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Nonholonomic Multibody Mobile Robots: 
Controllability and Motion Planning in 

the Presence of Obstacles 1 

Jrr6me Barraquand 2'3 and Jean-Claude Latombe 3 

Abstract. We consider mobile robots made of a single body (car-like robots) or several bodies (tractors 
towing several trailers sequentially hooked). These robots are known to be nonholonomic, i.e., they 
are subject to nonintegrable equality kinematic constraints involving the velocity. In other words, the 
number of controls (dimension of the admissible velocity space), is smaller than the dimension of the 
configuration space. In addition, the range of possible controls is usually further constrained by 
inequality constraints due to mechanical stops in the steering mechanism of the tractor. We first analyze 
the controllability of such nonholonomic multibody robots. We show that the well-known Controll- 
ability Rank Condition Theorem is applicable to these robots even when there are inequality 
constraints on the velocity, in addition to the equality constraints. This allows us to subsume and 
generalize several controllability results recently published in the Robotics literature concerning 
nonholonomic mobile robots, and to infer several new important results. We then describe an 
implemented planner inspired by these results. We give experimental results obtained with this planner 
that illustrate the theoretical results previously developed. 

Key Words. Path planning, Robotics, Mobile robots, Controllability, Nonholonomy, Optimal 
maneuvering, Collision avoidance. 

1. Introduction. We consider mobile robots made of a sequence of one or several 
hinged bodies rolling on a flat ground among obstacles (e.g., a luggage carrier in 
an airport facility). The first body of the sequence is called the tractor and the 
other bodies (if any) are called the trailers. We call such robot a multibody mobile 
robot. We model it as a sequence of hinged rectangles (or any other two- 
dimensional geometric object) moving in the plane, as shown in Figure 1. We first 
analyze the controllability of multibody mobile robots, and then we describe an 
operational path planner whose design derives from this analysis. We describe 
experiments conducted with this planner. 
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Fig. 1. Two-body mobile robot. 

The motions of a multibody mobile robot are constrained by two kinds of 
kinematic constraints involving the velocity: 

Equality constraints, which are caused by the contacts between the wheels and 
the ground (we assume these contacts to be pure rolling contacts between rigid 
objects). They express the fact that the relative velocity of two points in contact 
is zero. It can be shown that these constraints are nonintegrable. They make 
the dimension of the space of achievable (admissible) velocities smaller than 
the dimension of the robot's configuration space. They are called non- 
holonomic equality constraints. 

Inequality constraints, which are caused by mechanical stops in the steering 
mechanism of the tractor. Unlike equality constraints, they do not reduce the 
dimension of the set of achievable velocities. Nevertheless, they locally restrict 
the achievable directions for the velocity to a subset of the tangent space of the 
configuration space at the current configuration of the robot. 

For example, consider a regular automobile car (one-body robot). In the absence 
of obstacles, it can attain any position in the plane with any orientation. Hence, 
the configuration space is three dimensional. However, assuming no slipping of 
the wheels on the ground, the velocity of the midpoint between the two rear wheels 
of the car is always tangent to the car orientation. The space of achievable velocities 
at any configuration is thus two dimensional. This corresponds to an equality 
constraint on the velocity. If, in addition, the steering angle of the front wheels is 
limited by mechanical stops, the space of achievable velocities at any configuration 
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is further restricted to a two-dimensional cone around the neutral position. This 
corresponds to an inequality constraint on the velocity. 

Although multibody mobile robots are the primary focus of this paper, there 
exist other important examples of nonholonomic robots addressed in the Robotics 
literature, including levitating, undersea, and flying robots actuated by thrusters 
[2], [39], and dextrous hands when the spherical tips of their fingers perform 
rolling motions in contact with an object [12], [10], [35]. Some of our results are 
quite general and potentially apply to many different nonholonomic robots. 

Path planning consists of constructing a path joining two input configurations 
in the free subset of the robot's configuration space, i.e., the set of configurations 
where the robot has no intersection or contact with the obstacles. Any free path, 
however, is not feasible. Kinematic constraints also require that the tangent to 
the path at any configuration be within the subspace of achievable velocities 
selected by the constraints. Hence, a free path for a nonholonomic robot typically 
includes "reversals," i.e., backing-up configurations (cusps) where the robot stops 
and changes the sign of the velocity (think, e.g., of the parallel parking of a car 
along a sidewalk). 

Finding a feasible free path for a nonholonomic robot is much more difficult 
than finding a free path for a holonomic robot having the same geometry and the 
same dimension of configuration space [29], [32], [6], [7], [34]. Path planning 
for a nonholonomic robot directly relates to the controllability issue: Do the 
equality and inequality kinematic constraints restrict the set of configurations 
achievable by the robot? A robot is said to be controllable iff, for any distribution 
of the obstacles in the workspace, there exists a free path between two configura- 
tions, then there also exists a feasible free path between the same two configura- 
tions. Showing that a robot is controllable is a first essential step toward building 
a planner for that robot. It, nevertheless, remains to conceive a method for actually 
constructing feasible free paths. Furthermore, in order to be satisfactory, this 
method should produce paths that include reasonable number of reversals. This 
property is particularly important, since reversals cannot be smoothed out at 
execution time and, hence, require the robot to stop. 

The main results of this paper are presented in Sections 4, 5, and 6. 

In Section 4, we generalize the mathematical analysis of nonholonomic con- 
straints previously presented in [6] and [7]. Using standard results in 
nonlinear control theory (namely, the Controllability Rank Condition Theor- 
em for nonlinear systems), we state a general result applicable to robots 
subject to equality and/or inequality kinematic constraints involving the 
velocity. These constraints may be linear or nonlinear in the velocity para- 
meters. From there, we infer new results on the controllability of non- 
holonomic robots. 

In Section 5, we apply these results to multibody mobile robots. We show that 
a multibody mobile robot that can go forward and backward is controllable 
whenever there are at least two different admissible positions of the steering 
wheel of the tractor. This includes the classical case where the tractor has a 
lower-bounded turning radius and the more exotic case where the tractor can 
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only turn to the left (or to the right). Hence, if there exists a free path for a 
multibody mobile robot whose steering angle is constrained to be within some 
interval, then there exists another path that uses only the extremal values of 
the steering angle. 

In Section 6, we describe an implemented planner that searches a finite space 
obtained by discretizing the controls of the robot according to the above 
theoretical result. For any given problem that admits a solution path, 
it is guaranteed to find a path with minimal number of reversals, provided 
that the discretization parameters have been set fine enough. The planner is 
approximate in the sense that it produces a path whose final configuration 
is only contained in a neighborhood of the goal configuration. This neighbor- 
hood can be set as small as one wishes. The time/space complexity of the 
planner is exponential in the number of bodies. For one-body and two-body 
mobile robots, the planner is relatively fast and has solved a variety of 
nontrivial problems in reasonable time. 

Before presenting these results, we relate our work to other research on non- 
holonomic robots (Section 2), and we provide some background in nonlinear 
control Systems (Section 3). 

Possible applications of the results presented in this paper include navigation 
of autonomous robots, automated parking of personal cars and trucks, auto- 
nomous navigation of luggage carrier in airport facilities, automatic planning of 
the movements of machines in a construction site, and computer-aided design of 
access ports for trucks in industrial and commercial facilities. 

2. Relation to Other Work. Research on collision-free path planning has been 
very active during the past 10 years (e.g., see 1,-263). Today, the mathematical and 
computational structures of this problem for holonomic robots are reasonably 
well understood. Practical planners have also been implemented in more or less 
specific cases 1,9], 1,,163, 1-283, 1,,133, 1,14], 1,383, 1-43. In contrast, the interest in path 
planning with nonholonomic constraints is more recent. 

The problem was first introduced in the Robotics literature by Laumond 1-293. 
Laumond proved that the single-body mobile robot is controllable. His proof is 
based on the definition and combination of two basic maneuvers (standard paths 
including several reversals). One maneuver allows the robot to move sidewise, 
while the other makes it rotate with a zero turning radius. Each maneuver describes 
a path in configuration space that can be enclosed in an arbitrarily small open 
set. This proof was later used to design an actual two-phase planner. In the first 
phase, the planner generates a free path by ignoring the nonholonomic constraints. 
In the second phase, it transforms this path into a topologically equivalent free 
path that satisfies the nonholonomic constraints by introducing maneuvers of the 
above types 1,,313 . However, the number of maneuvers generated by this planner 
may be very large, even when there exist feasible free paths with no or few reversals. 
Using the same idea and a result by Reeds and Shepp 1-42] establishing the shape 
of the shortest feasible paths for a car-like robot in the absence of obstacles, a 
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three-phase planner for car-like robots has recently been developed [44], [23] and 
reused in [27]. In the first phase, the planner generates a free path in the 
configuration space. In the second phase, it recursively decomposes this path into 
subpaths, until all the subpaths can be replaced by free shortest feasible paths. 
The outcome of the second phase is thus a free feasible path. In the third phase, 
the planner attempts to optimize the path by replacing feasible subpaths (randomly 
selected) of the current path by free shortest feasible paths. An interesting 
property of this algorithm is that, when the robot and the obstacles are described 
as polygons, it is both complete, i.e., it generates a path whenever one exists and 
returns failure otherwise, and exact, i.e., it generates a path that exactly connects 
the initial and goal configurations. But the number of reversals in the output paths 
may be far from optimal since the transformations carried out in the second and 
third phases are essentially local operations. 

Another planning approach has been specifically developed and implemented 
for one-body mobile robots. It consists of planning the motion of the robot in a 
network of"corridors" [45] or "lanes" [47] that are extracted from the workspace 
in a first phase of processing. Local planning techniques are then used to generate 
turns for transferring the robot from a corridor (or lane) to another at a 
"crossroad" of the network. The difficulty of the approach is that for most 
workspaces one cannot define an intrinsic set of corridors (or lanes). In addition, 
the various turns that have to be generated along a path usually interact; the local 
planning techniques may result in quite inefficient paths, or they may even fail 
when a feasible free path exists. 

The motion of a point along paths having lower-bounded curvature radius has 
been investigated in [-30], [15], and [22]. Fortune and Wilfong proposed a 
complete algorithm for deciding whether there exists a feasible path between two 
configurations among polygonal obstacles [15]. The time and space complexity 
of this algorithm is exponential in the number of vertices of the obstacles. Using 
some of the results presented in [15], Jacobs and Canny described an implemented 
polynomial-time planner [22] which discretizes the boundary of the polygonal 
obstacles and connects the points resulting from this discretization by paths of 
standard shapes, called "jumps," which are made of circular arcs and straight 
segments. The resulting paths may partially lie in contact space. The time 
complexity of the algorithm is 0((n3/6)log n+n2/62), where n is the number of 
obstacle vertices and 6 is the distance between two discretized points in an obstacle 
edge. 

The fact that the results obtained in nonlinear control theory are applicable to 
characterize the controllability of robots subject to linear equality constraints on 
the velocity was first pointed out to the Robotics community in [34] and [32]. 
The main results used in these papers and subsequent ones is the following: If the 
Lie algebra of the vector fields generated by the controls of a nonholonomic robot 
has the same dimension as the configuration space of the robot (Controllability 
Rank Condition), then this robot is controllable. Li and Canny used these results 
to prove that a ball can reach any configuration on a plane by a pure rolling 
motion [34]. They also showed that a ball can reach any configuration in contact 
with a fixed ball by rolling, if the radii of the two balls are different. Laumond 
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and Sim6on [32], and Barraquand and Latombe [4], [6], [7], working in- 
dependently, applied results in nonlinear control to prove that one-body and 
two-body mobile robots are controllable. However, both proofs consider only the 
linear equality constraint on the velocity deriving from the rolling contact between 
the wheels and the ground. Furthermore, they assume that there is no additional 
inequality constraint imposed on the steering angle by mechanical stops in the 
steering mechanism. A general strategy for motion planning with nonholonomic 
constraints using methods of control theory is also presented in [25], but it is 
currently limited to problems without obstacles. 

Our contribution to robot motion planning with nonholonomic constraints 
reported in this paper is threefold: 

1. We show that a careful instantiation of the Controllability Rank Condition 
Theorem subsumes and generalizes most previous results on the controllability 
of nonholonomic robots. 

2. We apply this result to multibody mobile systems and we derive new formal 
results related to the controllability of these systems, even in the presence of 
inequality kinematic constraints. 

3. We describe an implemented planner inspired by these results which is effective 
for both one-body and two-body mobile robots. This planner presents some 
interesting practical advantages over other planners proposed so far. 

3. Nonlinear Control Systems. Later in this paper we will regard a nonholonomic 
robot as a nonlinear control system. In this section we recall the definition of 
some basic concepts in controllability theory and we review important results 
related to nonlinear control. See [20] for a more detailed presentation of these 
concepts and [34], [6], and [7] for another presentation of the application of 
nonlinear control to nonholonomic robots. 

3.1. Definition o f  Controllability. Let f~ be a measurable subset of R" and let 
cg be a connected manifold of dimension n. We consider a control system of the 
form 

(1) 0 = flq, u), 

where u Ef], q ecg, andf is  smooth as a function of q. fl represents the control space 
of the system, i.e., the set of admissible control values, cg represents the state space, 
or configuration space, i.e., the set of distinguishable states that the system may 
take at any given time. 

Given a subset U c cg, the configuration ql e U is said to be U-accessible from 
qoe U if there exists a piecewise constant control u(t), t~ [to, tl], such that the 
solution q(t) of the system (1) satisfies q(to) = qo, q(tO = q~ and q(t)e U, for all 
tS[to,  tl]. We write qlAvqo. The set of points U-accessible from q0 is denoted 
by Av(qo). (Remark. In [20], u(t) is more generally defined as a bounded measurable 
function. This is too general for our multibody mobile robot problems, where u 
will stand for the pair (linear velocity, steering angle) of the robot's tractor. 



Nonholonomic Multibody Mobile Robots 127 

Theorems 2 and 3 stated in Section 3.3. are the only results of [20] that we use 
in this paper. They remain true with this more specific class of control functions.) 

The system (1) is controllable at qo iff A~(qo ) = rg. If this is true for any state 
qo~rg, then the system is controllable. This simply means that any state is 
Cg-accessible from any other state. However, this global notion of controllability 
is not easily amenable to a mathematical characterization. In this respect, a more 
suitable concept is the notion of local controllability defined below. 

The system (1) is locally controllable at qo iff for every neighborhood U of qo, 
Av(qo ) is also a neighborhood of qo. It is locally controllable iff this is true for 
every qo ~ cg. 

Accessibility is a reflexive and transitive relation, but it may not be symmetric. 
The symmetric closure of this relation is called weak accessibility, q' is weakly 
U-accessible from q iff there exists a sequence qo , . . . ,  qr such that q = qo, q' = q,  
and either qiAvqi-1 or qi_iAvq ~ for every i~[1, r]. The set of points weakly 
U-accessible from q is denoted by WAy(q). 

The system (1) is weakly controllable at qo iff WA~(qo ) = cg. If this is the case, 
the system is necessarily weakly controllable at any other configuration, because 
weak accessibility is an equivalence relation; hence, the system is weakly control- 
lable. Again, weak controllability is a global concept that has a more useful local 
equivalent. 

The system (1) is locally weakly controllable at qo if for every neighborhood U 
of qo, WAv(qo) is also a neighborhood of qo. It is locally weakly controllable if 
this is true at every qo ~ cg. 

Clearly, by patching sequences of open subsets, local controllability implies 
controllability. In the same way, local weak controllability implies weak control- 
lability. Furthermore, for symmetric systems, i.e., systems for which the access- 
ibility relation is symmetric, (local) weak controllability is equivalent to (local) 
controllability. Therefore, for a symmetric system, local weak controllability implies 
controllability. 

3.2. Frobenius Theorem. Consider the set X(cg) of smooth vector fields on rg. 
Using (1), each constant control u~f~ defines a vector field Xu =f l ' ,  u) on rg. We 
let F denote the set of all the vector fields corresponding to the admissible values 
of the control 

r -- 3u a ,  X -- A ' ,  u)}. 

Let (X, Y) be any pair of vector fields in X(~). Given any configuration q ~ cg, let 
us consider a path in (g starting at q and obtained by concatenating the four 
following paths: 

The first path follows the flow of X during 6t. (The integral curve of a vector 
field X on (g is a curve whose tangent at every q is X(q). We say that the curve 
follows the flow of X.) 

The second path follows the flow of Y during fit. 
The third path follows the flow of - X  during 3t. 
The fourth path follows the flow of - Y during 6t. 
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Let q' be the configuration reached at the end of these four paths. A straightforward 
Taylor expansion shows that 

q ' - q  
lim - d Y. X - dX" Y, 
~t~O ~ t2  

where dY �9 X and dX. Y denote the products of the n • n matrices 

d Y =  

icY, oY~ ~ 

~Y. eY. 
~ql Oq. 

; d X =  

/6X1 0X1\ 

: 

~X, ~X, 

Oql gq. 

and the n vectors 

X = (X 1 X2. . .  x,)T; Y = (Y1 Y2..- y,)T. 

In the above expressions ql . . . . .  q, denote the coordinates of q in some chart, 
and )(1 . . . . .  X, and Y1, . . . ,  Y, denote the components of the vectors X and Y 
in the basis of the tangent space Tq(Cg) induced by this chart. The expression 
dY" X -  dX" Y determines a new vector field which is commonly denoted by 
[X, }1] and called the Lie bracket of X and Y. 

By definition, the Control Lie Algebra associated with F, denoted by CLA(F), 
is the smallest subalgebra of X(cg) which contains F. Stated otherwise, CLA(F) is 
the subspace of X(cg) generated by all the linear combinations of vector fields in 
F and all their Lie brackets recursively computed. 

For  every qo ccg, let CLA(F)(qo) denote the subspace of tangent vectors spanned 
by the vector fields of CLA(F) at qo- A connected submanifold cg, of Cg is an integral 
submanifold of CLA(F) if at each q c ~g' the tangent space to cg, is contained in 
CLA(F)(q). ~' is a maximal integral submanifoM of CLA(F) if it is not properly 
included in any other integral manifold. 

The Frobenius integrability theorem can be stated as follows. 

THEOREM 1. I f  the dimension of  CLA(~(q) has a constant value k for every q ~ ,  
there exists a partition of cg into maximal integral submanifolds of CLA(F) all of  
dimension k. 

3.3. Controllability Rank Condition. The system (1) is said to satisfy the Controll- 
ability Rank Condition at qo iff the dimension of CLA(F)(qo ) is exactly the 
dimension n of cg. If this is true for every qo ~ c~ then the system is said to satisfy 
the Controllability Rank Condition. 
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The following results derive from the work of Chow [11]. They were elucidated 
in [19], [18], [36], [43], [24], and [20]. 

THEOREM 2. I f  the system (1) satisfies the Controllability Rank Condition at qo, 
then it is locally weakly controllable at qo. 

THEOREM 3. I f  the system (1) is locally weakly controllable, then the Controllability 
Rank Condition is satisfied on an open dense subset of  oK. 

The two theorems taken together are known as the Controllability Rank 
Condition Theorem. In particular, if we only consider symmetric systems for which 
the dimension of CLA(F)(q) does not depend on q, we can infer that a control 
system is locally controllable (hence, controllable) iff it satisfies the Controllability 
Rank Condition. 

Another presentation of the Controllability Rank Condition Theorem based on 
the concept of distribution can be found in [21]. Its relation to nonholonomic 
robots is analyzed in [34], [6], and [7]. Unlike this presentation, which only 
applies to linear equality constraints, the formulation used above allows us to deal 
with nonlinear equality and inequality constraints, as shown in the next section. 

4. Nonholonomic Constraints 

4.1. Terminology. We consider a robot d made of one or several rigid bodies 
moving in a workspace ~ .  A configuration of d is a specification of the 
position of every point in d with respect to a Cartesian frame embedded in 
[37]. The configuration space of d is the space cg of all the possible configurations 
of d .  The configuration space of a mechanical system made of rigid bodies is a 
smooth manifold [3]. For instance, the configuration space of a two-dimensional 
rigid body translating and rotating in ~r = R 2 is ~ = R 2 • S 1, where S 1 denotes 
the unit circle. In virtually any practical situation, the range of positions reachable 
by the robot's bodies can be bounded, making ~ into a compact manifold. Let n 
be the dimension of ~. We represent a configuration q as a list (q l , . . . ,  q,) of n 
generalized coordinates with appropriate modulo arithmetic on the angular 
coordinates [26]. 

Suppose that a scalar constraint of the form 

(2) F(q, t) = 0, 

with q e cr and t denoting time, applies to the motion of d .  Assume further that 
F is smooth with nonzero derivative. Then, in theory, we could use the equation 
to solve for one of the generalized coordinates in terms of the other coordinates 
and time. Thus, equation (2) defines a (n - 1)-dimensional submanifold of cr 
Therefore, instead of cr which is over-dimensioned, we can choose this submani- 
fold as the actual configuration space of d and the n - 1 remaining coordinates 
as its actual generalized coordinates. Constraint (2) is called a holonomic equality 
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constraint [17]. If it depends on t, d ' s  configuration space is time-dependent, 
otherwise it is time-independent. (Many usual holonomic constraints, e.g., the 
prismatic and revolute joints of a manipulator arm, are time-independent.) More 
generally, there may be k constraints of the form (2). If they are independent, i.e., 
their Jacobian matrix has full rank, they determine an (n - k)-dimensional sub- 
manifold of cg, which is the actual configuration space of d .  

A constraint of the form 

F(q, t) < 0 or F(q, t) <_ 0 

typically acts as a mechanical stop or an obstacle. It simply determines a subset 
of cg having the same dimension as cg. 

A constraint of the form (2) is only a kinematic constraint of one sort. Another 
one is a scalar constraint of the form 

(3) 6(q, ~ 0 = 0 

with ~ ~ Tq(r the tangent space of cg at q. The pair (q, q) belongs to TB(r the 
tangent bundle associated with the manifold cg. The tangent space represents the 
space of the velocities of d .  The tangent bundle is also called the "phase space" 
in physics and the "state space" in control theory. The tangent space of a smooth 
manifold is a vector space having the same dimension as the manifold. Hence, 
Tq(Cg) has dimension n for every q E (g. The tangent bundle TB(~) is a smooth 
manifold of dimension 2n. 

A kinematic constraint of the form (3) is holonomic if it is integrable, i.e., 
can be eliminated and (3) rewritten in the form (2). Otherwise, the constraint is 
called a nonholonomic equality constraint 1-17]. As we will see below, a non- 
holonomic equality constraint restricts the space of velocities achievable by d at 
any configuration q to a (n - 1)-dimensional linear subspace of Tq(r without 
affecting the dimension of the configuration space. If there are k independent 
nonholonomic equality constraints of the form (3), the space of achievable 
velocities is a subspace of Tq(r of dimension n - k. 

A nonholonomic equality constraint is often caused by a rolling contact between 
two rigid bodies. It expresses the fact that the relative velocity of the two points 
of contact is zero. When the motion in contact combines rolling and sliding, the 
expression depends on the friction coefficient of the two bodies, and hence is 
nonlinear. When there is no sliding, the nonholonomic constraint is linear in q- 
The second case, though less general than the first, is much simpler and quite 
widespread in practice. For instance, in the car example, this corresponds to 
assuming no slipping of the wheels on the ground. 

A constraint of the form 

G(q, c~, t) < 0 or G(q, O, t) < 0 

is a kinematic inequality constraint. It restricts the set of achievable velocities at 
any configuration q to a subset of Tq(Cg), having the same dimension as Tq(ff). A 
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constraint bounding the steering angle of a car is a typical kinematic inequality 
constraint. 

When dealing with constraints of the form (3), two important questions 
arise: 

1. The Integrabil i ty  quest ion:  Are they nonintegrable? that is, Are we sure that 
they are actually nonholonomic? 

2. The Controllabil i ty  quest ion: Do they restrict the set of configurations reachable 
from any given configuration? 

We investigate these questions in the next two subsections. First, under very 
general conditions, we show that the concept of kinematic constraint applied to 
a robot is equivalent to the concept of control system as defined in (1). This 
equivalence allows us to use results from nonlinear control theory to answer the 
above questions. Using the Frobenius Integrability Theorem, we give a necessary 
and sufficient condition of holonomy (and nonholonomy) for equality constraints 
of the form (3). Then, using the Controllability Rank Condition Theorem we 
analyze the second question. We state a necessary and sufficient condition under 
which kinematic constraints, whether they are linear or nonlinear, equality or 
inequality, have no effect on the range of achievable configurations. 

For simplicity, in the rest of the paper, we will assume that the kinematic 
constraints do not depend on time. However, all the results remain valid when 
constraints are time-dependent. 

4.2. Kinemat ic  Constraints  and  Control  Sys tems.  Let us consider a set of k < n 
independent kinematic constraints of the form (3) 

G(q, ~t) = (Gl(q, ?1),. . . ,  Gk(q, 4)) = (0, . . . ,  0). 

For each q, Gq = G(q, ") defines a function from Tq(rg) to R k. As the k constraints 
are independent, the Jacobian of this function has full rank. The subset of the 
tangent space verifying the kinematic constraints is simply G~- 1(0 . . . .  ,0). Accord- 
ing to the Implicit Function Theorem (e.g., see 1-46], p. 31), this subspace is a 
submanifold of Tq(q() of dimension n -  k. We denote a chart (local coordinate 
system) on this manifold by u = (Uk § 1 . . . .  , Un) and we define fq = u -  1. We obtain 
the following relation: 

= fq u) = f ( q ,  u). 

Under the additional assumption t h a t f i s  smooth as a function of q, this relation 
locally defines a nonlinear control system with n -  k controls (Uk+t, . . . ,Un) .  
Assume that we impose inequality constraints in addition to the equality con- 
straints mentioned above. These new constraints are transformed into inequality 
constraints applying to the controls by means of the inverse of the chart u. They 
define the shape of the set f~ of admissible controls. 

Reciprocally, if we consider any control system of the type (1) such that 
f(q, -) = fq has full rank as a function of the control u --- (u k + 1 . . . . .  Un), then we can 
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apply again the Implicit Function Theorem for every q and obtain a chart Gq = 
(G~, . . . ,  G~) verifying: 

for all ~'i~ [1, k]: 

ViE[k + 1, n]: 

G~(fq(u)) = G~(gl) = G~(q, q) -- O, 

G~(fq(u)) = G~([I) = ui. 

The first k equalities precisely define k independent kinematic constraints. Further- 
more, the inequalities on the controls that define the shape of the set ~ are 
transformed into inequalities on the velocity by means of the G~, i t  l-k+ 1, n]. 

Therefore, in general, a robot subject to a set of k independent kinematic 
constraints is locally equivalent to a control system with n - k controls for which 
the funct ionfhas  full rank in u. Furthermore, any additional inequality constraint 
on the velocities is equivalent to an inequality constraint on the controls. 

4.3. Nonholonomy and Controllability. Consider a robot subject to a set of k 
independent kinematic equality constraints of the form (3). To answer the integra- 
bility question, we first compute the equivalent control system, i.e., the function 
f (q ,  u), as indicated above. 

We can characterize the integrability of the constraints using the Frobenius 
Theorem. For each configuration q, the dimension r of CLA(~(q) is clearly greater 
than or equal to n - k. 

If r takes values greater than  n - k, then, according to Theorem 1 (Frobenius), 
there exists a partition of q( into maximal integral submanifolds of dimension 
greater than n - k. Hence, the constraints are nonintegrable. Indeed, if they were, 
there would be a single maximal integral manifold of dimension n - k (that we 
could choose as the actual configuration space of cg). Hence, the constraints are 
nonholonomic. 

On the other hand, if r is equal to n - k at every q, then the Frobenius Theorem 
entails that the maximal integral manifolds of CLA(F) have dimension n -  k. 
Therefore, the admissible configurations of the robot span an (n - k)-dimensional 
submanifold of cg. As a consequence, the velocities always belong to the tangent 
space of this submanifold, which is precisely CLA(F)(q). But these same velocities 
also belong to an (n - k)-dimensional submanifold S of the tangent space of cg at 
q defined by the constraints. Therefore, S is necessarily equal to CLA(IO(q), hence 
linear. This implies that the k equality constraints are linear in ~). This result, 
though intuitively clear, is worth being emphasized. To characterize holonomic 
constraints, we can therefore limit ourselves to those which are linear in the velocity 
parameters. In that case, we can replace the configuration space cg by the maximal 
integral submanifold passing through the initial configuration of the robot, and 
get rid of the constraints. The equations defining this submanifold can be written 
locally in the form (2), i.e., F(q) = 0, which is the integral form of the constraints 
(3). By differentiating this last equation as a function of time, we find again the 
constraints on the velocity 

dF(q).~ -- O, 
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which gives a more intuitive explanation of the fact that holonomic constraints 
are necessarily linear in the velocity parameters. 

In summary: 

PROPOSITION 1. Kinematic constraints that are properly nonlinear as functions of  
the velocity are necessarily nonholonomic. 

PROPOSITION 2 (Characterization of Holonomy). A robot subject to k independent 
equality constraints of the form (3) is holonomic if and only if the codimension n - r 
of the Control Lie Algebra is equal to the number k of  constraints. In such a case, 
the kinematic constraints are necessarily linear in the velocity parameters. 

The answer to the controllability question for robots subject to kinematic 
constraints is a direct consequence of the Controllability Rank Condition Theo-  
rem. As outlined above, given k independent constraints, we consider the equ i- 
valent control system with n - k controls. Then we analyze the dimension r of the 
Control Lie Algebra by recursively computing the Lie brackets of constant control 
vector fields. If this number r is constant and equal to n, then the system (i.e., the 
robot) is locally weakly controllable. Reciprocally, if the system (i.e., the robot) is 
locally weakly controllable, then r is equal to n on an open dense subset of ~g. If 
r varies on cg, complex phenomena may occur. The study of these phenomena 
forms the basis for the so-called Catastrophe Theory [41]. 

PROPOSITION 3 (Characterization of Controllability). A robot subject to kinematic 
constraints on the velocity--which may be linear or nonlinear, equality or in- 
equality--is locally weakly controllable if the dimension r of the Control Lie Algebra 
is maximal, i.e., equal to the dimension n of the configuration space. 

5. Application to Multibody Mobile Robots. Let us first consider a front-wheel- 
drive four-wheel car (one-body mobile robot). Our presentation can easily be 
modified to treat other types of car-like robots. We model the car as a two- 
dimensional object translating and rotating in the plane (Figure 2). The configura- 
tion space of the car is D x S 1, where D is a compact domain of R 2. We 
parametrize the car configuration by the coordinates X1 and Y~ of the midpoint 
P1 between the two rear wheels and the angle 01 between the x-axis of the 
Cartesian frame embedded in the plane and the main axis of the car. The velocity 
parameters are 21, I71, and 0. The controlparameters of the car are the velocity 
v e R of the midpoint Po between the two front wheels (if v > 0, the car moves 
forward) and the steering angle q~ measuring the orientation of the velocity of Po 
with respect to the main axis of the car (if 0 < ~o < n and v > 0 the car turns to 
the left). 

Assume that the contacts between the wheels and the ground are pure rolling 
contacts between two rigid bodies. Hence, in particular, there is no slipping. 
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Fig. 2. Car-like robot. 

Therefore, the velocity of P1 points (positively or negatively) along the main axis 
of the car. We have 

X l  : • c o s  01, ]71 = 2 s in  0,. 

The elimination of 2 yields the following kinematic constraint on the velocity 

(4) - X 1  sin 01+ I71 cos 01 = 0. 

The equivalent control system is easily computed 

= v cos q~ cos 01,~ 
(5) .Y1 = v cos ~0 sin 0 l, 

L101 = v sin ~o. J 

As v can take both positive and negative values, the system is symmetric. In 
such a case, weak controllability is equivalent to controllability (see Section 3.1), 
and the results of Section 4 are applicable. 

In the two-body mobile robot example of Figure 1, under the same assumption 
that the contacts between the wheels and the ground are pure rolling contacts 
between rigid bodies, there are two kinematic constraints. The velocity of the 
midpoint between the rear wheels of each body is tangent to the orientation of 
the body. More generally, we can consider a p-body mobile robot consisting of a 
tractor towing p - 1 trailers sequentially hooked. The midpoint between the rear 
wheels of the first body (the tractor) is denoted by P1- The midpoint between the 
rear wheels of the kth body is denoted by Pk. We therefore havep points P1, �9 �9 Pv, 
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whose coordinates are denoted by (X1, Y1) . . . .  , (Xp, Yp). The orientation of the kth 
body with respect to the x-axis of the Cartesian frame embedded in the plane is 
denoted by Ok. The configuration space of the p-body robot is D x ($1) p, where 
D is a compact domain of R 2. Its dimension is n = p + 2. We parametrize the 
configuration by (X1, Y, ,OI . . . . .  Or). The velocity parameters are )(1, I?1, 
0~ , . . . ,  0 v. The control parameters are the same as for the car, that is, the velocity 
v and the steering angle ~p. 

There are p kinematic equality constraints, one for each body. To establish these 
constraints, it is convenient to represent the points P 1 , . . . ,  Pp in the complex plane, 
i.e., Pk = Xk+iYk.  Lk denoting the length of the kth body, we can write the 
geometric constraint between the bodies k - 1 and k as 

Pk = Pk-  1 -- Lk exp(iOk), 

which can be rewritten 
k 

(6) Pk = P1 -- ~ Lt exp(i0t). 
I=2 

The kinematic constraint of the kth body is 

which is equivalent to 

Pk = 2k exp(iOk), 

~(exp(-  iOk)Pk) = O, 

where ,~(z) denotes the imaginary part of the complex number z. Combining this 
characterization with the derivative of (6) and using the linearity of the .~ operator, 
we obtain the kth kinematic constraint 

k 
- X 1  sin O k + 171 cos O k - ~ LlO l cos(0t -- Ok) = O. 

1=2 

In particular, for k = 1, we obtain 

(7) - X 1  sin 01 + 1?1 c o s  01 -~- O, 

which is precisely the kinematic constraint (4) of the car-like robot. 
For k = 2, we get 

(8) -X1 s i n  02-~ 1?1 c o s  02 - L202 = O. 

Equations (7) and (8) are the kinematic constraints of the two-body robot problem. 
Similarly, by combining Pk = 2k exp(iOk) with the derivative of 

]P k - -  P k _ l l  2 = L~ 
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we get 
2k = cos(0~ - 0~_ 1)2k- 1, 

and by induction 

Pk=VCOS~p(~=2Cos(OI--Ot-1))exp(iOk)'t 

Hence, the equivalent control system of a multibody mobile robot is composed 
of the equations (5) and 

LgOk=V COS ~o(kfi 1 cos(01-  0 z_ 1))sin(Ok-l--Ok), 
\ / = 2  

for all k ~ [2, p]. 

Let X(v, q~) denote the vector field corresponding to the constant control (v, ~0). 
We get 

X(v, ~o) = cos(q))X(v, 0) + sin(q0X(v, ~z/2). 

Let us take any two fields corresponding to two different values of the steering 
angle ~ol and ~o 2. The Control Lie Algebra generated by X(v, ~1) and X(v, ~o2) is the 
same as the one generated by X(v, 0) and X(v, ~/2), because of the bilinearity of 
the Lie Bracket operation 

[X(v, qh), X(v, ~02) ] = sin(~01 - ~o2)[X(v, 0), X(v, ~z/2)]. 

Therefore, the dimension of the Control Lie Algebra of the multibody car system 
is not affected by inequality constraints on the steering angle. It has been shown 
in [6] and [7] that this dimension is maximal for one-body and two-body mobile 
robots. Below we extend this result to a three-body robot. 

The constant control vector field space is generated by the two following vector 
fields 

X~ =X(1,  O) =~cosO D / sinO~, O, sin(O~-Oz) cos(O~-02)sin(OL303) ) - -  \ 
L2 ' 

X 2 = L 1X(1, n/2) = ( 0, 0, 1, 0, 0), 

whose Lie bracket is 

X3 = [X1, X2] = ( - s i n  0~, cos 01, O, 
cos(01 -- 02) 

L2 

sin(O 1 - 02)sin(O 2 - 03!~. 
; L3 

We next compute 

X4=LE[X1, X3]= O,O, OL~, 
cos(02 - 
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and 

X 5 = cos(01 - 02 ) IX1 ,  X 4 ]  - sin(01 - 0 2 ) [ X 3 ,  X4-] 

= 0, 0, 0, 

Finally 

Idet(X1, X 2 ,  X 3, X4,, X s )  [ = 
1 

~ 0 .  
L2L~ 

Using a proof by recurrence, Laumond extended the above result previously 
published in [8-] to a multibody mobile robot with an arbitrary number of trailers, 
hence showing that the Control Lie Algebra of a p-body mobile robot has 
dimension p + 2 [33-]. 

Wrapping up all the results presented above, we can state: 

PROPOSITION 4. A multibody mobile robot is controllable whenever the steering 
angle q~ o f  the tractor can take at least two different values (~ and ~o 2 in (--7~, "-~ 7~,] 
such that [q~2 - q~ll ~ ~. 

In particular: 

A multibody mobile robot is controllable if the steering angle q~ is con- 
strained to take values in a subinterval of [ -  n, + n,] of nonzero length, e.g., 
q~ e [-q~ . . . .  + q~max] with 0 < ~0ma x < n/2 (the most usual case in practice). 

A multibody mobile robot that can only turn to the left, i.e., such that 
~0 e q~min, -- q~m,x'] C [0, n,] is controllable, i.e., is "maneuverable to the right" 
(see Figure 7). This kind of constraint applies to some cheap remote controlled 
car. 

If there exists a feasible free path for a multibody mobile robot with limited 
steering angle r E [qh, q~2'] c [ - n ,  + n,], then there exists a feasible free path 
that uses only the extremal values of the steering angle. 

All these statements are direct consequences of the fact that the dimension of the 
Control Lie Algebra is not affected by the choice of the steering angles. 

6. Planning with Nonholonomic Constraints. We now describe an implemented 
planner deriving from the mathematical results presented above. In theory, the 
method used by the planner is applicable to any multibody mobile robots whose 
steering angle q~ takes values in [q~min, q~max'] C (--n/2, +n/2). The planner is 
approximate in the sense that, if it generates a path, this path is only guaranteed 
to end in a prespecified neighborhood of the goal configuration. This neighbor- 
hood can be set as small as we wish. 

Following the description of the planner, we establish a claim saying that the 
algorithm is asymptotically complete, i.e., for any given problem that admits a 
solution path, the planner is guaranteed to generate a solution path, provided that 
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the discretization of the search parameters has been set fine enough. We also 
establish two claims saying that the planner is asymptotically optimal, i.e., for any 
given problem that admits a solution path, the planner is guaranteed to generate 
a solution path with minimal number of reversals (changes of sign of the linear 
velocity), provided that the discretization of the search parameters has been set 
fine enough. The first optimality claim applies to car-like robots only, while the 
second, which is slightly weaker, applies to robots with more than one body. These 
claims are not constructive, but in addition to characterizing the asymptotic 
behavior of the planner, they can be particularly useful when robot control is 
imperfect and a prior estimate of navigation accuracy is available. 

Finally, we show experimental results obtained with the planner. The time/space 
complexity of the planner is exponential in the number of bodies of the mobile 
robot. This currently limits the practicality of our implementation to robots with 
one and two bodies. Our experiments have been conducted in these two cases only. 

The restriction that the steering angle be strictly comprised between - ~ / 2  and 
+ ~/2 is only aimed at avoiding the cases where the robot rotates with a zero 
linear velocity (hence, with a zero turning radius). Including _+ zc/2 in the range 
of values of ~0 would make the notion of reversal unclear. The planner could 
certainly be adapted, but the claim that it is asymptotically optimal would then 
become meaningless. 

6.1. Description of  the Planner. Let the workspace ~ of a multibody mobile 
robot d be populated by stationary obstacles Ni, i = 1 . . . . .  q. These obstacles 
map in the configuration space cg of d to regions ~gNi called C-obstacles and 
defined by 

cg~i = {qECg]d(q) c~ ~i ~ .(~}, 

where d(q) denotes the region of ~ occupied by d at configuration q. The 
subset (gfree = cg\UI= 1 cg~i is called the free space. We model both d and the Ni's 
as closed regions. Therefore, cgfre~ is an open subset of q(, hence a manifold of 
dimension n [26]. 

Given two configurations ql and q2 in cgf .... the path planning problem is to 
construct a path connecting qx to q2 and lying in cgf .... i.e., a continuous map 

�9 : s ~ [0 ,  1]  ~ ~(s) s ~ f ,  oo 

such that z(0)= ql and -c(1)= q2. In addition, we impose that z be of class 
piecewise C 1 and that the tangent to this path, d'c/ds, wherever it is defined, lie in 
the subset of the tangent space of cg selected by the kinematic constraints. 

Our planner assumes that the steering angle q~ takes its values in 

Eq~mi,, q)max] C ( - -  7~/2, "-~ ~/2) .  

A planning problem is defined by the geometry of the robot and the workspace, 
the initial and goal configurations (ql and q2), a neighborhood ~(q2) of the goal 
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configuration (to be explained later), and the two extremal steering angles (gomi, 
and gom,x)" Three tuning parameters, 6to, R, and H, are also given to the planner 
(see below). The planner generates a path by exploring a discrete subset of Cgfree. 
This exploration consists of concurrently constructing and searching a tree T. The 
root of the tree is the initial configuration ql. At any time during the search, every 
other node of the current T is a configuration already attained by the search. A 
list OPEN contains all the leaves of the current T whose successors have not been 
generated yet. The search iteratively selects a configuration q in OPEN, removes 
it from OPEN, and computes four successors of q by setting the two control 
parameters v and go to the four values in 

{ -1 ,  + 1) • {gomin, gomax}, 

and integrating the velocity parameters X1, I~1, 01,. . . ,  0p of the robot over the 
given constant interval of time 6t0 using the differential equations established in 
the previous section. The choice of 6to (an input to the planner) determines the 
grain of the discretization. The three equations of a one-body robot can easily be 
integrated analytically. For the fourth equation of a two-body robot our planner 
uses a fourth-order Runge-Kutta method. A computed successor q' of q is inserted 
in Tas a child ofq iff(1) the path from q to q' is collision-free, and (2) q' is not "too 
close" from a configuration already in T. The implementation of these two 
conditions is described below. 

The implemented planner only verifies that q' is collision-free (not the entire 
path connecting q to q'). This is done by intersecting the robot at q' with the 
obstacles using a simple divide-and-conquer technique described in [4]. The 
workspace is represented as a bitmap so that the obstacles can have arbitrary 
shape without affecting the time complexity of the collision-checking algorithm. 
The test, however, is not completely safe. This problem can be eliminated by 
precomputing the maximal Euclidean displacement p of the points in d during 
any of the four incremental motion steps defined above and isotropically growing 
the obstacles in the workspace bitmap by p. Then the collision-checking test 
becomes conservative. If the robot is a one-body car and both the robot and the 
obstacles are polygonal, then an even better approach is to check collisions exactly. 
By taking advantage of the fact that the incremental motion of every vertex of 
the robot (resp. the obstacles) relative to the obstacles (resp. the robot) is a circular 
arc (or a line segment if gomin or gomax is null), the computation can easily be done 
in time O(ab), where a and b are the number of vertices in the robot and the 
obstacles, respectively [44]. 

We could check that q' is not too close from a configuration already in T by 
defining a metric in the configuration space rg and verifying that the minimal 
distance between q' and the configurations currently in T is greater than some 
prespecified threshold. Instead, to simplify the test and make it as fast as possible, 
we represent the configuration space cg = R 2 x ($1) ~ as a (p + 2)-dimensional 
hyperparallelepiped [X lmin, slmax] x [y~l,," YT ax] x [0, 27~) v that we decompose 
into an array A of 2 Rtp§ smaller parallelepipeds of equal size, called cells. The 
parameter R is the resolution of the array. A cell is said to be explored if it contains 
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a configuration in T. A new configuration q' is inserted in T if it does not belong 
to an explored cell. Hence, the array A is used as a simple device for indexing the 
configurations attained by the search algorithm. Since the search accepts at most 
one configuration per cell, the resolution of A should be fine enough so that none 
of the successors of any configuration q lie in the same cell as q. Therefore, the 
choices of 6t 0 and R are not totally independent. 

The planner explicitly represents A as an array of bits. Hence, checking whether 
a new configuration q' is in an explored cell takes constant time. Since collision 
checking requires more time, the planner first verifies that a newly generated 
configuration q' is not in an explored cell; then, only if this is necessary, it performs 
the collision-checking test. 

The tree T is constructed as it is searched by a Dijkstra algorithm [1]. At every. 
iteration, it selects a configuration q in OPEN that has been achieved with minimal 
number of reversals. In addition, it cuts the search at depth H (an input to the 
planner). This means that, if the configuration q selected in OPEN is at depth H 
in the search tree, no successor is generated; the planner removes q from OPEN 
and immediately selects another configuration. Hence, the maximal number of 
nodes in the search tree is bounded, so that the search always terminates in a 
finite amount of time. It terminates with success, when it selects a configuration 
in OPEN that lies in the given goal neighborhood fr or with failure, when it 
starts a new iteration with an empty OPEN list. Thus, the planner may return a 
path that does not attain the goal configuration exactly. 

The asymptotic worst-case time required by the planner is proportional to 

K •  (S+ C), 

where K is the maximal size of the search tree, S is the time necessary to select 
the best configuration in OPEN and insert its accepted successors in OPEN, and 
C is the time necessary to check that a new configuration is collision-free. We 
have K <  min{4 n, IAI}, where [AI denotes the size of A. Let us assume that 
[A I < 4n and I A [ = 2"R (n = p + 2 is the dimension of the configuration space). We 
represent OPEN as a heap so that S is logarithmic in the maximal size of OPEN, 
which is of the same order of magnitude as the size of A. Let 2 zR be the size of the 
workspace bitmap in which the collision-checking operation is performed. Our 
simplified collision-checking algorithm, which in the worst-case "draws" the full 
contour of the robot in the workspace bitmap, takes O(2 R) time. Hence, posing 
c = 2 R (the number of discretization intervals along each dimension of the 
configuration space), the time complexity of the planner is O(c"(n log e + r and 
the space complexity O(e"). Both are exponential in the dimension n of the 
configuration space, hence in the number p of bodies of the robot. 

6.2. Asymptotic Completeness and Optimality. The following three claims are 
established assuming a perfect collision-checking operation. 

CLAIM 1 (Asymptotic Completeness). I f  ql and q2 are contained in the same 
connected component of ~f,~e, then the planner will find a path connectin9 ql to a 
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configuration in the goal neighborhood (r provided that we have set fit o small 
enough, H large enough, and R large enough. 

PROOF. This claim derives from Proposition 4, with g0x = ~0mi n and (~2 = ~/)max" 
In more explicit terms, the proposition tells us that if two configurations ql and 
q2 lie in the same connected component of ~fr~e (an open set), then there exists a 
finite sequence of controls ul . . . . .  u r e { - 1 ,  + 1} x {~/)min, ~0max}, with respective 
finite durations 6 t l , . . . ,  6tr, such that applying these controls successively with 
their specified durations produces a path that connects ql to q2 in Cgfree. 

Let us consider a path z (any one) defined as above. Assume some metric in c~. 
Let r />  0 be the smallest distance between z and the C-obstacles. For any e such 
that 0 < e < r/, if fit o is chosen small enough, then there exists a finite sequence of 
controls in { - 1 ,  + 1} x {g0min, @max}, each applied with the same duration fro 
(two successive controls may be identical), that moves the robot along a path z, 
that remains closer to z than e and whose endpoint z,(1) is closer to z(1) = q2 than 
e (see Appendix A). 

Let Too be the infinite tree implicitly defined by the initial configuration q~ (the 
root of Too), all its successors accessible by collision-free paths, each obtained by 
applying one of the four controls used by the planner during 6to (here, we use no 
indexing array), and all the successors of these successors recursively computed. 
(If the same configuration is attained by several different paths in the tree, it is 
represented as multiple nodes.) For a sufficiently small value of fro, Too is 
guaranteed to contain at least one path z~ defined as above. Let N be the minimal 
length of the sequence of controls producing a solution path contained in Too. 
(Such a path does not necessarily satisfy the above definition of a path z~.) 

We define Tn as the finite subtree of Too made of the first H +  1 layers of Too, 
including ql (as the first layer). Let H > N, so that Tn contains at least one solution 
path. Tn is further reduced by interrupting each of its paths beyond the first node 
representing a configuration contained in (#(q2), if such a node exists along the 
path. We can set the resolution R of A large enough so that Tn contains a solution 
path Zsol such that every node of Tn along this solution path represents a 
configuration q lying in a cell of A that q shares with no other distinct configuration 
q' of Tn, except if the node representing q' is in another solution path that satisfies 
the same property as Zso I, or if the path in T n connecting ql to the parent of q' 
contains more reversals than the subpath of Zso 1 connecting ql to the parent of q. 
Then the search algorithm of the planner is guaranteed to find a path to a 
configuration contained in the goal neighborhood if(q2). Indeed, since the size of 
the search tree is bounded, the search is guaranteed to terminate, and it cannot 
terminate with failure since this tree necessarily contains at least one solution path 
whose discovery cannot be prevented by the marking of the indexing array A. 

It now remains to verify that the relationships between 6to, R, and H are not 
inconsistent. First, 6to should be small enough so that there exists a solution path 
in Too. An admissible value of 6t 0 determines: 

(1) a minimal value hr, in for H (the minimal number of motion increments in a 
solution path); and 

(2) a minimal value ~1) rmi n for R (so that a motion of duration 6to is guaranteed to 
move out of a cell). 
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In turn, the minimal value of H, hm~,, determines a minimal value rtm2i), of R (based 
on the discussion in the above paragraph). Hence, it is possible to appropriately 
set 66, H, and R, in that order. [] 

The above proof is not constructive. Hence, if a problem admits a solution, we 
do not know in advance how we should set 66, H, and R to guarantee that a 
solution path will be found. Hence, for any problem, when the planner returns 
failure, it may be that the problem has no solution, or that we have incorrectly 
set 66, H, and/or R. However, if we have some prior estimate of the precision of 
the robot navigation system, we may estimate 6to according to this knowledge, 
and, from there, H and R. A failure by the planner then typically corresponds to 
the case where there is no obvious path that the robot could perform safely without 
needing further sensory interaction. 

CLAIM 2 (Asymptotic Optimality for One-Body Robot). Let q~ and q2 be two 
configurations in the same connected component of the free space of  a car-like robot. 
Let 2 be the minimal number of  reversals in a solution path connecting ql to q2, 
over all possible solution paths. Then the planner will find a path with 2 reversals 
connecting q~ to a configuration in the goal neighborhood f#(q2), provided that we 
have set fit o small enough, H large enough, and R large enough. 

(Actually, this claim holds for a slightly modified planner, as described in the 
following proof.) 

PROOF. Consider a one-body robot (i.e., a car). Property 5 (established in 
Appendix B) tells us that there exists a path z obtained by applying a finite 
sequence of controls ux . . . . .  u r n { - 1 ,  + 1} x {~0min, Cmax}, with respective finite 
durations 6tl . . . . .  6tr, which connects ql to q2 with 2 reversals. Like in the 
proof of Claim 1, we can approximate z by a path ~, produced by applying a finite 
sequence of controls in { - 1 ,  +1} x {~0min, ~0max}, each applied with the same 
duration 6to. By choosing 66 small enough, z~ remains closer to z than e (hence, 
lies in cgfree ) and the endpoint z,(1) is closer to ~(1) = q2 than e (hence, is in the 
goal neighborhood). In addition, z~ has the same number of reversals as ~ (see 
Appendix A). 

We define Too and TH as in the proof of Claim 1. Let N be the minimal length 
of the sequence of controls producing a solution path with 2 reversals contained 
in Too. Let H > N, so that Tn contains at least one solution path with 2 reversals. 
We can set the resolution of A large enough so that Tn contains a solution path 
Zop t with 2 reversals such that every node of T n along this solution path represents 
a configuration q lying in a cell of A that q shares with no other distinct 
configuration q' of Tn, except if the node representing q' is in another solution 
path with 2 reversals that satisfies the same property as row or if the path in TH 
connecting qx to the parent of q' contains more reversals than the subpath of %pt 
connecting ql to the parent of q. 

Let us assume (just for a moment) that all the configurations in TH are distinct. 
Then the search algorithm of the planner (which uses the number of reversals as 
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the cost function) is guaranteed to find a path with 2 reversals to a configuration 
contained in the goal neighborhood fg(qz)- Indeed, since the size of the search tree 
is bounded, the search is guaranteed to terminate; it cannot terminate with failure 
since this tree necessarily contains at least one solution path whose discovery 
cannot be prevented by the marking of A; and it will not return a path with more 
than 2 reversals since this tree necessarily contains at least one solution path with 
2 reversals whose discovery cannot be prevented by the marking of A. 

Now let Tn contain several times the same configuration. We should distinguish 
two cases. The first case is when various occurrences of some configuration are 
in the same path of the tree. It happens when the robot returns back to a previously 
attained configuration. The use of the indexing array A then prevents the search 
algorithm to loop. The second case is when two occurrences of the same 
configuration (call it q) are in different paths of Tn. This case may affect the 
optimality of the path. Call q(1) and q(2) the two nodes of T n representing these 
two occurrences of q. Assume that Tn contains a path with 2 reversals that 
traverses q(~). If the configuration qtt) is attained with some linear velocity (say, + 1) 
and the configuration q(2) with the other linear velocity (i.e., -1) ,  then the best 
path passing through q(2) contains 2 + 1 reversals and is not optimal. If the search 
algorithm attains q(2) before q(1) (a case that we cannot eliminate), then the use of 
the indexing array A prevents the planner to later accept q(~) in the search tree 
and, consequently, to find the optimal path passing through q(~). If this path is 
the unique optimal path in Tn, or if all the other optimal paths are prevented to 
be found in the same fashion, then the planner does not return the optimal path. 

This problem occurs only if Tn contains two occurrences of the same configura- 
tion in two different paths, with the two occurrences attained with different linear 
velocities. (The case of two occurrences attained with the same linear velocity raises 
no problem.) One easy way to solve this problem is to slightly modify the algorithm 
of the planner as follows. Rather than using one indexing array A, the new 
algorithm uses two arrays At_ ) and At+ ). All the cells in both arrays are initially 
marked "unexplored." If the search attains a configuration q, the corresponding 
cell in At_ ) (if q is achieved with the linear velocity - 1) or in At+ ) (if q is achieved 
with the linear velocity + 1), is marked "explored." A successor q' of a configura- 
tion q attained with the linear velocity - 1  (resp. + 1) is included in the search 
tree T only if the corresponding cell in At_ ) (resp. At+)) is marked "unexplored" 
(and q' passes the collision-checking test). This modification does not change the 
order of magnitude of the time/space complexity of the planner, nor the validity 
of Claim 1. [] 

The need for two indexing arrays suggested in this proof is illustrated by the 
example shown in Figure 3. The black region depicts obstacles. In order to go 
from configuration ql to configuration q2 the car has two possible routes that 
both pass through configuration q. The two paths differ between ql and q; one, 
call it path 1, passes above the circular obstacle on the left, while the other, path 
2, passes below the obstacle. The two paths coincide between q and q2. Path 1 
contains no reversal; path 2 contains one. If the planner uses a single indexing 
array A, and attains q through path 2 first, then it cannot generate path 1 to 
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Fig. 3. Need for two indexing arrays. 

connect q~ to q. In contrast, if it uses two arrays At_ ) and A~+), it can still 
generate path 1, and will ultimately return it. 

Like the proof of Claim 1, the above proof is not constructive. Hence, although 
we know that the planner is asymptotically complete and optimal, for a given 
problem involving a car-like robot, we do not know how to set 6to, H, and R, in 
order to guarantee that the planner will return a path with minimal number of 
reversals if there exists a solution path. Again, we can set 6to, H, and R 
according to our estimate of the robot precision. 

The above proof would remain valid for multibody robots, if we could extend 
the proof of Proposition 5 to these robots (see Appendix B). In any case, it can 
easily be modified in order to derive the following claim for multibody mobile 
robots. 

CLAIM 3 (Asymptotic Optimality for Multibody Robot). Let qa and q2 be two 
configurations in the same connected component o f  the free space of  a multibody 
mobile robot, and let 2 be the minimal number o f  reversals in a solution path 
connecting ql to q2, over all possible solution paths. Let us modify the planner so 
that, at every iteration, the search algorithm computes 2r successors o f  the con- 

figuration q selected in OPEN, each generated with a control in ( - 1 , " +  1} • 
{q~min, r + 6q~ . . . .  , q~mi~ + (r -- 1)6q~}, with 6q~ = qgma x -- ~Omi~)/(r -- 1), where 
r > 1 is a discretization parameter given to the planner. Then the planner willf ind 
a path with 2 reversals connecting ql to a configuration in the goal neighborhood 
cff(q2) , provided that we have set 6t o small enough, H large enough, R large enough, 
and r large enough. 

In order to reuse the proof of Claim 2, we should notice that any path Zopt of 
the multibody robot with minimal number of reversals 2 can be approximated as 
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close as we wish by a path with the same number of reversals that is generated 
by applying a finite sequence of controls in 

{ - - 1 ,  --}- 1} X {gomin, gomin-~-~q),  " ' "  , gomin'~-(  r - -  1)~go} ~(gomin, gomax), 

with 6go = (gomax - -  g o m i n ) / (  r - -  1), each during the same interval of time, by choosing 
r large enough. Indeed, we can construct a sequence {ul)~=l,2 .... of piecewise 
constant control functions, each with values in { -1 ,  +1} x {gomin, gomin+ 
t ~ i g o , ' ' ' ,  gominq ' - ( r i  - -  1) t~igo}U(gomin,  gomax), with 6~go - -  (gomax - g o m i n ) / ( r i  - -  1), each 
value being applied over the same interval of time, that  converges toward the 
control function generating zop t. The equations of motion of Section 5 show that 
the derivatives of the configuration parameters, X1, I71, 01,. . . ,  0p, are continuous 
functions of the control u = (v, go). Hence, the path z i obtained by integrating these 
equations (over a compact interval) with the control function ui can be made as 
close as we want to Zopt by choosing i large enough. 

6.3. Exper imenta l  Results. The planner described above has been implemented 
as a program written in C and running on a DEC 3100 MIPS-based workstation. 
Despite its conceptual simplicity, the planner solves tricky planning problems in 
reasonable amounts of time, as illustrated by the following experimental results. 

In all the examples shown below, the workspace is input as a 2 zg bitmap (with 
R = 7, 8, or 9, depending on the examples). The planner uses a single indexing 
array A of size 2 "R (with the same value of R as for the workspace bitmap). The 
value of 6to is set such that each motion step is of the same order of magnitude 
(slightly greater) than the L 1 diameter of a cell of A. A path planner such as ours 
is typically used over a workspace whose diameter is ten to thirty times the main 
dimension of the robot. The values of R and 6to used in our experiments are 
consistent with the precision of most existing mobile robots. The value of H is 
arbitrarily set to the number of cells in A. 

The implemented algorithm producing the experimental results shown below 
differs slightly from that described in Sections 6.1 and 6.2. First, the search 
terminates when it attains a configuration lying in the cell of A that contains the 
goal configuration. Second, as mentioned above, it uses a single indexing array A 
(as in Section 6.1). Third, whenever the range of values [gomln, gomax] of the steering 
angle go contains 0, this value is included in the discretized set of controls used by 
the planner. Hence, at each iteration, the search algorithm computes six successors 
(instead of four) of the configuration selected in OPEN.  Among the configurations 
that tie in O P E N  (i.e., have been attained with the same number of reversals), the 
planner selects one attained by a path that minimizes the length of the curve drawn 
by the point P1 of the tractor (midpoint between the two rear wheels). This choice 
essentially corresponds to favoring straight paths over curvy ones. The size of the 
search space is slightly increased, but the appearance of the output paths is much 
nicer. 

We first experimented with the planner using a simulated car-like robot 
(one-body mobile robot) with several workspace arrangements: 
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Figure 4 shows an example of the classical parallel parking problem with a very 
limited steering angle (q~E [-q~ . . . .  +~0max], with q~max = 30 degrees). The 
running time for that example was 20 seconds (R = 8). 

Figure 5 shows an example in a cluttered workspace when the maximal steering 
angle ~0max is 45 degrees. The running time was about 30 seconds (R = 8). Four 
reversals were necessary in this example. 

Figure 6 shows a path among randomly generated obstacles for a car whose 
maximal steering angle is 45 degrees. The running time was about 2 minutes 
(R = 9). The generated path contains four reversals. (More precisely, the 
workspace bitmap for this example was obtained by setting every cell to 0 
or 1 with equal probability 0.5, applying a Gaussian filter to the resulting 
map, and thresholding the result of the filtering operation.) 

Figure 7 shows a path for a car that can only turn to the left. The two extremal 
values of the steering angle are q)min = 22.5 degrees (on the left) and ~max = 45 
degrees (on the left). Seventeen reversals were necessary in this example. The 
running time was about 20 seconds (R = 8). 

One of the authors implemented another planner for car-like robots [27]. This 
other planner is based on the approach proposed in [44] and 1-23] with substantial 
internal differences. In general, for simple problems (intuitively, those for which 
there exists a holonomic path that lies far away from the obstacles), the planner 
described in [27] is faster than the planner described above; it also tends to 
produce shorter paths, but with more reversals. For trickier problems (intuitively, 
those for which nonholonomic paths have to be quite different from holonomic 
paths, e.g., as in parallel parking), the planner described above tends to be faster 
and to produce paths with many less reversals (hence, much faster to execute with 
a real robot). 

We also conducted several experiments with a tractor-trailer (two-body mobile 
robot): 

Figure 8 shows the parallel-parking example for a tractor-trailer with a very 
limited steering angle (~0max = 30 degrees). The running time was 2 minutes 
(R = 7). 

Figure 9 shows a path in a workspace with several obstacles. The maximal 
steering angle is 45 degrees. The running time was about 5 minutes (R -- 7). 

Figure 10 shows an example where the tractor-trailer has to maneuver in a 
cluttered workspace with a maximal steering angle equal to 45 degrees. The 
running time was about 10 minutes (R = 7). 

The easiness with which the above examples have been generated empirically 
demonstrates the robustness of the implemented planner. 

7. Conclusion. In this paper we have used results in nonlinear control theory to 
establish new results concerning the controllability of robots subject to constraints 
on the velocity. The constraints may be linear or nonlinear in the velocity. They 
may be equality or inequality constraints. These results have then been applied 
to multibody mobile robots (tractor towing a sequence of trailers rolling on a 



Nonholonomic Multibody Mobile Robots 147 

Fig. 4. Parking a car. 

Fig. 5. Car maneuvering in a cluttered workspace. 
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Fig. 6. Car maneuvering among randomly generated obstacles. 

Fig. 7, Parallel parking by a car that can only turn to the left. 
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Fig. 8. Parking a tractor-trailer. 

O 

Fig. 9. Tractor-trailer maneuvering among various obstacles. 
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Fig. 10. Tractor-trailer maneuvering in a cluttered workspace. 

plane), showing that multibody mobile robots are controllable whenever there are 
at least two different admissible positions of the tractor's steering wheel. We also 
derived the differential equations of motion for any multibody car system. 

We have designed a path planner deriving from these results. The planner 
generates a path by exploring a finite subset of the configuration space. This subset 
is defined by discretizing the control parameters of the robot according to the 
controllability result previously obtained. In theory, this planner is general and 
can generate paths for mobile robots with arbitrarily many bodies. We have shown 
that it is asymptotically complete, i.e., for a given problem, if the discretization of 
the search space is set fine enough, the planner is guaranteed to find a solution 
path, if the problem admits a solution path. We also have shown that it is 
asymptotically optimal for car-like robots and, in a slightly weaker sense, for 
multibody mobile robots. The planner is approximate in the sense that it produces 
a path whose final configuration is only contained in a neighborhood of the goal 
configuration. This neighborhood can be defined as small as we wish as part of 
the planning problem. 

In its current version, the planner focuses on generating paths with minimized 
number of reversals. In relatively rare circumstances, this may yield excessively 
long paths. Perhaps a good variant would be to replace the Dijkstra algorithm 
by a more general A* algorithm [40] with a cost function blending the number 
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of reversals and the length of the path and an admissible heuristic function equal 
to the distance to the goal. However, the optimality claims (Claims 2 and 3) would 
no longer be valid, even with respect to the new criterion combining the number 
of reversals and the length of the path. 

The time/space complexity of the planner is exponential in the number of bodies 
of the mobile robot. For this reason, the current implementation of the planner 
is only practical for mobile robots with one and two bodies. Experiments with 
these two sorts of robots have shown that, despite the brute-force method that it 
uses, the planner can solve tricky problems in a reasonable amount of time. The 
planner could possibly be extended to higher-dimensional configuration spaces by 
using potential field techniques to guide the search, as described in [-4] and [5]. 
However, so far, we have not investigated this extension. Planning efficient motions 
for mobile robots with more than two bodies is still an open computational 
problem. 

Appendix A. This appendix establishes a result used in the proofs of Claims 1 
and 2. In these proofs we consider a path z connecting two configurations q~ and 
q2 and obtained by applying a finite sequence of controls 

u 1 . . . . .  u,~ { - 1 ,  +1} • {~Omin, ~9max} , 

with respective finite durations 6 t l , . . . ,6 t r .  We show below that r can be 
approximated as close as we wish by a path L obtained by applying a finite 
sequence of controls in { -  1, + 1} x {~Omin, ~0max}, each with the s a m e  duration 6to. 
In addition, -c~ can be constructed so that it has the same number of reversals as z. 

Without loss of generality, we assume that any two consecutive controls in the 
sequence of controls producing z are different. We regard z as the concatenation 
of r subpaths z~ each executed with a single control u~, i.e., a constant linear velocity 
and a constant steering angle. 

Consider any subpath zi. Let z~(0) and zi(1) be its initial and final configurations, 
respectively. Starting at zi(0), let us apply a control sequence u!l) , . . . ,  u! k~), where 
ul j) = u~ for any j~  [-1, kJ ,  with each control u! j) applied with the same duration 
6to. The produced path, call it z'i, first coincides with % and only differs at the end 
(it may end slightly before or slightly after z~). By choosing 6to and k~ appropriate, 
we can make the endpoint of z'i as close as we wish to z~(1). 

Let us now construct L as a path starting at q~ and obtained by applying a 
control sequence of the form 

u] x), , u] kl), (~) , u(~ kr), 
. . . . . .  ~ U  r , . . .  

where u! j) -- ui for any i~ [1, r] and any j e  [1, kJ ,  with each control u! j) applied 
with the same duration 6t o. Clearly, since r is finite and only depends on the path 

(hence, fixed), we can choose 6to small enough so that there exist values for 
kx . . . . .  kr resulting in a path z~ that remains closer to ~ than a predefined distance 
e > 0 and whose endpoint z,(1) is closer to the endpoint "c(1) ofz than e. In addition, 
by construction, L has the same number of reversals as z. 
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Appendix B. Consider a multibody mobile robot whose steering angle cp takes 
values in [~0mi,, ~0mj ~ (--n/2, + 7(2). Let q~ and q2 be two configurations in the 
same connected component of cgf~r Proposition 4 tells us that there exists a free 
path between q~ and q2 that only uses controls in { - 1, + 1} x {q~m~,, q~ma~}" But 
it says nothing about the number of reversals of such a path. For a car-like robot 
(one body), the following proposition establishes that there exists such a path with 
minimal number of reversals, over all possible free paths between ql and q2. This 
proposition is used in the proof of Claim 2. 

PROPOSITION 5. Between any two configurations in the same connected component 
o f  the free space o f  a car-like robot there exists a free path with minimal number 
o f  reversals (over all possible free paths between 'the same two configurations ) that 
only uses controls in {-- 1, + 1} x {q)min, q)max}" 

PROOF. Let us consider a free path z joining the two configurations with 
minimal number 2 of reversals. Such a path necessarily exists. When the robot 
moves along z, the midpoint P1 between the two rear wheels of the car (see Section 
5) traces a curve 7 whose curvature is upper-bounded [26]. At every point of ? 
the current orientation of the car is defined by the tangent to 7 at this point. We 
partition ? into maximal segments ?i, i = 1, 2 . . . .  , of nonzero length, each with a 
curvature of constant sign (negative, positive, null). The number of such segments 
is necessarily finite. 

Let us first assume that (Pmin < 0 and q)max > 0. During a motion with q~ = q~min 
(resp. ~Pm,x) Pa moves along a circle of radius Pmin = L1/tan ~Omi n (resp. Pmax) = 
L1/tan ~Oma0. Consider any segment Yi performed with linear velocity + 1 with the 
robot turning to the right (i.e., 0 < q~ < ~Omax). We define the side of ?i on which 
lies the centers of curvature to be the right side of ?~, and the other side to be its 
left side. We divide 7, into small segments 6y, with endpoints p~,j and p,,j+ 1 (see 
Figure ll(a)). For every point p,,j, we draw the circle C~,j of radius Pmax that is 
tangent to ?i at pi, j and lies on the right side of 7~. Every C~,j intersects 7~ at a 
single point (p~,). We choose the points p~,j close enough to each other that every 
two successive circles C~.j and C~,j+ ~ intersect at two distinct points (as in Figure 
ll(a)). Now we draw the circle Di,~ of radius Pmin that is tangent to both C,,j and 
Ci,j+~ with its center located on the left side of y~ (or as close as possible to the 
left side if Pmln is t oo  small). We define A~?~ as the curve segment obtained by 
concatenating the following three circular arcs: 

(1) the short circular arc in Ci,~ connecting pi,j to the tangent point of C~,j and 
DLj; 

(2) the short circular arc in Di, j connecting the tangent point of Ci, j and Di, j 
to the tangent point of Di, j and C~,j+~; and 

(3) the short circular arc in Ci, j+~ connecting the tangent point of D~,j and 
Ci,j+ 1 to Pi,j. 

By dividing 7~ into small enough segments, every Aj~i can be made as close as we 
wish to 6j7~. As mentioned above, at every point along each of the two curve 
segments 6j7~ and A~,~, the orientation of the car is defined by the tangent to the 
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Fig. 11. Approximation of a path. 
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curve segment at the considered point. Therefore, since 5j7i and Ajy~ are tangent 
to each other at their two extremities, the car has the same orientation both at 
their initial extremities and at their final extremities. By making the ~jy~ small 
enough, we can make the change of orientation of the tangent along both fijyi 
and Ajy i arbitrarily small. Hence, since the subpath of z that projects onto 6j7~ is 
contained in the open free space, by making every 6jh small enough, we can lift 
every curve segment Aj7~ into a path segment contained in (~free and having its 
extremities in the original path r. Similar constructs as above can be made for a 
straight segment (Figure l l(b)) or a segment that turns to the left. Standard 
arguments about the compactness of the path z (the fact that any open cover of 
the path admits a finite subcover) allow us to derive that z can be approximated 
by a finite sequence of such path segments in Cgfree. This approximation includes 
the same number of reversals as z, hence is optimal in that respect. 

Similar constructs as above can be made if ~0ml . and q~max have the same sign 
(see Figure ll(c)). [] 

We may wish to generalize this proposition to mobile robots with one or more 
trailers. The above proof does not directly work, because when the point Pz traces 
a curve segment Ajyi, the final orientation of each trailer is, in general, different 
from the orientation it would have had if P:  had traced 6jyi. Of course, we could 
make the difference in orientation arbitrarily small by dividing 7~ into small enough 
segments, but the number of segments would then increase, so that we could not 
conclude anything. 
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