as long as we

restrict the space of observables on Rm to linear ones,

f(x) = 〈c,x〉, where c is a vector in Rm, then the

generalized eigenfunctions and associated eigenvalues of the

Koopman operator are obtainable in a straightforward fashion

from the standard linear analysis of A and its transpose.

Generalized eigenfuctions are also preserved under conju-

gation: for i > 1 we have

∑mj−i
n=0

tn

n!
eλjt

i+n∑
l=mj

φlj(h(y)) = U tSφ
i
j(h(y))

= φij(S
th(y)) = φij(h(T

ty)) = U tTφ
i
j(h(y))

Thus, φij ◦ h is a function that evolves in time according

to the evolution equation (19) and thus is a a generalized

eigenfunction. Together with the fact this is easily proved

for ordinary eigenfunctions, we get
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Proposition 2 Let St, U tS be the family of mappings and the

Koopman operator associated with ẋ = f(x) and Tt, U tT a

family of mappings and the Koopman operator associated

with ẏ = g(y). In addition, let h be a mapping such that

Sth(y) = h(Tt(y)), i.e. the two dynamical systems are

conjugate. If φ is a (generalized) eigenfunction at λ of U tS ,

then the composition φ ◦ h is a (generalized) eigenfunction

of U tT at λ.

It is easy to see that the most general case, in which

dimension of geometric eigenspaces is not necessarily 1,

is easily treated by considering geometric eigenspace of

dimension say 2 as two geometric eigenspaces of dimension

1. Keeping in mind that these correspond to -numerically -

the same eigenvalue, we can define generalized eigenvectors

corresponding to each eigenvector in - now separate - 1-

dimensional geometric eigenspaces.

IV. STABLE, UNSTABLE AND CENTER SUBSPACE

Let us recall the definition of stable, unstable and center

subspaces of ẋ = Ax: the stable subspace of the fixed

point 0 is the location of all the points that go to the

fixed point at the origin as t → ∞. The stable subspace is

classically obtained as the span of (generalized) eigenvectors

corresponding to eigenvalues of negative real part. In the

same way, the unstable subspace of the fixed point 0 is the

location of all the points that go to the fixed point at the

origin as t → −∞, and is classically obtained as the span

of (generalized) eigenvectors corresponding to eigenvalues

of positive real part. The center subspace is usually not

defined by its asymptotics (but could be, as we will see that

it is the location of all the points in the state space that

stay at the finite distance from the origin as t→∞ or grow

slowly (algebraically)), but rather as the span of (generalized)

eigenvectors associated with eigenvalues of zero real part.

Looking at equation (8) it is interesting to note that one

can extract the geometrical location of stable, unstable and

center subspaces from the eigenfunctions of the Koopman

operator. Order eigenvalues λj , j = 1, .., n from the largest

to the smallest, where we do not pay attention to the possible

repeat of eigenvalues. Let s, c, u be the number of negative

real part eigenvalues, 0 and positive real part eigenvalues.

Let λ1, ...λu be positive real part eigenvalues, λu+1, ..., λu+c

0 real part eigenvalues, and λu+c+1, ..., λs be negative real

part eigenvalues. Then the joint level set of (generalized)

eigenfunctions φ1 = 0, ..., φu+c = 0 is the stable subspace

Es, φ1 = 0, ..., φu = 0, φu+c+1 = 0..., φu+c+s = 0 is

the center subspace Ec, and φu+1 = 0, ..., φu+c+s = 0

the unstable subspace Eu. This generalizes nicely to non-

linear systems (see below) while we know that the standard

definition, where e.g. the unstable space is the span of

v1, ...,vu does not - even when the system is of the form

ẋ = Ax + εf for f bounded, f(0) = 0, and ε small,

we can only show existence of the unstable, stable and

center manifolds that are tangent to the unstable, stable and

center subspace Eu, Es, Ec, respectively. So, the joint zero

level sets of Koopman eigenfunctions define dynamically

important geometric objects- invariant subspaces - of linear

dynamical systems. This is not an isolated incident. Rather,

in general the level sets of Koopman eigenfunctions reveal

important geometrical information about the underlying dy-

namical system.

V. SYSTEMS WITH GLOBALLY STABLE EQUILIBRIA

Non-degenerate linear systems (i.e. those with detA 6= 0)

have a single equilibrium at the origin as the distinguished

solution. As the natural first extension to nonlinear realm, it

is interesting to consider a class of nonlinear systems that (at

least locally) have an equilibrium as the only special solution,

and consider what spectral theory of the Koopman operator
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for such systems can say.

For systems that are stable to an equilibrium from an open

attracting set, we develop in this section a theory that strongly

resembles that of linear systems - as could be expected once

it is understood how Koopman eigenfunctions change under

conjugacy - the topic we discuss first. Geometric notions that

were discussed in the previous LTI context, such as stable,

unstable and center manifolds are developed in this nonlinear

context.

VI. KOOPMAN EIGENFUNCTIONS UNDER CONJUGACY

Spectral properties of the Koopman operator transform

nicely. Consider a nonlinear system ẏ = g(y), globally

stable (in its domain of definition) to an equilibrium. Let

St, U tS be the family of mappings and the Koopman operator

associated with ẋ = f(x) and Tt, U tT a family of mappings

and the Koopman operator associated with ẏ = g(y).

Assume that φ(x) is an eigenfunction of U tS associated with

eigenvalue λ. In addition, let h be a mapping such that

Sth(y) = h(Tt(y)), i.e. the two dynamical systems are

conjugate. Then we have

exp(λt)φ◦h(y) = φ(Sth(y)) = φ(h(Tt(y))) = U tT (φ◦h(y)),

(24)

i.e. if φ is an eigenfunction at λ of U tS , then the composition

φ ◦ h is an eigenfunction of U tT at λ. In other words, if

we can find a global conjugacy to a linear system then the

spectrum of the Koopman operator can be determined from

the spectrum of the linearization at the fixed point.

VII. EIGENMODE EXPANSION

The Koopman semigroup of operators U t describes the

evolution of a (vector-valued) observable f : Rn 7→ Cm

along the trajectories of the system and is rigorously defined

as the composition U tf(x) = f ◦ φ(t,x). In particular, for

an analytic observable, the spectral decomposition of the

operator yields [15]

U tf(x) =
∑

{k1,...,kn}∈Nn

sk11 (x) · · · sknn (x)vk1···kn e
(k1λ1+···+knλn)t.

(25)

The functions sj(x), j = 1, . . . , n, are the smooth eigen-

functions of U t associated with the eigenvalues λj , i.e.

U tsj(x) = sj(φ(t,x)) = sj(x)e
λjt , (26)

and the vectors vk1···kn are the so-called Koopman

modes [16], i.e. the projections of the observable f onto

sk11 (x) · · · sknn (x). For the particular observable f(x) = x,

(25) corresponds to the expression of the flow and can be

rewritten as

U tx = x∗ +

n∑
j=1

sj(x)vj e
λjt

+
∑

{k1,...,kn}∈Nn
0

k1+···+kn>1

sk11 (x) · · · sknn (x) · vk1···kne(k1λ1+···+knλn)t

The first part of the expansion is similar to the linear case. We

recognize here that the operator formalism we are developing

leads to a striking realization: the only difference in the

representation of dynamics of linear and nonlinear systems

with equilibria on state space is that in the linear case,

the expansion is finite, while in the nonlinear case it is

infinite. In linear systems, we are expandding the state x(p)

which itself is a linear function on the state-space, in terms

of eigenfunctions of the Koopman operator that are also

linear in state x(p). In the nonlinear case, this changes - the

Koopman eigenfunctions are nonlinear as functions of state

x(p) and the expansion is infinite. It is also useful to observe

that the expansion is asymptotic in nature - namely, there are

terms that describe evolution close to an equilibrium point,

and terms that have higher expansion or decay rates.
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VIII. STABLE, UNSTABLE AND CENTER MANIFOLDS

Let x∗ be a unique equilibrium point of an analytic nonlin-

ear system, with eigenvalues λj , j = 1, .., s associated with

the linearization at x∗. As shown in the previous section, the

Koopman operator associated with the system has spectrum

composed of products of the core eigenvalues λj , j = 1, .., s.

Just like in linear systems, order λj , j = 1, .., n from the

largest to the smallest, where we do not pay attention to

the possible repeat of eigenvalues. Let s, c, u be the number

of negative real part eigenvalues, 0 and positive eigenvalues.

Let λ1, ...λu be positive real part eigenvalues, λu+1, ..., λu+c

0 real part eigenvalues, and λu+c+1, ..., λu+c+s be negative

real part eigenvalues. Then the joint level set of (generalized)

eigenfunctions φ1 = 0, ..., φu+c = 0 is the stable manifold

W s, φ1 = 0, ..., φu = 0, φu+c+1 = 0..., φs = 0 is the

center manifold W c, and φu+1 = 0, ..., φs = 0 the unstable

manifold Wu of the fixed point x∗.

IX. CONCLUSIONS

We have applied Koopman operator theory to LTI and

nonlinear globally stable systems. The formalism reveals an

interesting way to characterize stable, center and unstable

subspaces in both the linear and nonlinear case based on

the same concept: the zero level sets of certain Koopman

eigenfunctions. It is interesting to consider the extentsion

of Koopman operator theory in the optimal control context.

The generator of the Koopman operator family for a vector

field f is f ·∇. In the case of uptime control, the operator of

interest is max(f+u) ·∇. This is not a linear operator in the

usual function algebra, however it is linear in the so-called

max plus algebra [17]. This opens up the possibility for

using spectral expansion and geometric methods in level set

theory of (appropriately modified) operator eigenfunctions in

optimal control theory.
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[10] Alexandre Mauroy, Igor Mezić, and Jeff Moehlis. Isostables,

isochrons, and koopman spectrum for the action–angle representation

of stable fixed point dynamics. Physica D: Nonlinear Phenomena,

261:19–30, 2013.
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